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Abstract

Real-time detection frameworks that typically utilize

end-to-end networks to scan the entire vision range, have

shown potential effectiveness in object detection. Howev-

er, compared to more accurate but time-consuming frame-

works, detection accuracy of existing real-time networks are

still left far behind. Towards this end, this work propos-

es a novel CAD framework to improve detection accuracy

while preserving the real-time speed. Moreover, to enhance

the generalization ability of the proposed framework, we in-

troduce maxout [1] to approximate the correlation between

image pixels and network predictions. In addition, the non-

maximum weighted (NMW) [2] is employed to eliminate the

redundant bounding boxes that are considered as repeti-

tive detections for the same objects. Extensive experiments

are conducted on two detection benchmarks to demonstrate

that the proposed framework achieves state-of-the-art per-

formance.

1. Introduction

With the development of robotic applications, object de-

tection, which is intended to locate all target objects in the

visual range, has become a significant computer vision task

with increasing attraction. The performance of object de-

tection on ImageNet and PASCAL VOC has been signif-

icantly improved with the success of deep Convolutional

Neural Networks (CNNs) [3, 4, 5, 6] in recent years. The

pivotal challenge of object detection is to locate object re-

gions within the images and distinguish object categories

simultaneously.

To further increase the performance, several framework-

s, such as region CNN (R-CNN) [7], have been proposed to

tune deep neural networks for detection. R-CNN learns fea-

tures for Regions-of-Interest (RoIs) by employing the deep

neural network, and then classifies these learned features

by multiple two-class SVMs. On the other hand, instead
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Figure 1. Example detections using SSD and CAD. Left images

are detected by SSD while detections of our CAD framework are

shown on the right.

of warping various RoIs to original image size, SPP-Net

[8] reshapes these RoIs to fixed-shape cubes by introducing

the spatial pyramid pooling (SPP) layer. In Faster-RCNN

[9], the region proposal network (RPN) outputs preliminary

RoIs instead of traditional selective search method. Subse-

quently, a prevalent family of networks [10, 11, 12, 13, 14]

have been proposed to increase speed and accuracy. How-

ever, essential multi-step methodologies of aforementioned

frameworks limit the ceiling of their detection speed.

Recently, we have witnessed several end-to-end frame-
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Figure 2. Framework architecture of CAD framework. We add Adapters and Detector to the end of a convolution network. In addition,

the non-maximum weighted method eliminates redundant detections.

works [15, 16] achieve remarkable detection performance

with surprising speed. YOLO [15] first detects objects us-

ing a single convolution network and achieves remarkable

accuracy with impressive speed. To match various object-

s within images, SSD [16] generates extensive prior boxes

base on the receptive fields of convolution layers. More-

over, YOLO9000 [17] and DSSD [18] further improve de-

tection accuracy but decelerate their detection speed. With-

out consideration of the instinctive speed advantage, all end-

to-end frameworks are perplexed to small objects and unfa-

miliar categories. Thus, compared to aforementioned time-

consuming frameworks, overall accuracy of real-time detec-

tion frameworks still have considerable potential for further

improvement.

Towards this end, we propose a novel end-to-end frame-

work that improves detection performance while preserv-

ing real-time speed. Above all, three components (Convo-

lution network, Adapters and Detector) are integrated into

a unified network to accelerate detection speed. Convolu-

tion network generates prior boxes and associated feature

vectors while Adapters recombine these vectors to harmo-

nize with subsequent Detector. As the crucial component in

our framework, Detector predicts category confidences and

bounding box offsets base on the recombined vectors from

Adapters. To strengthen the generalization ability of detec-

tion framework, we adopt maxout [1] in Detector to approx-

imate the correlation between image pixels and network

predictions. Finally, redundant prediction boxes are elim-

inated by weighted-averaging the bounding boxes that are

seen as detections for the same objects. Using VGG [5] as

backbone network, our framework with 300×300 input size

yields 79.3% mAP on VOC2007 test and 76.9% mAP on

VOC2012 test with 35FPS using our NVIDIA GTX1070.

We summarize the main contributions as follows:

- We develop a novel end-to-end framework that is

significantly more accurate than existing end-to-end

frameworks while preserving real-time speed.

- To better imitate the correlation between image pix-

els and framework predictions, maxout is employed

to approximate more complex curves in the proposed

framework.

- Redundant prediction boxes are post-processed by the

non-maximum weighted method instead of conven-

tional non-maximum suppression.
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2. Related Work

In this section, we review several related works about

RPN-based frameworks and end-to-end frameworks via

deep convolution network.

2.1. RPN­based Frameworks

In recent years, we have witnessed incessant progress in

object detection since the ground-breaking work of region

convolution neural network (R-CNN) [7], which introduced

convolution neuron networks (CNNs) into object detection

task and defeated the traditional Deformable Parts Model

(DPM) [19] method. On one hand, these advances owe to

the progress in deep learning techniques [20, 21, 22]. On

the other hand, detection performance benefits from the de-

velopments of detection methodology. Original R-CNN p-

resented a three-step methodology to handle the detection

task: region proposal, feature extraction [23], and regions

classification. Firstly, a fixed number of Regions-of-Interest

(RoIs) that are supposed to contain target objects are gen-

erated by selective search method [24]. Subsequently, all

RoIs are clipped from the original images and delivered into

a convolution network as individual images. Finally, mul-

tiple two-class SVMs produce the category confidences for

all RoIs by distinguishing related feature vectors, which are

generated by the above convolution network. Multibox [25]

first applies bounding box regression for the detection task

and, due to its remarkable improvement, inherited by sub-

sequent networks. SPP-Net [8] substantially accelerates R-

CNN by proposing the spatial pyramid pooling (SPP) layer

that pools arbitrary regions to fixed-size cubes.

Based on aforementioned frameworks, follow-up Fast-

RCNN [26] presented a new framework that fine-tunes all

layers end-to-end by optimizing the objective function for

both confidences and bounding box regression. Besides,

Fast-RCNN developed a novel RoI pooling layer by simpli-

fying the SPP layer. Moreover, a novel two-step method-

ology was proposed by integrating the last two steps of

the three-step methodology in R-CNN into a unified con-

volution network. Faster-RCNN [9], the first end-to-end

training framework with nearly real-time detection speed,

achieves superior detection performance and profound in-

fluence to the whole object detection region. Instead of con-

ventional selective search method, Faster-RCNN proposed

the region proposal network (RPN) to generate preliminary

RoIs, which becomes the most widespread region proposal

method in current detection frameworks. RPN scans over

the convolution feature maps by using a small network to

produce anchors and related feature vectors that are used to

predict category scores and coordinates for related anchors

at each position. In addition, Faster-RCNN integrates the

RPN with Fast-RCNN by alternating between fine-tuning

shared convolutional layers and prediction layers for these

two networks. Recent R-FCN network [27] achieves re-

markable performance on object detection benchmarks by

introducing vote strategy to Faster-RCNN.

2.2. End­to­end Frameworks

Compared to aforementioned mature RPN-based net-

works, end-to-end detection frameworks are in the ascen-

dant. Overfeat [28] detects target objects by sliding multi-

scale windows on the convolutional feature maps. YOLO

[15] achieves astonishing detection speed while preserving

appreciable detection accuracy. In YOLO, input images are

divided into several square grids and delivered to a convo-

lution network. Each grid is required to detect the objects

that their center points fall into its grid region. Convolu-

tion network outputs a cube that indicates the predictions

of these grids. Successive work YOLO9000 [17] improves

YOLO by employing dimension clusters, multi-scale train-

ing and so on techniques to achieve superior performance

on object detection benchmarks. SSD [16] constructs a

multi-resolution pyramid by appending additional convo-

lution layers with progressively smaller scales to a basic

convolution network. And then, numerous prior boxes with

different aspect ratios and areas are generated by this net-

work to match the ground true boxes. Other auxiliary lay-

ers are appended to top layers of the pyramid to predict

category confidences and bounding box offsets for all prior

boxes. Subsequently, concatenated multi-scale prediction-

s are post-processed by non-maximum suppression (NM-

S) to generate the final detection results. DSSD [18] fur-

ther constructs the inverted feature map pyramid by adding

some deconvolution layers to the topmost layers of the SSD

network. Consequently, this strategy improves 1-2% mAP

whereas decelerates the network approximately 20%.

3. CAD Framework

3.1. Region Generation

We argue that the object detection task can be explained

from another perspective. For example, object location re-

gression can be considered as a dynamic function f(b) that

indicates the maximum jaccard overlap between bounding

box b and all ground true boxes:

f(b) = max iou(b, bgt)

Here b is a bounding box denoted as the 4-dim vector

(x, y, w, h) that represents the center point coordinates,

width and height. bgt indicates the ground true boxes of

original images while the iou function calculates the jac-

card overlap of two input boxes. For any image containing

target objects, there is a corresponding function f∗(b) that

exists some inputs bgt such that:

f∗(bgt) = max f∗(b) = 1
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Figure 3. Structure of the feature map tower in experiments.

To imitate f∗(b) that indicates the correlation between im-

age pixels and function outputs, detection frameworks are

trained using the known correlation instances - labeled im-

ages. In detection, based on the learned correlations, our

objective is to approximate all the maximizers bgt in the

domain of definition.

To tackle this mathematical problem, a straightforward

strategy that densely sample inputs from the domain of def-

inition is employed to find out the sample points that are

close to any maximizer. Afterwards, these chosen sample

points are gathered and post-processed by specific methods

to approximate all the maximizers. In detection, to match

the ground true boxes, the proposed framework generates

extensive prior boxes for dense search in the domain of def-

inition. Additionally, the criterion of ”match” and ”close

to” depends on whether the jaccard overlap of two boxes

surpasses a given threshold.

In implementation, to adapt the detection task, we trun-

cate the topmost full connected layers and pooling layer-

s of a convolution network, which is trained on ImageNet

for image classification. To construct the base network of

the proposed framework, additional convolution layers with

progressively decreasing sizes are appended to the top of

the truncated convolution network. Subsequently, numer-

ous prior boxes and related feature vectors are generated

from the top layers of the base network according to their

receptive fields. It is noteworthy that, in each layer, multiple

prior boxes at the same location have different aspect ratios

and areas but a common feature vector.

3.2. Feature Recombination

Since convolution networks typically have more convo-

lutional filters in the intermediate layers, the lengths of fea-

ture vectors from different convolution layers are various in

the base network. To cooperate with subsequent scale in-

variant detection, these various features have to be recom-

bined to a unified length. Besides, in the base network, shal-

lower and wider convolution layers are supposed to produce

similar predictions as deeper and narrower layers. With

more convolution layers below, deeper layers reorganize the

original image pixels to higher-level representations, which

are significant in both classification and regression. The

proposed framework desires Adapters to compensate shal-

lower layers and recombine the bottom feature vectors to

Figure 4. Illustration of scale invariant detection. If one object

with different scales shown at different locations, Detectors for

different scales are supposed to produce same predictions.

unified length.

Therefore, we append feature map towers, the instanti-

ation of our Adapters, to all chosen layers in the base net-

work. Internal structure of these towers refer to Figure 3.

All towers are compelled to output same shapes cube by

restraining all layers to employ equivalent convolutional fil-

ters.

3.3. Scale Invariant Detection

Scale invariant detection (SID) indicates that Detectors

should produce the same predictions from different resolu-

tion image patches. Illustration of SID please refer to Figure

4.

In SSD framework, multiple Detectors are trained to dis-

tinguish whether the maximum jaccard overlaps between d-

ifferent size patches and the ground true boxes are greater

than the given threshold. Since boxes generally have high-

er overlaps with similar size boxes, larger objects are more

likely to become positive examples in the Detectors that

contain larger prior boxes. Consequently, all ground true

boxes in training set are roughly divided into several group-

s base on their sizes. Compared to other computer vision

datasets, object detection instances are quite scarce. How-

ever, this strategy further splits the dataset and allocates

these pieces to several Detectors respectively. Detectors ob-

tain far less training instances than existing dataset, which

may induce them to over-fitting.

In addition, it is noteworthy that offset predictions are

proportional to their prior box sizes as following formulas:






















∆xgt = x̂p × wpbox

∆ygt = ŷp × hpbox

wgt = eŵp × wpbox

hgt = eĥp × hpbox

Bounding boxes are encoded as (x, y, w, h), represents cen-

ter coordinates (x, y), width and height. ∆xgt and ∆ygt
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are the differences between ground true boxes and pri-

or boxes. (x̂p, ŷp, ŵp, ĥp) are expected predictions while

(wpbox, hpbox) are width and height of the prior boxes.

Although larger objects have larger bounding box offsets,

these offsets are proportional to the prior box sizes. After

divided by bounding box sizes, predictions for arbitrary size

objects are equivalent. From the other perspective, as all

Detectors are 3x3 convolution layers in practice, SID have

the structural convenience for implementation. However,

multiple Detectors with respective parameters indicate that

SID is notoriously difficult to achieve.

To address these issues, a novel Detector implementation

is designed for SID in the proposed framework. Firstly, just

like SSD, Detectors are employed to predict C+1 (classes

and background) category confidences and 4 bounding box

offsets for corresponding prior boxes based on feature vec-

tors from Adapters. Furthermore, all Detectors are merged

to a single Detector by sharing their parameters, which en-

sure that they will produce identical predictions for differ-

ent resolution image patches. If a large image patch is con-

sidered as positive example in large prior boxes Detector,

the rest of Detectors will be trained using this instance too.

In the sense of generalization, it is similar with data aug-

mentation that increases positive examples for all Detectors.

Moreover, with the consideration that the maps from feature

space to bounding box offset space are supposed to be non-

linear, we apply maxout to enhance approximation ability

of the Detector.

3.4. Non­Maximum Weighted

In existing detection frameworks, non-maximum sup-

pression (NMS) is the most widespread method to eliminate

the redundant prediction boxes. For all predictions, if the

jaccard overlap between two prediction boxes surpasses a

given threshold, they are identified as the detections for the

same object and the higher confident one becomes the final

prediction. Suppose B is a group of boxes that are identi-

fied as the same object detections and bpre denotes the final

prediction bounding box. NMS implements the following

function:

bpre = bargmaxi ci

Here ci indicates the confidence of bounding box bi in B.

For detection boxes of same object, this method simply

adopts the most confident boxes while ignores all the non-

maximum boxes.

Intuitively, lower confident bounding boxes may consid-

er some latent information that is ignored by the most con-

fident boxes. Suppose an image that a man stretching out

his hands, as shown in Figure 5. Some prediction boxes

that well catch the upper body or the main body without

stretching hands are both inferior detections. However, the

average box of these two inferior boxes seems to well catch

the entire person. Especially in the case that two boxes have

Figure 5. Example image of the mon-maximum weighted method.

The red box indicates ground true while blue dotted boxes are pre-

dictions. The average box of predictions is shown as the blue solid

box.

similar confidences, predicting the average box is more con-

vincing than the higher one.

In our prior work [2], weighted-averaging the non-

maximum boxes slightly improve the detection perfor-

mance without deceleration. The proposed method, named

non-maximum weighted (NMW), implements the function:

bpre =
∑

n
i=1

ωi×bi∑
n
i=1

ωi

ωi = ci × iou(bi, bargmaxi ci
)

Here bi is the ith instance in box set B and ci represents its

maximum category confidence. ωi is the related-confidence

for each prediction box and iou function computes jaccard

overlap between bi and the most confident box bargmaxi ci
.

To obtain these related-confidences, we calculate the prod-

uct of its own confidence and the overlap with the most con-

fident predictions, which achieve the greatest improvement

in our expression experiments. Eventually, the final predic-

tion boxes are generated by calculating the weighted aver-

age over box set B.

4. Experiments

4.1. Experiment Settings

To construct the proposed framework, some improve-

ments are applied to superior SSD network [16]. First-

ly, the pivotal improvement is sharing parameters between

Detectors. Different from SSD trains multiple Detectors

for multi-scale objects, sharing the parameters makes them

practically equivalent to one Detector for arbitrary object

sizes. Secondly, maxout is employed in Detector to approx-

imate more complicated curves, while the hyper-parameter

k is set to 3. Thirdly, to harmonize the Convolution network

with Detector, Feature map towers are adopted as Adapters

between the base network and additional convolution lay-

ers. Furthermore, we append additional small prior boxes

to improve detection performance on small objects by com-

pelling all layers to produce prior boxes with [2, 3] aspect

ratios. In addition, instead of traditional NMS in conven-

tional detection frameworks, NMW is applied in our CAD

framework to eliminate the redundant predictions.
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Table 1. PASCAL VOC2007 test detection results. All networks are trained on the union of VOC2007 trainval and VOC2012 trainval.
Method network mAP aero bike bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv

YOLOv2 Darknet 75.4 86.6 85.0 76.8 61.1 55.5 81.2 78.2 91.8 56.8 79.6 61.7 89.7 86.0 85.0 84.2 51.2 79.4 62.9 84.9 71.0

Faster Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

R-FCN Residual-101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

SSD VGG 77.2 81.3 85.3 76.6 70.9 50.0 84.3 85.5 88.1 59.0 79.8 76.0 86.1 87.3 84.2 79.4 51.9 77.7 77.7 87.7 75.3

DSSD Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4

I-SSD VGG 78.6 82.4 84.0 77.4 71.3 52.8 85.7 87.0 88.3 62.6 82.7 78.1 86.7 88.8 86.0 79.9 53.1 77.6 80.8 87.9 77.8

CAD VGG 79.3 80.7 87.2 78.0 73.0 56.5 86.7 87.0 87.9 62.5 84.0 79.1 85.8 87.1 85.3 80.8 55.7 80.0 81.0 88.6 79.0

Table 2. Comparison of speed and accuracy between some excellent networks. The mAPs are evaluated on PASCAL VOC2007 test.

Method mAP FPS Proposals GPU Input size

Faster-RCNN 73.2 7 6000 Titan X ∼1000x600

Faster-RCNN 76.4 2.4 300 K40 ∼1000x600

R-FCN 80.5 9 300 Titan X ∼1000x600

YOLO9000 78.6 40 845 Titan X 544x544

SSD 77.2 46 8732 Titan X 300x300

DSSD 78.6 9.5 17080 Titan X 321x321

I-SSD 78.6 16 8732 K20 300x300

CAD 79.3 35 11640 GTX 1070 300x300

To validate the superiority of our framework, com-

prehensive experiments are conducted on two object de-

tection benchmarks: PASCAL VOC2007 and VOC2012

[29]. We implement the proposed framework by using the

Caffe framework on NVIDIA GTX1070 with CUDA 8.0

and cuDNN v5.1. Stochastic gradient descent (SGD) is

employed as the optimization algorithm for the proposed

framework while batch size is fixed to 32. The proposed

framework is trained with 10−3 learning rate for the first

80k iterations and decayed as a factor of 0.1 for every 20k it-

erations while 120k iterations totally. Moreover, to enhance

the generalization ability of the proposed framework, we

apply data augmentation as [16]. Furthermore, VGG16 [5]

is employed as backbone network of the proposed frame-

work to imitate the correlation between the image pixels

and corresponding function outputs. In addition, the input

image size of our network is set to 300x300 for a fair com-

parison to the original SSD framework.

4.2. PASCAL VOC2007

PASCAL VOC2007 test set contains 4952 labeled im-

ages with RGB channels, including 20 categories of objects

with various sizes and positions. To evaluate the proposed

framework on VOC2007 test set, our network is trained

on VOC2007 trainval and VOC2012 trainval (07+12). As

shown in Table 1, experiment results are compared with

some excellent frameworks, such as Faster R-CNN, YOLO,

R-FCN and SSD.

We have the following observations from the results.

Firstly, compared to other end-to-end frameworks, the pro-

posed network significantly surpasses the original SSD net-

work and achieves superior detection performance. Mean-

while, detection speed of the proposed framework is com-

parable to the original SSD and YOLO9000. Secondly, the

proposed network surpasses other improved SSD-based net-

Table 3. Experiment results on PASCAL VOC 2012 test set.

All networks are trained by 07++12: 07 trainval + 07 test +

12 trainval. Result link is the detailed detection performance:

http://host.robots.ox.ac.uk:8080/anonymous/CYWQES.html.

Method mAP FPS GPU Input size

Faster 73.8 7 TITAN X ∼1000x600

R-FCN 77.6 9 TITAN X ∼1000x600

YOLOv2 73.4 40 TITAN X 544x544

SSD 75.8 46 TITAN X 300x300

DSSD 76.3 9.5 TITAN X 321x321

CAD 76.9 35 GTX1070 300x300

work, such as DSSD [18] and I-SSD [2], on both speed and

detection performance. Thirdly, Faster-RCNN, the primal

RPN-based detection framework, is completely defeated by

the proposed framework too. Furthermore, state-of-the-art

R-FCN network overcomes the proposed network on detec-

tion accuracy, however, is 4x slower. In addition, the pro-

posed network achieves remarkable improvements on some

low accuracy categories, such as plant and boat.

Besides, detailed comparisons of framework architec-

tures are shown in Table 2. It is noteworthy that the superior

performance of the proposed network is achieved with the

smallest input size. The state-of-the-art R-FCN network has

6x larger input size than the proposed framework while only

1% mAP improvement. Other frameworks with similar or

larger input size all are defeated by the proposed network.

This comparison well demonstrates the superiority of the

proposed framework.

4.3. PASCAL VOC2012

To validate the conclusions of the proposed framework

in the VOC2007 experiments, we additionally evaluate our

network on PACSAL VOC2012 test set. The proposed
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Table 4. Controlled experiments in our CAD framework. All

mAPs are tested on VOC2007 test.
SSD CAD

share params X X X X X

add Adapters X X X X

uniform asp X X X

apply maxout X X

NMW X

FPS 39 39 37 36 35 35

mAP 77.2 77.6 78.1 78.5 79.0 79.3

network is trained by using VOC2007 trainval+test and

VOC2012 trainval while tested on VOC2012 test set (10991

images). Experiment results are presented in Table 3.

The same performance trend is obtained as we observed

on VOC2007 test. The proposed framework defeats most

existing detection frameworks, except the R-FCN network,

with the smallest input size and real-time speed. With re-

spect to speed and accuracy, as far as our knowledge, the

proposed framework achieves the state-of-the-art detection

performance. In addition, the remarkable performance fur-

ther demonstrates the effectiveness of the proposed frame-

work in object detection.

4.4. Component Analysis

To thoroughly investigate improvement of the proposed

framework, we carry out controlled experiments for each

component. All experiment networks utilize the same set-

tings as on VOC2007 test and the results are shown in Table

4.

As controlled experiments, we train multiple networks

by employing different improvement strategies to the for-

mer experimental network. Firstly, the parameters between

various Detectors in original SSD are shared by separating

each Detector into several sub-detectors that only have one

aspect ratio. These sub-detectors are gathered and share pa-

rameters to other sub-detectors that have the same aspect

ratio. Then, they are reassembled into former Detectors.

Secondly, feature map towers are employed as Adapters in

the proposed framework to coordinate the base network and

Detector. Thirdly, we compel all Detectors to produce prior

boxes with [2, 3] aspect ratios for the convenience in pa-

rameter sharing. Another advantage of this policy is that

network produces more prior boxes to match the small tar-

get objects. Furthermore, maxout is adopted to enhance

the adaptation and generalization abilities of the proposed

framework. Finally, the NMW method eliminates the re-

dundant predictions.

4.5. Post­Process Method Comparison

To demonstrate the superiority of non-maximum weight-

ed method, we compare its performance to NMS and Soft-

NMS [31], a new method that weakens the confidences of

Figure 6. Comparison between NMW and NMS. The x-axis

shows the confidence thresholds while the y-axis is the percent-

ages of accuracy or recall.

Figure 7. The average (over categories) APN performance of

the highest performing and lowest performing subsets within each

characteristic (occlusion, truncation, bounding box area, aspect ra-

tio, viewpoint, part visibility). Overall APN is indicated by the

black dashed line. The difference between max and min indicates

sensitivity; the difference between max and overall indicates the

impact.

non-maximum boxes. Accuracy and recall are the primary

criterions to evaluate the effectiveness of these methods. We

adjust the confidence threshold, which determines whether

the prediction boxes are positive or not, from 0.1 to 0.9 with

a step of 0.1. Experiment results are exhibited in Figure

6. The x-axis shows the confidence thresholds while the

y-axis is the percentages of accuracy or recall. Unlike supe-

rior improvements on RPN-based network, the Soft-NMS

have negligible influence to NMS in the proposed frame-

work. Thus, the results of Soft-NMS method are omitted in

the figure. Whereas, the proposed method surpasses NMS

in both accuracy and recall rate on all threshold conditions.

RPN-based network detects objects among a fixed num-

ber of RoIs that generated by the RPN. These networks on-

ly generate hundreds of prediction boxes that are deemed

to contain target objects. Soft-NMS improves mAP by de-

creasing confidences of the non-maximum boxes, which

generally have low overlaps with each other. These box-

es still are predictions with decreased confidences that im-

prove lower threshold accuracy. On the other hand, the pro-

posed framework generates identical prior boxes, whether

input images contain target objects are not guaranteed, de-

pend on the image size but not the input image pixels. In

addition, due to these boxes have high overlaps with each

other, Soft-NMS is likely to allocate 0 or even negative con-

fidences to these boxes. On the contrary, these dense prior
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Figure 8. These figures show the impact of object size and aspect ratio on two comparison frameworks: SSD and CAD. Each plot shows

the normalized AP with standard error bars (red). Black dashed lines indicate overall normalized AP. Object size is assigned to 5 categories:

extra-small (XS: bottom 10%); small (S: next 20%); medium (M: next 40%); large (L: next 20%); extra-large (XL: next 10%). In a similar

way, aspect ratio is assigned to other 5 categories: extra-tall/narrow(XT); tall(T); medium(M); wide(W); extra-wide(XW) [30].

Figure 9. Cumulative fraction of detections that are correct (Cor) or false positive due to poor localization (Loc), confusion with similar

categories (Sim), with others (Oth), or with background (BG). The solid red line reflects the change of recall with strong criteria (0.5

jaccard overlap) as the number of detections increases. The dashed red line is using the weak criteria (0.1 jaccard overlap) [16].

boxes are treated in a comprehensive manner that these box-

es are considered as supplements in our novel method. The

most confident box absorbs these supplements and integrat-

ed to a more inclusive box. However, this method may not

achieve substantial improvements in RPN-based framework

due to the independence of RoIs.

4.6. Invariance Analysis

Furthermore, we utilize the detection analysis tool from

[30] to understand the improvements of the proposed frame-

work better. Overall comparisons of the proposed frame-

work and SSD are shown in Figure 7. In addition, the im-

pacts of the object size and the aspect ratio are shown in

Figure 8. For all figures, the y-axis indicates the normal-

ized precision (APN ), defined in [30].

First of all, the proposed framework achieves remarkable

APN performance and surpasses the SSD network. Second-

ly, the proposed framework substantially reduces the influ-

ences of object size. Furthermore, for different aspect ra-

tios, our framework has more stable detection performance

than the SSD network. In addition, target categories are

divided into some sets base on their semantics. Two cate-

gories are considered to be semantically similar if they are

both within one of these sets: {all vehicles}, {all animal-

s including person}, {chair, diningtable, sofa}, {aeroplane,

bird}. Detection results of these sets are visualized in Fig-

ure 9. Compared to SSD network, our framework reduces

all types of error rates, especially the location error.

5. Conclusion

In this work, we present a novel CAD framework to

detect target objects in vision range. Three components

(Convolution network, Adapters and Detector) are integrat-

ed into a unified network to achieve real-time detection

speed. By training Detector using multi-scale image patch-

es, the proposed framework is more robust to scale variance.

Moreover, maxout and NMW are employed to enhance gen-

eralization ability of our framework. Extensive experiments

demonstrate that the proposed framework achieves superior

performance with respect to speed and accuracy.
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