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Abstract

Deep learning approaches have made tremendous

progress in the field of semantic segmentation over the past

few years. However, most current approaches operate in

the 2D image space. Direct semantic segmentation of un-

structured 3D point clouds is still an open research prob-

lem. The recently proposed PointNet architecture presents

an interesting step ahead in that it can operate on unstruc-

tured point clouds, achieving encouraging segmentation re-

sults. However, it subdivides the input points into a grid of

blocks and processes each such block individually. In this

paper, we investigate the question how such an architecture

can be extended to incorporate larger-scale spatial context.

We build upon PointNet and propose two extensions that

enlarge the receptive field over the 3D scene. We evaluate

the proposed strategies on challenging indoor and outdoor

datasets and show improved results in both scenarios.

1. Introduction

Semantic segmentation is an important capability for

intelligent vehicles, such as autonomous cars or mobile

robots. Identifying the semantic meaning of the observed

3D structure around the vehicle is a prerequisite for solving

subsequent tasks such as navigation or reconstruction [5, 6].

Consequently, the problem has attracted a lot of attention,

and notable successes have been achieved with the help of

deep learning techniques. However, most state-of-the-art

semantic segmentation approaches operate on 2D images,

which naturally lend themselves to processing with Convo-

lutional Neural Networks (CNNs) [17, 3, 29, 23].

Processing unstructured 3D point clouds, such as those

obtained from LiDAR or stereo sensors, is a much harder

problem, and it is only recently that first successful deep

learning approaches have been proposed for this task [19,

13, 32, 26]. Such point clouds can be obtained from Li-

DAR sensors mounted on top of a recording vehicle or they
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Figure 1: We explore mechanisms to extend the spatial con-

text for 3D semantic segmentation of point clouds.

can be obtained from visual SLAM approaches operating on

the vehicle’s cameras [14]. Finding approaches that can di-

rectly operate on point cloud data is highly desirable, since

it avoids costly preprocessing and format conversion steps.

However, the question what is the best network architecture

to process unstructured 3D point clouds is still largely open.

In this paper, we take inspiration from the recent Point-

Net work by Qi et al. [26], which currently defines the state

of the art in 3D semantic segmentation. PointNet learns a

higher dimensional spatial feature representation for each

3D point and then aggregates all the points within a small

3D volume (typically an occupancy grid cell) in order to

bring in some form of 3D neighborhood context. However,

this neighborhood context is very restricted, as each grid

cell is processed independently.

In this paper, we investigate possible mechanisms to in-

corporate context into a point cloud processing architecture.

We focus on spatial context, which has been identified as

being very important for semantic segmentation [20, 25].

We introduce two mechanisms to add spatial context to an

existing PointNet. The first mechanism incorporates neigh-

borhood information by processing input data from mul-

tiple scales or multiple adjacent regions together (input-

level context). The second mechanism operates on the esti-

mated point descriptors and aims at consolidating them by

exchanging information over a larger spatial neighborhood
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(output-level context). For both mechanisms, we explore

several possible realizations and compare them experimen-

tally. As our results show, both mechanisms improve se-

mantic segmentation quality.

Contributions. The key contributions of our work can

be summarized as follows: (1) We present two mechanisms

that can be used to incorporate spatial context into seman-

tic 3D point cloud segmentation. (2) We show how these

mechanisms can be incorporated into the PointNet pipeline.

(3) We verify experimentally that our proposed extensions

achieve improved results on challenging indoor and outdoor

datasets.

2. Related Work

Unstructured Point Clouds. A varied number of sen-

sors and setups exist which help to obtain unstructured point

clouds: areal data from airborne laser scanners, laser scan-

ners mounted on dynamic setups in a push-broom configu-

ration [18], rotating lasers e.g. Velodyne [9], or static lasers

[10]. Additionally, indoor spaces can be scanned using de-

vices such as the Microsoft Kinect [22] or Matterport cam-

eras [1]. All these devices produce point clouds of different

quality and density. We apply our method to indoor data

from [1] and to synthetic urban outdoor data from [8].

Traditional Methods. Hackel et al. [11] use traditional

random forest classifiers with 3D features (without color).

Their method is based on eigenvalues and eigenvectors of

covariance tensors created by the nearest neighbors of the

points. Their main contribution is an efficient approximate

nearest neighbors computation at different scales. Munoz

et al. [21] follow a similar approach but replace the random

forest classifier with an associative Markov network. Ran-

dom forest classifiers are also used in [33] to classify data

from 2D images and 3D point clouds, which they later fuse.

Similarly, Xu et al. [31] fuse camera and LiDAR sensor

data. Xiong et al. [30] propose a sequential parsing proce-

dure that learns the spatial relationships of objects. Lai et

al. [16] introduce a hierarchical sparse coding technique for

learning features from synthetic data. Vosselman et al. [28]

combine multiple segmentation and post-processing meth-

ods to achieve useful point cloud segmentations.

Deep-learning Methods. In a deep learning context,

point clouds can be represented in a regular volumetric grid

in order to apply 3D convolutions [19, 13]. Alternatively,

3D points can be mapped to a 2D representation followed

by 2D convolutions [27]. In [2], the authors are perform-

ing 2D convolutions in 2D snapshots of a 3D point cloud

and then project the labels back to 3D space. In [24] a deep

learning framework learns semantic segmentation by track-

ing point clouds. Yi et al. [32] use spectral CNNs on 3D

models represented as shape graphs for shape part segmen-

tation. Recent methods operate directly on raw point clouds

with KD-trees [15] or fully convolutional layers [26].
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Figure 2: Simplified PointNet Architecture. In this work,

we build upon the PointNet architecture for semantic seg-

mentation. In short, it computes a global feature which

summarizes a set of input points. Specifically, the network

takes N points as input, applies a series of multi-layer-

perceptrons transformations and aggregates the point fea-

tures by max pooling them into a global feature. Global

and local features are concatenated and the per point class

scores are returned. (MLP): Multi-Layer-Perception, (M):

Max-Pool, (S): Vertical Stack, (C): Concatenate. See text

and Qi et al. [26] for more details.

3. Method

In this section we start by reviewing the PointNet model,

then we introduce our mechanisms of extending context and

finish by describing our two exemplary architectures.

3.1. PointNet

PointNet [26] is a deep neural network that, when used

for semantic segmentation, takes as input a point cloud and

outputs the per point semantic class labels. First, it splits

a point cloud into 3D blocks, then it takes N points in-

side a block and after a series of Multi-Layer-Perceptrons

(MLP) per point, the points are mapped into a higher di-

mensional space D′, these are called local point-features.

Max-pooling is applied to aggregate information from all

the points resulting in a common global-feature invariant to

input permutations. The global-feature is then concatenated

with all the point-features. After another series of MLPs

these combined features are used to predict the M output

class scores. Figure 2 shows a simplified model.

Caveats. The global-features in PointNet summarize

the context of a single block (block-feature), as a result the

aggregated information is passed only among points inside

the same block.

Context outside a block is equally important and could help

make more informed class label predictions. Therefore

we introduce two mechanisms to add context: input-level

context – which operates directly on the input point clouds

– and output-level context – which consolidates the output

from the input-level context.

3.2. Input­Level Context

In this straightforward addition, we increase the con-

text of the network by considering a group of blocks si-

multaneously instead of one individual block at a time as

done in PointNet. Context is shared among all blocks in

a group. These groups of blocks are selected either from
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Figure 3: Architecture with multi-scale input blocks and consolidation units (MS-CU). The network takes as input three

blocks from multiple scales, each one containing N D-dimensional points. Separately, for each scale, it learns a block-

feature similarly to the PointNet mechanism. The concatenated block-features are appended to the input-features and then

transformed by a sequence of consolidation units (see Section 3.3). The network outputs per point scores. Shaded fields

represent block-features.

the same position but at multiple different scales (Multi-

Scale Blocks, see Figure 3, left) or from neighboring cells

in a regular grid (Grid Blocks, see Figure 4, left). For each

input block, we compute a block-feature using the mecha-

nism from PointNet. For the multi-scale version, we train a

block-descriptor for each scale individually to obtain scale-

dependent block-features. In the case of grid blocks, all

block features are computed by a shared single-scale block-

descriptor. In the end, both approaches output a set of

block-features corresponding to the input blocks.

3.3. Output­Level Context

At this stage, we further consolidate the block-features

obtained from the previous stage. Here, we differ between

two consolidation approaches:

Consolidation Units (CU) consume a set of point features,

transform them into a higher dimensional space using

MLPs and apply max-pooling to generate a common

block-feature which is again concatenated with each of the

high dimensional input features (see Figure 3, blue box).

This procedure is similar to the block-feature mechanism

of PointNet. The key point is that CUs can be chained to-

gether into a sequence CUs forming a deeper network. The

intuition behind this setup is as follows: In the beginning

each point sees only its own features. After appending the

block-features, each point is additionally informed about

the features of its neighboring points. By applying CUs

multiple times, this shared knowledge is reinforced.

Recurrent Consolidation Units (RCU) are the sec-

ond type of context consolidation we employ. RCUs

take as input a sequence of block-features originating

from spatially nearby blocks and return a sequence of

corresponding updated block-features. The core idea

is to create block-features that take into consideration

neighboring blocks as well. In more detail, RCUs are

implemented as RNNs, specifically GRUs [4], which are

a simpler variation of standard LSTMs [12]. GRUs have

the capability to learn long range dependencies. That range

can either be over time (as in speech recognition) or over

space as in our case. The cells of the unrolled GRU are

connected in an unsynchronized many-to-many fashion

(see Figure 4, blue box). This means that the updated

block-features are returned only after the GRU has seen the

whole input sequence of block-features. Intuitively, GRU

retain relevant information about the scene in their internal

memory and update it according to new observations.

We use this memory mechanism to consolidate and share

the information across all input blocks. For example,

the decision about whether a point belongs to a chair is

changed if the network remembers that it has seen a table

further down in the room.

In the following, we describe two exemplary architec-

tures which combine the previously introduced compo-

nents. For those, we provide a detailed evaluation and report

improved results in Section 4.

3.4. Multi­Scale (MS) Architecture

The full MS architecture is displayed in Figure 3. The

learned block-features from the multi-scale blocks, (see

Section 3.2) are concatenated into one multi-scale block-

feature. This multi-scale block-feature is further concate-

nated with the transformed input point-features and passed

through a series of CUs (see Section 3.3). Applying a final

MLP results in output scores for each input point.

Specific for this architecture is the sampling procedure to

select the positions of the multi-scale blocks: We randomly

pick a D-dimensional point from the input point cloud as

the center of the blocks and we group together N randomly

selected points that fall within a specified radius. This pro-

cedure is repeated at the same point for multiple radii.
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Figure 4: Architecture with grid input blocks and a recurrent consolidation unit (GB-RCU). The network takes as

input four blocks from a grid structure, each one containing N D-dimensional points. It then learns the block-features

using the same MLP weights for each block. All block-features are passed through a recurrent consolidation unit (see

Section 3.3) which shares the spatial context among all blocks and returns updated block-features. The updated block-

features are appended to the input-features together with the original block-features and used to compute the output per point

scores. Shaded fields represent block-features. Some skip-connections are omitted for clarity.

3.5. Grid (G) Architecture

Figure 4 shows the pipeline of the architecture with grid

input blocks. It consists of the following components: The

input level context is a group of four blocks from a 2x2

grid-neighborhood (see Section 3.2) is fed into a series

of MLPs that transform the point features, with weights

shared among all blocks. These block-features are passed

to an RCU that updates the individual block-features with

common context from all neighboring blocks. The up-

dated block-features are then concatenated with the original

block-features. They are then used, along with the local fea-

tures, for class predictions. After a series of fully connected

layers the output of class scores is computed for each point.

4. Experiments

For experimental evaluation, we compare our two ar-

chitectures with PointNet [26], the current state-of-the-art

semantic segmentation method directly operating on point

clouds. We produce quantitative results for our models and

the baseline on two challenging datasets: Stanford Large-

Scale 3D Indoor Spaces (S3DIS) [1] and on Virtual KITTI

(vKITTI) [8]. Additionally, we provide qualitative results

on point clouds obtained from a Velodyne HDL-64E Li-

DAR scanner from the KITTI dataset [9]. We will now de-

scribe these datasets in more detail.

Stanford Large Scale 3D Indoor Scenes. This dataset

is composed of 6 different large scale indoor areas, mainly

conference rooms, personal offices and open spaces. It con-

tains dense 3D point clouds scanned using a Matterport

camera. Each point is labeled with one of the 13 semantic

classes listed in Table 1. Using the reference implementa-

tion of PointNet, we were able to reproduce the results re-

ported by Qi et al. [26], see Table 4. Throughout the paper,

we follow the same evaluation protocol used in [26], which

is a 6-fold cross validation over all the areas.

Virtual KITTI. Due to the lack of semantically anno-

tated large-scale outdoor datasets, we rely on the photo-

realistic synthetic vKITTI dataset which closely mimics the

real-world KITTI dataset. It consists of 5 different monoc-

ular video sequences in urban settings, fully annotated with

depth and pixel-level semantic labels. In total there are

13 semantic class, listed in Table 2. For our purposes, we

project the given 2D depth into 3D space to obtain semanti-

cally annotated 3D point clouds. Conveniently, this proce-

dure results in point clouds that resemble the varying den-

sity of real world point clouds obtained by Velodyne LiDAR

scanners (see Figure 5). For test and training, we split the

original sequences into 6 non-overlapping subsequences.

The final train-test sets are created by choosing point clouds

from each subsequence at regular time-intervals. For evalu-

ation, we also follow the 6-fold cross validation protocol.

4.1. Evaluation Measures

As in [26], we evaluate on the intersection over union

(IoU), the average per class accuracy and overall accuracy.

Intersection over union is computed as:

IoU =
TP

TP + FP + FN
(1)

where TP is the number of true positives, FP the number of

false positives and FN the number of false negatives.
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4.2. Quantitative Results

In this section, we analyze the effectiveness of the input-

block schemes and the consolidation units exemplary on the

two previously introduced models. As input features, we

differentiate between geometry (XYZ) and geometry with

color (XYZ+RGB).

Geometry with Color. First, we compare the grid-

blocks in combination with a recurrent consolidation block

(G+RCU) to the original PointNet. Using the same evalua-

tion setup as described in [26] we are able to show improved

results over PointNet, see Table 4 and Table 1. This proves

our hypothesis that RCU are able to convey context among

blocks and thus improving results. During training, each

room is split into blocks of 1x1 m on the ground plane.

Each block extends over the whole room height. Neigh-

boring blocks are overlapping by 0.5 meters in both direc-

tions. We select four blocks simultaneously from a 2x2

grid-neighborhood (see Figure 4, left). Each block contains

4096 points. The unrolled GRU is 8 cells long (4 input, 4

output). It’s memory size is 64. During testing, the room is

split into non-overlapping blocks and evaluated on all 2x2

groups of blocks. Each block is evaluated only once.

Next, we take a look at the multi-scale input block with

consolidation units (MS-CU) model. To build the multi-

scale blocks, we follow the process described in Section 3.4.

As radii, we choose [0.25, 0.5, 1.0] m. As distance metric

we choose the Chebyshev-distance which generates axis-

aligned rectangular blocks. The middle scale block is equal

to the PointNet block regarding shape and size.

By using sampling (necessary for the multi-scale block

construction), we diverge from the previous training proce-

dure so we re-run all experiments under these new condi-

tions.

We validate the influence of each of the architecture’s

components by adding them one-by-one to our pipeline and

evaluating after each step, see Table 4 and Table 1. First,

we only consider the input-level context i.e the multi-scale

block feature (MS) as input to our pipeline while skipping

the consolidation units. This shows some performance ben-

efits over PointNet but not as much as one would expect

Figure 5: We train our network on synthetic point clouds

generated from vKITTI [8] (left) and apply it onto real-

world Velodyne LiDAR point clouds (right). The structure

and the varying density are comparable.

Figure 6: Qualitative results on laser point clouds.

Dataset: Velodyne HDL-64E laser scans from KITTI Raw

[9]. We trained our model on vKITTI point clouds without

color and applied it on real-world laser point clouds. So far,

only classes like road, building and car give decent results.

considering the enlarged input context. Next, we take only

single-scale input blocks and add one consolidation unit

(SS+CU(1)). The results show that the CU outperforms the

MS input blocks. It also shows that CUs provide a simple

technique to boost the network’s performance. Finally, we

combine both the MS blocks and the CU while appending

another CU to the network (MS+CC(2)). This full model is

depicted in Figure 3.

Geometry only. Until now, each input point

was described by a 9-dimensional feature vector

[X,Y, Z,R,G,B,X ′, Y ′, Z ′] where [X,Y, Z] are the

spatial coordinates of a point, [R,G,B] its color and

[X ′, Y ′, Z ′] the normalized coordinated based on the size

of the environment, see [26] for further details. Without

doubt, color is a very strong input feature in the context

of semantic segmentation. In this section, we pose the

question what will happen if no color information is

available like it is the case with point clouds obtained from

laser scanners. To simulate the missing colors, we simply

discard the color information from the input feature and

re-run the experiments. Table 3 and 2 show the obtained

results. See caption for discussion of the results.

4.3. Qualitative Results

We present qualitative results of our models applied to

indoor scenarios in Figure 7 and outdoor results in Figure 8

along with a short discussion. Additionally, we applied our

pre-trained geometry-only model (vKITTI) to real-world

laser data. The results are shown in Figure 6 and Figure 9.

5. Conclusion

In this work, we investigated the question how to incor-

porate spatial context into a neural network architecture for

3D semantic segmentation. Building upon PointNet, we

proposed two extension (Input-level context and Output-

level context) which we successfully applied onto indoor

and outdoor datasets. Still, numerous other combinations

remain possible. The full exploration of the design space is

left for future work.
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*PointNet [26] 43.5 81.5 86.7 64.8 29.4 16.3 39.1 48.1 52.5 42.5 5.4 37.6 30.4 31.4

*MS 44.4 82.2 86.9 64.2 33.8 22.8 43.3 52.0 51.0 38.6 9.2 36.1 23.6 33.7

*MS + RCU 45.5 83.6 86.9 67.5 40.5 17.1 37.0 48.8 53.9 42.3 6.8 39.7 32.8 34.2

*SS + CU(1) 45.9 88.6 92.6 66.3 36.2 23.6 47.1 51.2 50.2 36.9 12.6 33.7 22.7 35.3

*MS + CU(2) 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5

PointNet [26] 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

G + RCU 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9

Table 1: IoU per semantic class. S3DIS dataset with XYZ-RGB input features. We compare our models with different

components against the original PointNet baseline. By adding different components, we can see an improvement of mean

IoU. We obtain state-of-the-art results in mean IoU and all individual class IoU. Entries marked with * use random sampling

for input block selection instead of discrete positions on a regular grid.
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*PointNet [26] 40.0 84.0 87.2 57.9 37.0 19.6 29.3 35.3 51.6 42.4 11.6 26.4 12.5 25.5

*MS + CU(2) 43.0 86.5 94.9 58.8 37.7 25.6 28.8 36.7 47.2 46.1 18.7 30.0 16.8 31.2
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*PointNet [26] 17.9 32.9 76.4 11.9 17.7 49.9 3.6 2.8 3.7 3.5 0.7 1.5 25.1 3.4

*MS + CU(2) 26.4 38.9 87.1 14.6 44.0 58.4 12.4 9.4 10.6 5.3 2.2 3.6 43.0 13.3

Table 2: IoU per semantic class. S3DIS and vKITTI datasets both with XYZ input features (no color). Our methods

not only outperform PointNet consistently on two datasets, the improvements in mean IoU are also more considerable when

no color is available. This suggests that our network architectures are able to learn improved geometric features and are more

robust to varying point densities as they occur in the outdoor vKITTI dataset.

mean overall avg. class

IoU accuracy accuracy

S3DIS Dataset [1] – no RGB

*PointNet [26] 40.0 72.1 52.9

*MS + CU(2) 43.0 75.4 55.2

vKITTI Dataset [8] – no RGB

*PointNet [26] 17.9 63.3 29.9

*MS + CU(2) 26.4 73.2 40.9

Table 3: S3DIS and vKITTI datasets with only XYZ input

features, without RGB. We show improved results on indoor

(S3DIS) and outdoor (vKITTI) datasets. Our presented mecha-

nisms are even more important when no color is available.

S3DIS Dataset [1] mean overall avg. class

XYZ-RGB IoU accuracy accuracy

*PointNet [26] 43.5 75.0 55.5

*MS 44.4 75.5 57.6

*MS + RCU 45.5 77.2 57.2

*SS + CU(1) 45.9 77.8 57.7

*MS + CU(2) 47.8 79.2 59.7

PointNet [26] 47.6 78.5 66.2

G + RCU 49.7 81.1 66.4

Table 4: S3DIS Dataset with XYZ-RGB input features. Com-

parison of different context expansion techniques on input- and

output-level (see Sections 3.2–3.3). MS: Multi-Scale, SS: Single-

Scale, G: Grid, CU: Consolidation Unit, RCU: Recurrent Consoli-

dation Unit. Entries marked with * use random sampling for input

block selection instead of discrete positions on a regular grid.
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Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

XYZ-RGB Input PointNet[26] Ours, G-RCU Ours, MS-CU(2) Ground Truth

Figure 7: Indoor qualitative results. Dataset: S3DIS [1] with XYZ-RGB input features. From left to right: input point

cloud, baseline method PointNet, our results using the G-RCU model (see Figure 4), our results using the MS-CU(2) model

(see Figure 3), ground truth semantic labels. Our models produce more consistent and less noisy labels.
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Terrain Tree Vegetation Building Road Car Truck Van GuardRail TrafficSign TrafficLight Pole Misc

PointNet [26] Ours, MS-CU(2) Ground Truth

Figure 8: Outdoor qualitative results. Dataset: Virtual KITTI [8]. Results were obtained using only XYZ coordi-

nates as input, no color information was used. Left: baseline method PointNet. Center: our results using the MS-CU model

as illustrated in Figure 3. Right: ground truth semantic labels. The outputs of our method are less fragmented (cars, houses)

and finer structures like street lights and poles are recognized better.

Tree Grass Topiary Ground Obstacle Unknown

Ground truth

Labels: top
Our prediction

Labels: below

Terrain Tree Vegetation GuardRail TrafficSign TrafficLight

Figure 9: Qualitative results on 3DRMS’17 Challenge.

We trained our model on vKITTI point clouds without

color and applied it to the 3DRMS laser data. Training and

test datasets do not have the same semantic labels. Despite

that, common classes like trees are successfully segmented

and plausible ones are given otherwise (e.g. terrain instead

of grass, guardrail instead of obstacle).
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