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Abstract

In this work we propose a learning-based algorithm

for the inverse dynamics problem of human motion. Our

method uses Random Forest regression to predict joint

torques and ground reaction forces from motion patterns.

For this purpose we extend temporally incomplete force

plate data via a direct Random Forest regression from mo-

tion parameters to force vectors. Based on the resulting

completed data we estimate underlying joint torques using a

modified physics-based predictive dynamics approach. The

optimization results for model states and controls act as

predictors and responses for the final Random Forest re-

gression from motion to joint torques and ground reaction

forces.

The evaluation of our method includes a comparison to

state-of-the-art results and to measured force plate data and

a demonstration of the robust performance under influence

of noisy and occluded input.

1. Introduction

The analysis of human motion is indispensable for med-

ical applications, such as diagnostics and rehabilitation of

the human locomotor system [10, 16, 17]. To measure the

load at individual joints, researchers use the concept of joint

torques as the sum of all applied torques, e.g. caused by

the exerted forces of the skeleton, tendons and ligaments.

Based on this concept the healthiness of human motion can

be assessed and abnormalities can be detected.

The biomechanical state of the art is to estimate joint

torques from motion data using optimization approaches. A

performance measure, such as the dynamic effort, is mini-

mized in compliance with a set of constraints. There exist

several different optimization formulations for this specific

problem, namely forward, inverse and predictive dynam-

ics [3, 6, 21, 26, 27]. Characteristic challenges of these

methods are high computational cost, non-convex param-

eter spaces and large scale problems. Therefore these op-

timization problems require a careful treatment regarding

initialisation and constraining in order to ensure conver-
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Figure 1. Random Forest regression from model states to con-

trols. We consider short windows of three consecutive frames.

The green arrows represent the ground reaction force and the red

spheres are the joint torques.

gence. Furthermore the quality of the resulting joint torques

is strongly depending on the accuracy of the input joint po-

sition trajectories which are generally obtained using a mo-

tion capture system.

To address these issues we propose a learning-based ap-

proach to estimate joint torques together with contact forces

from motion using a sliding window procedure coupled

with a Random Forest (RF) parameter regression. Since we

rely on learned correlations between motions and the in-

ducing torques and forces our method is less susceptible to

noise and can even handle large occlusions (e.g. one entire

leg).

A motion sequence is divided into overlapping windows

which are separately fed to the RF to regress the underly-

ing joint torques and contact forces, as illustrated in Fig. 1.

Using a large window overlap we achieve smooth curve pro-

gressions and since windows are processed seperately, our

method is suitable for parallelisation. Compared to the pre-

dictive dynamics optimization, introduced in Sec. 3.2 we

reduce computation times from over one hour to less than

three minutes, on average (using unoptimized Matlab code).

In order to generate the RF we create a training set of
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motion windows with optimized force and torque profiles

based on a physical model of the human body. The corre-

sponding optimization problems are solved with a predic-

tive dynamics approach [27]. In this context it is crucial to

constrain the modeled GRF and its point of action, the cen-

ter of pressure (COP) since joint torques and contact forces

are interdependent.

We evaluate the performance of our method concerning

computation time, GRF and COP estimation error and the

consistency of joint torques and compare with results gen-

erated with a modified predictive dynamics approach and

our own implementation of a state-of-the-art method by

Brubaker et al. [7].

Our method generalizes to partly untrained and noisy

data (cf. Sec. 4.2) and is independent of force plate measure-

ments. In contrast to that, optimization-based approaches

are often restricted to a laboratory setup or need careful con-

straining to make up for the missing contact force measure-

ments.

To summarize, we propose

• a learning-based approach for the inverse dynamics

problem to estimate joint torques and contact forces

from motion.

• For this purpose, we introduce a Random Forest

regression from motion to contact force properties

(Force Regression Forest: FRF) to complete force

plate measurements (Sec. 3.2).

• Based on the completed data, we define contact reg-

ularizations for a predictive dynamics optimization

(PDO), that is used to generate training sets consisting

of motion windows (Sec. 3.2).

• Finally, we regress joint torques and contact force vec-

tors from motion parameters using a Random Forest

trained on the complete, regularized sets (Torque Re-

gression Forest: TRF) (Sec. 3.3).

2. Related work

Physics-based modeling provides the basis for human

motion simulation and analysis in numerous state-of-the-

art methods. Researchers in computer graphics use phys-

ical models to synthesise realistically looking motions [2,

12, 19, 24, 29]. The naturalness of an artificial motion can

either be achieved by exploiting motion capture data or by

minimizing some kind of efficiency measure, e.g. the dy-

namic effort. This approach is motivated by the overall ten-

dency of humans to avoid energy expenditure.

In computer vision physical models are used to facilitate

tasks like robust person and object tracking and 3D pose es-

timation [6, 13, 14, 20, 15, 23, 25]. In [6] a simple planar

model is exploited to estimate the biomechanical character-

istics of gait and combined with a 3D kinematic model for

monocular tracking. A related approach by [23] considers

not only walking but a wide range of motion types. The au-

thors propose a full-body 3D physical prior that integrates

the corresponding dynamics into a Bayesian filtering frame-

work.

There are a number of recent methods that use physical

models and constraints to solve specific tasks of computer

vision: The works of Oikonomidis et al. [14] and Pham et

al. [15] model hand-object interactions for hand pose track-

ing and estimation of grasping forces, respectively. Maksai

et al. [13] and Park et al. [20] deal with the estimation of

outer forces effecting objects and persons in 2D images and

videos.

The works discussed so far use physical models to solve

a specific problem but do not analyse the forces and torques

of a full human body model. The estimation of joint torques

from motion data is subject of human motion analysis and

has been realized by means of inverse dynamics [3, 26], for-

ward dynamics [6] and predictive dynamics [21, 27]. All of

these appoaches can be formulated as optimization prob-

lems. In inverse dynamics, the model states, i.e. the motion

parameters are set as optimization variables and the pro-

ducing forces are calculated inversely from these states. In

contrast to that, forward dynamics treats the forces as opti-

mization variables that generate a motion through integra-

tion of the related equations of motion. Predictive dynamics

is closely related to Direct Collocation, known from opti-

mal control problems: The states, as well as the forces are

optimized, while the equations of motion are incorporated

as equality constraints. General challenges of physics-based

optimization are high computational expense concerning

the calculation of objectives, constraints and their deriva-

tives and a high-dimensional parameter-space, resulting in

computation times in the order of hours.

Brubaker et al. address the issue of high computational

cost in [7]. They use an articulated body model to infer

joint torques and contact dynamics from 3D motion data.

The optimization procedure is accelerated by introducing

additional root-forces which effectively decouple the equa-

tions of motion at different time frames. These artificial

root-forces are then minimized.

In recent years, researchers aim to find a direct mapping

from a motion parametrization to the acting forces, using

machine learning techniques: [11] investigates sparse cod-

ing for inverse dynamics regression via a CNN and [28] in-

troduces a two dimensional statistical model for human gait

analysis.

3. Method

The proposed method relies on a training set that in-

cludes motion, GRF and joint torque parameters for short

overlapping windows. In order to generate this set, the un-

derlying joint torques and GRF have to be determined by
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Figure 2. Flowchart of the proposed method.

means of a physics-based optimization procedure. In this

context the equations of motion of a physical model are used

as equality constraints. In the following section we will in-

troduce the physical model and present the associated equa-

tions of motion. A detailed description of the optimization

problem follows in Sec. 3.2. To convey an overview of the

proposed algorithm we depict a flowchart in Fig. 2.

3.1. Physical model

We use a physical model, consisting of 13 segments with

related inertial properties, obtained from literature [9] and

12 joints. The model has 29 degrees of freedom, that con-

stitute the coordinates q. They comprise 6 global degrees

of freedom for the position and the orientation of the root

joint and 23 joint angles. The vector q is effected by the

joint torques τ with no actuation of the global coordinates,

i.e. τ1, . . . , τ6 = 0.

For the modeling of the ground contact, the kinematic

chain is equipped with two contact points for each foot seg-

ment, one at the toe and one at the heel. The total GRF at

one foot is distributed to both points, which enables us to

simulate a movement of the COP along the foot sole. This

results in the following contact force vector:

Fc = (fT
cl1

,fT
cl2

,fT
cr1

,fT
cr2

)T , (1)

which corresponds to stacked 3-dimensional force vectors

acting at the left toe, left heel, right toe and right heel. The

force Fc is 12 dimensional and can be transformed from

R
12×1 to R

6×1 by a matrix C that adds the vectors acting

at heel and toe:

F = CFc =

(

fcl1 + fcl2

fcr1 + fcr2

)

=

(

fcl

fcr

)

. (2)

The equations of motion are formulated using a combi-

nation of the Newton-Euler method and the Lagrange for-

malism, in general referred to as TMT-method [18]. They

have the following form:

Mq̈ = τ + JTM(ag −G) + JT
c Fc , (3)

with inertia matrices M and M(q) = J(q)TMJ(q) for

dependent and independent coordinates, respectively. The

kinematics of the corresponding coordinate transformation

are described by the Jacobian J(q) and the contact Jaco-

bian Jc(q). Finally, ag and G(q, q̇) = ∂
∂q

(J(q)q̇)q̇ are

gravitational and convective acceleration, respectively. We

shorten the right hand side of Eq. (3) by Mq̈ = F(x,u),
with the parameter sets

x = (qT , q̇T )T and u = (τT ,F T
c )T , (4)

called model states and controls, respectively.

3.2. Generation of training data

We decompose a sequence into windows of 3 frames

with an overlap of 2 frames. This window length yields suf-

ficient information to reflect the acceleration of the model

states, while allowing the use of 2nd order Hermite poly-

nomials for the state and control discretization. The large

overlap is necessary to facilitate a highly resolved analysis

of motion sequences and to generate a maximal training set.

Predictive dynamics

For every motion window (discretized on the temporal grid

t = t1, ..., t3) we estimate the underlying joint torques and

GRF, i.e. we determine the control vector u that generates

the considered motion using an optimization approach. To

reduce the number of design variables, the model states x

and the control parameters u are descretized by approxi-

mating them with Hermite polynomials Hi(t):

x(t) =

2
∑

i=1

αiHi(t) , u(t) =

2
∑

i=1

βiHi(t) (5)

The weighting coefficients α and β become optimization

parameters of a predictive dynamics approach [27] and will

later be used for the RF regression. They are optimized si-

multaneously in compliance with a set of constraints. This

set typically encompasses constraints for the motion pat-

tern, the contact dynamics and in particular for the equa-

tions of motion, which have to be fulfilled at the temporal

grid points. Due to measurement inaccuracies and model

simplifications it is sometimes difficult to find a valid set

for these constraints.

Modified predictive dynamics

We phrase the predictive dynamics optimization using reg-

ularization terms, introduced in Eq. (7) instead of hard con-

straints to support the convergence. The problem

min
αβ

{

w0hτ (β) + w1he(α,β) (6)

+w2hx(α) + w3hf(β) + w4hd(β)
}

,
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is solved using an interior point algorithm [8]. Here,

w0, . . . , w4 > 0 are weighting factors that sum to one.

The individual terms of Eq. (6) are defined as follows:

hτ (β) =
1

T

∑

i

‖τ (ti)‖
2 (7a)

he(α,β) =
1

T

∑

i

‖Mq̈(ti)−F(x(ti),u(ti))‖
2

(7b)

hx(α) =
1

T

∑

i

‖x(ti)− xm(ti)‖
2

(7c)

hf(β) =
1

T

∑

i

‖F (ti)− Fm(ti)‖
2

(7d)

hd(β) =
1

T

∑

i

∑

j=l,r

(

(

‖fcj1(ti)‖ − rj2(ti)‖fcj (ti)‖
)2

+
(

‖fcj2(ti)‖ − rj1(ti)‖fcj (ti)‖
)2

)

(7e)

with the duration T = t3 − t1 of 3 frames.

The first term hτ is the so called dynamic effort, which

penalizes large joint torques. The second function he de-

scribes the violation of the equations of motion, defined in

Eq. (3). Furthermore we minimize the terms hx and hf

to prevent a strong deviation of the states and the modeled

GRF from ground truth values. Here, measured data is in-

dicated by an index m. In particular, xm are the states of

a model, fitted directly to the captured joint trajectories and

Fm is based on the measured force plate data but temporally

extended using a RF regression that will be described in the

next section.

Finally in Eq. (7e), we regularize the force partitioning

between toe and heel contact points depending on the re-

spective distances of these points to the COP on the force

plate, i.e. to the point of action of the GRF vector. More

precisely, we enforce a linear distribution of force vectors

according to the relative distances

r = (rl1, rl2, rr1, rr2)
T =

(

1

dl1+dl2
(dl1, dl2)

T

1

dr1+dr2
(dr1, dr2)

T

)

. (8)

Here, (dl1, dl2, dr1, dr2) denote the distances of the left

toe, left heel, right toe and right heel to the COP.

To demonstrate the influence of hd, we compare the sim-

ulated COP motion during the stance phase of walking with

and without its minimization and analyze the resulting an-

kle torque profiles: The left side of Fig. 3 shows the op-

timized relative force magnitude ‖fcl1‖/‖fcl‖ at the toe

contact point compared to the ground truth distance rl2.

Without regularization the resulting force partitioning can

only approximate the COP position during mid-stance, but

fails shortly after and before heel-strike and toe-off, respec-

tively. Based on such a contact force distribution the ankle
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Figure 3. Left: Comparison of optimized relative forces at the toe

to the measured relative heel-to-COP distance rl2. Right: Influ-

ence of different weight vectors on the optimized ankle torque.

The vectors wb (PDO) and w (c-PDO) set hd and hτ to zero, re-

spectively.

torque significantly differs from the optimization result with

inclusion of hd, as can be seen in Fig. 3 on the right side.

The figure shows optimized ankle torques resulting with the

regularization weights w = (0, 0.249, 0.249, 0.499, 0.003),
wa = (0.024, 0.243, 0.243, 0.487, 0.003) and wb =
(0.024, 0.244, 0.244, 0.488, 0). With wb (hd set to zero),

an unrealistically high plantar flexion moment is necessary

to reach foot-flat and a dorsi flexion moment appears at toe-

off to avoid hyperextension.

The optimization with regularization weights w does not

take hτ (cf. Eq. (7a)) into consideration. An additional min-

imization of this term, i.e. using the weights wa, does not

change the characteristic torque progression, while in turn

increasing the other regularization terms, e.g. the violation

of the equations of motion he. In the following we will refer

to the window-wise predictive dynamics optimization with

regularization according to w as COP-regularized predic-

tive dynamics optimization (c-PDO) and to the correspond-

ing procedure with wb as PDO.

Data completion

We recorded motion sequences of walking, jogging and

jumping subjects in a laboratory setup with two force plates

embedded in the ground to measure Fm. For walking and

jogging the captured force plate data does not represent a

whole cycle in many cases, since the subjects only hit one

plate to maintain a natural movement style.

Because the quality of the final torque regression corre-

lates to the size of the training set, i.e. the number of mo-

tion windows, we decided to complete the partial force plate

data with inferred GRF values. This regression is termed

as Force Regression Forest (FRF) and is realized using a

bagged Random Forest [4] that is trained with the predictor

matrix AFRF and the response matrix BFRF. These matri-

ces consist of parameter vectors for all N frames of motion
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capture data of each motion class:

AFRF =





q̈1 . . . q̈N
yc1 . . .ycN

vc1 . . .vcN



 , BFRF =

(

Fm1
. . .FmN

r1 . . . rN

)

(9)

We infer GRF vectors Fm and relative contact point to

COP distances r from the angular accelerations q̈, the verti-

cal distances yc of the contact points to the ground and their

velocities vc. Here, q̈ is calculated using finite differences

of three consecutive frames. The contact parameters yc and

vc are computed based on the model state of the respective

center frame. In our experience, a regression based on these

features instead of the joint trajectories or the model states

provides better results for this particular problem.

3.3. Joint torque and force regression

The RF regression described in the previous section pro-

vides completed force plate data Fm and r which is then

used in Eq. (7d) and (7e) to regulate the contact force and

its point of action during the optimization of the coefficients

α and β. These weighting coefficients determine the quan-

tities of interest, that is the GRF F (t) and the joint torques

τ (t).

In other words, the successive execution of the force

regression FRF and the predictive dynamics optimization

(c-)PDO provides training sets for the final RF regression

from motion to hidden forces and torques. These train-

ing sets include parameter vectors α and β for the states

x = (qT , q̇T )T and the controls u = (τT ,F T
c )T , re-

spectively. The final RF regression from motion to torques

and forces will be referred to as Torque Regression Forest

(TRF) in the remainder of the paper. The whole algorithm

is schematically presented in Fig. 2. We introduce the nota-

tions TRF and c-TRF to distinguish between the RF trained

with the parameters resulting from PDO and c-PDO, respec-

tively.

To support the consideration of parameter correlations

we first perform principle component analysis on both the

predictor and the response set and then train a RF on the

resulting principle component scores. We use a bagged RF

[4] comprising 110 decision trees with a minimal leaf size

of 3 parameter vectors. These properties were determined

via cross validation. The forest is trained using the predictor

values ATRF and the responses BTRF consisting of princi-

ple component scores s:

ATRF =
(

sin1 . . . sinK
)

, BTRF =
(

sout1 . . . soutK

)

, (10)

sin = C−1
in (θ − θ̄) , sout = C−1

out(β − β̄) .

Here, Cin and Cout denote the corresponding principle

components and the mean of a variable is marked with a

horizontal bar above the character. The integer K is the

number of motion windows in the training set. The predic-

tor scores are based on the parameter vector

θ = (αT
r , q̈

T ,vT
c )

T . (11)

The angular acceleration q̈ is calculated via finite differ-

ences and the contact point velocities vc are derived from

the states x(t) and averaged over the window length. As

already stated in Sec. 3.2, we found that these additional

features improve the performance of the regression.

Instead of the complete coefficient vector α, we use a re-

duced version αr that does not include the coefficients for

the global position of the root joint. Thereby, we achieve

translational invariance of the predictors. Based on the re-

sponse score sout we calculate β and subsequently the joint

torques τ and the GRF F via Eq. (2), (4) and (5).

For the application of (c-)TRF the considered motion se-

quence first has to be divided into windows of 3 frames,

with possible overlap. Then every window can be processed

independently making the algorithm suitable for paralleliza-

tion. We determine the coefficients α by solving the iso-

lated optimization problem min
α

{hx(α)} (cf. Eq. (7c)) us-

ing the BFGS Quasi-Newton method [5] and subsequently

reduce to αr. The remaining parameters q̈ and vc from

Eq. (11) are derived as described above.

4. Experiments

We use synchronized motion capture and force plate data

of 11 subjects that perform walking, jogging and vertical

jumping motions. In total our training sets consist of 38

sequences for each, walking and jogging and 36 sequences

for jumping.

We obtain the 3D motion using a marker-based Vicon

T-series motion capture system consisting of 8 IR-cameras

and measure the related GRF with AMTI force plates.

Based on 3D marker trajectories a skeleton fit is performed

and the resulting joint trajectories are used to calculate joint

angles, angular velocities, root position and root velocity,

which constitute the model states x(t) (cf. Eq. 4).

4.1. Data completion

First of all we will evaluate FRF that we use to com-

plete force plate data for walking and jogging motions

(cf. Sec. 3.2). As mentioned earlier, the resulting GRF

values are used as regularization during the window-wise

predictive dynamics optimization and their quality is criti-

cal for a sound joint torque estimation. Therefore we use

all available information, including frames of the same se-

quence that have valid GRF measurements.

For the evaluation of FRF we consider each motion se-

quence separately and regress forces based on all remain-

ing sequences in the set, hence using data from the same

subject as well. The mean square error (MSE) of inferred
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Figure 4. Qualitative comparison of FRF results for the ver-

tical GRF to force plate data of walking (left) and jogging

(right). The sequences have MSE values of 0.091 (N/kg)2 and

0.991 (N/kg)2, respectively.

GRF compared to ground truth data is used as error mea-

sure. We achieve MSE values of 0.085 (N/kg)2 for walking

and 1.017 (N/kg)2 for jogging. Corresponding results are

qualitatively compared to force plate data in Fig. 4. The left

hand side shows the vertical force for walking and the right

hand side depicts the equivalent component for jogging. We

limit the qualitative presentation of results to vertical com-

ponents, since they predominantly influence the dynamics

of the model. The quality of regressed horizontal compo-

nents is similar and they are included in the MSE as well.

Note that in this particular jogging sequence the right

foot does not hit the force plate. Therefore the measured

force is equal to zero and does not represent the true GRF.

In this case, our regression can be used for data completion.

Aside from the GRF vectors we need the relative dis-

tances of toe and heel contact points to the COP on the force

plate, to ensure a realistic force partitioning during the op-

timization. The MSE of the relative distances r is 0.012 for

walking and 0.011 for jogging.

This part of the evaluation does not consider the vertical

jumps, since the subjects were able to hit both force plates

during jump and landing, providing us with complete force

plate data.

4.2. Joint torque and force estimation

In this section we evaluate the results of TRF and c-TRF

(cf. Sec. 3.3), i.e. the estimated GRFs and joint torques. We

assess the performance of the regression forests by compar-

ing to our own implementation of [7] and to the optimiza-

tion procedures PDO and c-PDO introduced in Sec. 3.2.

The quantitative evaluation will include the MSE of GRF

and partitioned GRF magnitudes according to the COP, as

well as a comparison of computation times tc. Since there

is no ground truth data for joint torques we will analyze the

consistency of the resulting curves. In contrast to the evalu-

ation of FRF, all motions performed by the same subject as

the considered motion sequence are now excluded from the

training set.

The left of Fig. 5 shows GRF regression results for exam-

ple sequences of all motion types. The corresponding MSE

values and computation times for all sequences are summa-

rized in Table 1. The window-wise predictive dynamics op-

timization (c-)PDO clearly outperforms the method based

on [7] regarding MSE of GRF and COP for all motion types.

But it suffers from high computation times (> 1h). To

achieve a faster estimation with relatively small error val-

ues, c-TRF is the method of choice. In contrast to [7], it

is able to estimate characteristic features, such as the drop

of vertical GRF values during mid-stance of walking. Fur-

thermore the vertical GRF component stays close to zero

during the swing phase (no ground contact of the consid-

ered foot) of walking and jogging, while the results of [7]

considerably deviate from zero (cf. Fig 5). This discrepancy

is due to the sensitivity of the latter method to the distance

of contact points to the estimated ground plane.

The COP MSE values demonstrate the effect of our COP

regularization on the force partitioning between heel and toe

contact points. The values are considerably decreased from

PDO to c-PDO and from TRF to c-TRF, respectively. Apart

from the limiting of the GRF vector, this regularization is

crucial to ensure accurately estimated joint torques. It is

noteworthy, that the averaging of the RF regression tends to

improve the COP MSE of TRF compared to PDO.

For jogging and jumping, the performances of (c-)TRF

and [7] are more similar than for walking. This can be ex-

plained by the higher variability of these motion types, that

is not sufficiently reflected by the training sets. In order to

satisfy the higher variability it is advisable to increase the

number of training samples for these motion types to fur-

ther improve the results in future research.

To convey a qualitative impression of the performance

on the whole sets, we illustrate the mean and standard de-

viation of the estimated vertical GRF via c-TRF and [7] in

Fig. 5 on the left. The corresponding curves for the joint

torques inferred with c-TRF are shown in Fig. 5 on the

right. The torque profiles display a high degree of consis-

tency (small standard deviations) for walking and jogging.

In the case of jumping the results are affected by a higher

uncertainty concerning the distinction between jump, flight

and landing phase, which is reflected in the non-zero GRF

during the flight phase. This problem could be approached

by employing an additional classification previous to the RF

regression, i.e. with a hierarchical RF or by simply increas-

ing the training set. Nevertheless, the MSE values for GRF

and COP are lower than those achieved with [7].

4.3. Noise and occlusions

In order to demonstrate the robustness of our method we

evaluate the performance on noisy and occluded data. In a

first experiment we add gaussian noise to the coordinates q

of the walking sequences and analyze the resulting MSE

of the inferred GRF (cf. Fig. 6 left). The regression for

847



Table 1. MSE values of the estimated GRF and COP and averaged computation times t̄c for the method based on Brubaker et al. [7], the

optimization described in Sec. 3.2 (PDO and c-PDO) and for our regression methods (TRF and c-TRF), trained on the sets resulting from

PDO and c-PDO, respectively.

GRF MSE [N2/kg2] COP MSE [N2/kg2]
method input walking jogging jumping walking jogging jumping t̄c [s]

[7] motion 2.731 2.914 5.712 3.135 14.096 7.790 26

PDO motion, force 0.052 0.236 0.599 2.350 3.618 20.584

c-PDO motion, force 0.052 0.236 0.598 0.100 0.239 0.136 4320

TRF motion 0.180 2.063 4.031 1.644 7.178 9.713

c-TRF motion 0.182 1.790 4.211 0.540 1.000 1.233 155

0 20 40 60 80 100

% gait cycle

-0.5

0

0.5

1

1.5

2

k
n

e
e

 t
o

rq
u

e
 [

N
m

/k
g

]

0 20 40 60 80 100

% gait cycle

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

k
n

e
e

 t
o

rq
u

e
 [

N
m

/k
g

]

extension

extension

0 20 40 60 80 100

% motion

0

0.5

1

1.5

k
n

e
e

 t
o

rq
u

e
 [

N
m

/k
g

]

extension

flexion

flexion

flexion

0 20 40 60 80 100

% gait cycle

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

a
n

k
le

 t
o

rq
u

e
 [

N
m

/k
g

]

plantar flexion

0 20 40 60 80 100

% gait cycle

0

0.5

1

a
n

k
le

 t
o

rq
u

e
 [

N
m

/k
g

]

plantar flexion

0 20 40 60 80 100

% motion

-0.2

0

0.2

0.4

0.6

0.8

a
n

k
le

 t
o

rq
u

e
 [

N
m

/k
g

]

plantar flexion

dorsi flexion

dorsi flexion

dorsi flexion

0 20 40 60 80 100

% gait cycle

-2

0

2

4

6

8

10

12

G
R

F
 [

N
/k

g
]

mean +/- std

mean

0 20 40 60 80 100

% gait cycle

-5

0

5

10

15

20

G
R

F
 [

N
/k

g
]

0 20 40 60 80 100

% gait cycle

-2

0

2

4

6

8

10

12

G
R

F
 [

N
/k

g
]

mean +/- std

mean

0 20 40 60 80 100

% gait cycle

-5

0

5

10

15

20

G
R

F
 [

N
/k

g
]

0 20 40 60 80 100

% motion

0

5

10

15

G
R

F
 [

N
/k

g
]

0 20 40 60 80 100

% motion

0

5

10

15

G
R

F
 [

N
/k

g
]

vertical GRF

Brubaker et al. [7] c-TRF

0 20 40 60 80 100

% gait cycle

0

2

4

6

8

10

12

G
R

F
 [

N
/k

g
]

JoiReg cOPT
Force plate
[7]
cOPT

0 20 40 60 80 100

% gait cycle

0

5

10

15

20

G
R

F
 [

N
/k

g
]

0 20 40 60 80 100

% motion

-5

0

5

10

15

20

25

30

G
R

F
 [

N
/k

g
]

vertical GRF

comparison to ground truth

knee torque

c-TRF

ankle torque

c-TRF

Figure 5. Left: Comparison of vertical GRF results of different methods to force plate data. The presented c-TRF regressions have

GRF MSEs of 0.144 (N/kg)2, 1.492 (N/kg)2 and 3.060 (N/kg)2 for walking, jogging and jumping (from top to bottom), respectively.

Center: c-TRF results compared to vertical GRFs generated with the method based on [7]. Right: c-TRF joint torque estimations.

walking stays stable subjected to gaussian noise with a stan-

dard deviation of up to 0.2 deg and with noise smaller than

0.4 deg the results are still better than those achieved with

[7] on the original data. Note that the related noise on the

velocities q̇ is two orders higher, due to the calculation via

finite differences.

In a second experiment the joint angles of one leg are oc-

cluded, i.e. we remove information about the contact points,

the ankle joint and the knee joint. To reconstruct the miss-

ing data, we apply an asymmetrical principle component

projection [1] of the available parameters to the full param-

eter space spanned by the vectors θ1 . . .θK (cf. Eq. (11)) of

the training set. The resulting mean curves of the vertical

GRF for all sequences of walking are depicted in Fig. 6 on

the right. We compare c-TRF results to the ground truth. As

can be seen, the estimated reaction force is still within a rea-
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Figure 6. Left: MSE of estimated GRFs vs. the standard deviation

of gaussian noise added to the joint angles. Right: Mean vertical

GRF results of c-TRF conducted on walking sequences with one

occluded leg.

sonable range of values. The MSEs of GRF and COP are

1.050 (N/kg)2 and 1.060 (N/kg)2, respectively. Consid-
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Figure 7. Left: Regressed vertical GRF for a transition from walk-

ing to jogging (cf. Fig. 8). Right: Ankle torques of an asymmetric

gait (cf. Fig. 9).

ering the plateau-like curve progression, we can conclude

that especially the uncertainty in regressed event times, i.e.

heel-strike, foot-flat, heel-off and toe-off is increased com-

pared to regressions on the full information. Note that the

measured force on one plate is equal to zero during the first

and third double support, since our laboratory setup only

consists of two plates. The true GRF has to be greater than

zero like the regression results.

4.4. Application to new motions

The division into short windows allows us to infer forces

and torques of motions that are not part of the training set.

The considered motion types are a transition from walking

to jogging and an asymmetric gait. On the level of 3-frame

windows both sequences have some similarity to the learned

motion classes, making a regression possible.

First, we consider the transition from walking to jogging.

For this purpose we train a RF on the combined training set

of walking and jogging sequences and perform the same

regression as before. In doing so, we rely on the capacity

of c-TRF to automatically distinguish between both motion

types. The resulting vertical GRF is illustrated in Fig. 7

on the left hand side and frames from the corresponding

animation are shown in Fig. 8.

Furthermore we apply c-TRF to an asymmetric limping

motion, that was reconstructed from IMU data by [22]. In

lieu of the strong drift of the global root position, due to

the double integration from acceleration data, the inferred

force and torque values stay within a sensible range. This is

owed to the translational invariance of the Random Forest

predictor parameters θ. The right hand side of Fig. 7 shows

the regressed ankle torques for both legs. The curves exhibit

a clear asymmetry with a reduced plantar flexion torque in

the unburdened leg. Fig. 9 presents frames, taken from the

related animation together with pictures of the scene.

5. Discussion

In this work we introduce a learning-based approach

for the important and challenging problem of joint torque

and contact force estimation from motion. The proposed

Figure 8. Transition from walking to jogging. The green arrows

represent the regressed GRF vectors and the red spheres the mag-

nitudes of the inferred joint torques.

Figure 9. Regression results for an asymmetric gait reconstructed

from IMU data [22]. We are able to infer plausible controls de-

spite the higher imprecision of reconstructed model states (e.g. the

exagerated forward bend in the second frame).

Random Forest regression outperforms the state-of-the-art

method [7] regarding MSE of estimated contact properties

and is about 30 times faster than the predictive dynamics

optimization we used for the generation of our training sets.

Although the latter method provides high quality results it

needs additional input (constraints for the contact proper-

ties) and it cannot perform in real-time, while TRF is in

principle applicable to such scenarios. The limiting factors

are the optimization of motion parameters α and the predic-

tion by the Random Forest. Both steps can be performed in

parallel for every motion window.

We demonstrate the robustness of our method concern-

ing noisy and occluded input data and show the benefit of

the sliding-window procedure by applying our method to

new motion types, in particular to a transition from walking

to jogging and to a 3D reconstruction of limping.
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