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Abstract

We argue that robust dense SLAM systems can make

valuable use of the layers of features coming from a stan-

dard CNN as a pyramid of ‘semantic texture’ which is suit-

able for dense alignment while being much more robust to

nuisance factors such as lighting than raw RGB values. We

use a straightforward Lucas-Kanade formulation of image

alignment, with a schedule of iterations over the coarse-to-

fine levels of a pyramid, and simply replace the usual im-

age pyramid by the hierarchy of convolutional feature maps

from a pre-trained CNN. The resulting dense alignment per-

formance is much more robust to lighting and other varia-

tions, as we show by camera rotation tracking experiments

on time-lapse sequences captured over many hours. Look-

ing towards the future of scene representation for real-time

visual SLAM, we further demonstrate that a selection using

simple criteria of a small number of the total set of features

output by a CNN gives just as accurate but much more effi-

cient tracking performance.

1. Introduction

Dense visual SLAM [15] involves incrementally recon-

structing the whole appearance of a scene rather reducing

it to sparse features, and this approach is fundamental if

we want scene models with general, generative represen-

tations. Tracking is achieved via whole image alignment

of live images with the reprojected dense texture of the re-

construction. However, using raw RGB values in persistent

dense scene representations over long time periods is prob-

lematic because of their strong dependence on lighting and

other imaging factors, causing image to model alignment to

fail. While one thread of research to mitigate this involves

getting closer to the real physics of the world by modelling

lighting and surface reflectance in detail, this is very compu-

tationally challenging in real-time. The alternative, which

we pursue here, is to give up on representing light intensity

directly in scene representations, and instead to use transfor-

mations which capture the information important for track-

ing but are invariant to nuisance factors such as lighting.

A long term goal in SLAM is to replace the raw geome-

try and appearance information in a 3D scene map by high

level semantic entities such as walls, furniture, and objects.

This is an approach being followed by many groups who

are working on semantic labelling and object recognition

within SLAM [7, 22, 14], driving towards systems capable

of scene mapping at the level of nameable entities (a direc-

tion pointed to by the SLAM++ system [17]).

What we argue here, and make the first experimental

steps to demonstrate, is that there is a range of very use-

ful levels of representation for mapping and tracking in be-

tween raw pixel values and object level semantics. The

explosion of success in computer vision by Convolutional

Neural Networks, and work on investigating and visualis-

ing the levels of features they generate in a variety of vision

tasks (e.g. [20]), has revealed a straightforward way to get

at these representations as the outputs of successive levels

of convolutional feature banks in a CNN.

In this paper we demonstrate that dense alignment, the

most fundamental component of dense SLAM, can be for-

mulated simply to make use not of a standard image pyra-

mid, but the responses of the layers of a standard CNN

trained for classification; and that this leads to much more

robust tracking in the presence of difficult conditions such

as extreme lighting changes. We demonstrate our results

in a pure rotation SLAM system, where long term track-

ing against keyframes is achieved over the lighting varia-

tions during a whole day. We perform detailed experiments

on the convergence basins of alignment at all pyramid lev-

els, comparing CNN pyramids against raw RGB and dense

SIFT. We also show that we achieve just as good perfor-

mance with small percentages of CNN features chosen us-

ing simple criteria of persistence and texturedness, pointing

to highly efficient real-time solutions in the near future.
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2. Background

The canonical approach to dense image alignment is due

to Lucas and Kanade [12], and is laid out in more detail in

the review papers by Baker and Matthews [3]. In the LK

algorithm, given an initial hypothesis for the transforma-

tion, the current ‘error’ between the images is calculated by

adding the squared difference in greyscale or RGB values

between all pairs of pixels from the two images which are

brought into correspondence by this transformation. The

derivative of this error with respect to the transformation

parameters is determined, and a Newton step is taken to re-

duce the error. It has been widely demonstrated that the

correct transformation is found at the minimum of the error

function after a number of iterations.

The performance of dense alignment can be measured

along several axes. Two are the accuracy of the final align-

ment and the speed of convergence, but generally more im-

portant are the size of the basin of convergence and the

robustness to unmodelled effects such as lighing changes.

Both the speed and basin of convergence of LK alignment

are improved by the use of image pyramids. Before align-

ment, both images are successively downsampled to pro-

duce a stack of images with decreasing resolution. Align-

ment then proceeds by performing a number of iterations

at each level, starting with the lowest resolution versions

which retain only low frequency detail but allow fast com-

putation, and ending back at the original versions where

only a few of the most expensive iterations are needed.

Here we replace this downsampling pyramid in LK by

the output of the convolutional layers of an off-the-shelf

VGG Convolutional Neural Network trained for classifi-

cation. The early layers of a CNN are well known to be

generic, regardless of the final task it was trained for, as

shown in [1]. The later layers respond to features which are

increasingly complex and semantically meaningful, with

more invariance to transformations including illumination.

Now that the convolutional layers of a CNN can comfort-

ably be run in real-time on video input on desktop or mo-

bile GPUs, the simplicity of using them to build pyramids

for alignment and scene representation is very appealing.

Even though CNNs turn raw images into feature maps,

we argue that aligning their hierarchical responses is still

a ‘dense’ method, which is much more akin to standard

Lucas-Kanade alignment than image matching using sparse

features. The convolutions produce a response at every im-

age location. As we move towards powerful real-time scene

understanding systems which can deal with complex scenes

whose appearance and shape changes over short and long

timescales, we will need dense and fully generative repre-

sentations, and the ability to fuse and test live data against

these at every time-step. We believe that there are many in-

teresting levels of representation to find between raw pixel

values and human annotated ‘object-level’ models, and that

these representations should be learned and optimised de-

pending on what task needs to be achieved, such as detect-

ing whether something has changed in a scene.

Other non-CNN transformations of RGB have been at-

tempted to improve the performance of correspondence al-

gorithms. There are many advantages to generating a scale-

space pyramid using non-linear diffusion [16], where edges

are preserved while local noise is smoothed away, although

it is not clear how much this would help Lucas-Kanade

alignment. In stereo matching, there has been work such as

that by Hirschmüller et al. [8] which compared three rep-

resentations: Laplacian of Gaussian (LoG), rank filter and

mean filter. All of these approaches help with viewpoint and

lighting changes. In face fitting using Lucas-Kanade align-

ment, Antonakos et al. [2] evaluated nine different dense

hand-designed feature transformations and found SIFT and

HOG to be the most powerful.

There is a growing body of literature that uses convolu-

tional networks to compare image patches, register camera

pose and compute optical flow between images [5, 18, 13,

9]. Such methods use networks trained end-to-end, and can

output robust estimates in challenging conditions but fail to

deliver the accuracy of model-based approaches. The train-

ing set is trusted to encompass all possible variations, a hard

condition to meet in the real world. Instead of perform-

ing iterative refinement those methods produce a one-shot

estimate. In FlowNet, in particular, the optical flow result

must still be optimised with a standard variational scheme

(TV-L1). Our approach bridges the gap between these two

paradigms, delivering both the accuracy of online optimisa-

tion and the robustness of learned features.

3. Dense Image Alignment

3.1. Direct Per­Pixel Cost Function

Image alignment (registration) requires of moving and

deforming a constant template image to find the best match

with a reference image. At the heart of image alignment lies

a generative warp model, which is parameterised to repre-

sent the degrees of freedom of relative camera–scene mo-

tion. Alignment proceeds by iteratively finding better sets

of parameters to warp the images into correspondence.

To assess correspondence we must define a measure

of image similarity. In the standard form of LK, sum of

squared differences (SSD) is used. This gives the following

objective function:

arg min
p

∑

x

||Ir(W(x;p))− It(x)||
2 , (1)

where Ir is the reference image, It is the template image,

x is an image pixel location and W(x;p) : R2 → R
2 is the

generative warp model. The vector of warp parameters we

aim to solve for is p.

861



pitch [rad]

0.2
0.1

0.0

0.1

0.2

ya
w [r

ad]

0.2

0.1

0.0

0.1

0.2

5000

10000

15000

20000

25000

Figure 1. Example 2DoF image alignment cost function for pan-

tilt camera rotation, with a clear minimum and smooth bowl.

One way to find the optimal parameters is simply ‘ex-

haustive search’, evaluating the cost function over a full

range of quantised parameter combinations and selecting

the minimum. Visualising the cost surface produced is in-

sightful; Figure 1 presents a 2 degree-of-freedom example

for images related by pan-tilt camera rotation. The clear

bowl shape of this surface shows that we can do something

much more efficient than exhaustive search as long as we

start from a set of parameters close enough to correct align-

ment by following the gradient to the minumum.

3.2. Lucas­Kanade Algorithm

In LK alignment [12], at each iteration we use the gra-

dient of the cost function in Equation 1 with respect to the

warp parameter vector p, and determine a parameter update

∆p which takes us closer to the minimum of the function.

A more efficient version of this algorithm, which allows

for pre-computation of the system Jacobian and Hessian

was proposed in [3]. The trick consists of swapping the

roles of the reference and template image and optimising

for an update warp composed with the current warp esti-

mate. The modified cost function has the form:

∆p = arg min
∆p

∑

x

‖It(W(x; ∆p))− Ir(W(x;p))‖
2 , (2)

with the following update rule:

W(x;p)← W(x;p) ◦ W(x; ∆p)−1 (3)

Linearizing Equation 2 leads to a closed form solution:

∆p =

(

∑

x

J
T
J

)−1
∑

x

J
T r , (4)

where:

J = −∇It
dW(x,p)

dp

∣

∣

∣

∣

p=0

(5)

r = Ir(W(x,p))− It(x) (6)

The shape of the convergence basin heavily depends on the

image content: amount and type of texture and ambiguities

present in the image. Since the cost landscape is usually

locally convex in vincinity of the real translation, a good

initialization is required for the optimization to successfuly

converge to the correct solution.

3.3. Coarse­to­Fine Alignment

To increase the size of the convergence basin, the orig-

inal image can be smoothed using Gaussian blur, which

simplifies the cost surface through removing the details in

the image [11]. The Gaussian smoothed image is usually

downsampled since it does not cause loss of information

and reduces the number of pixels to be processed. Since

a pixel in the downsampled image corresponds to multpile

pixels in the original image, the distance between the two is

shortened, which increases the size of the basin of conver-

gence. For the same reason, the accuracy of the alignment

performed on smaller version of the images is also reduced.

The common approach is to start the optimization using

highly downsampled and blurred images to obtain an initial

estimate and refine it using progressively more detailed ver-

sions of the images. This can be perceived as a pyramid of

degraded versions of the image.

4. Replacing the Pyramid with CNN Feature

Maps

Outputs of the convolutions in standard classification

CNN’s form a pyramid similar to the ones used in RGB

based LK image alignment (Figure 2). Consecutive layers

of such pyramid encode increasingly more semantic infor-

mation, starting from simple geometrical filters in the first

layers, leading to more complex concepts.

Each level of the pyramid takes the form of a multi-

channel image (tensor), where each channel contains re-

sponses to a certain learned convolutional filter. We pro-

pose to align the volumes in a coarse-to-fine manner, start-

ing from the highest, low resolution layers and progressing

down to the lower, geometrical layers to refine alignment.

Section 4.1 presents the process of extracting the feature

pyramid out of an input RGB image. Following this, Sec-

tion (4.2) describes how standard Lucas-Kanade alignment

can be applied to the proposed representation.

4.1. Feature Extraction

The pyramid is created through applying successive

convolutions followed by a nonlinear activation function,

with occasional downsampling, very much like in standard

CNN’s. The weights for convolutions are trained for an

image classification task. Although we believe that any
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Gaussian 3x3 filters

Learned 3x3 filters

Figure 2. A comparison between a Gaussian pyramid (left) and

proposed conceptual pyramid (right).
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Figure 3. A pyramid is created using successive learned convolu-

tions, just as in a standard CNN classification network. We have

used VGG-16 for our experiments

classification CNN could be used in our method, we have

only tested weights from VGG-16 classification network

from [21]. The network consists of 13 layers of convolu-

tions. Figure 4.1 presents the architecture of this network.

4.2. Volume Alignment

For aligning volumes we use the inverse compositional

cost function formulation described in Section 3.2:

∑

x

‖ex(∆p;p)‖2 =
∑

x

‖Vt(W(x; ∆p))− Vr(W(x;p))‖
2

(7)

Similar to normal images, we define a volume of depth

N as a function: V : R2 → R
N . In order to solve for the pa-

rameter update ∆p, one first need to calculate the Jacobian

and Hessian of this nonlinear Least Squares System:

Jx =
∂ex

∂∆p
=









∂ex,1

∂∆p

...
∂ex,N

∂∆p









=







Jx,1

...

Jx,N






(8)

Figure 4. An example spherical panorama produced by tracking

the camera rotation using CNN features

H :=
∑

x

J
T
x
Jx =

∑

x

[

J
T
x,1 . . . J

T
x,N

]







Jx,1

...

Jx,N






=

=
∑

x

N
∑

c=1

J
T
x,cJx,c

(9)

b :=
∑

x

J
T
x
ex =

∑

x

[

J
T
x,1 . . . J

T
x,N

]







ex,1
...

eT
x,N






=

=
∑

x

N
∑

c=1

J
T
x,cex,c

(10)

The update is calculated using the normal equations:

∆p = H
−1b (11)

In order to perform alignment in real-time over big vol-

umes we have implemented the optimization on GPU us-

ing NVIDIA CUDA. Each computational thread calculates

per-pixel values, which are later reduced to single matrices

using Equations 9 and 10.

5. Live Spherical Mosaicing

In order to test tracking using the proposed representa-

tion, we have developed a real-time spherical mosaicing

system similar to [10]. It tracks purely rotational camera

movement and produces a keyframe map, which is rendered

into a spherical panorama. For purely rotational camera mo-

tion, the homography between two camera frames with in-

trinsic matrix K, separated by rotation described by matrix

R is given by: KRK
−1 [6]. Therefore, the generative warp

function from Section 3.1 has the form:

W(x;ω) = π(KR(ω)K−1ẋ) , (12)

where ẋ is the homogenized pixel location x, and π is the

projection function. We parametrize the incremental rota-

tion R(ω) with ω ∈ R3. The incremental rotation described
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by vector ω is mapped to the so(3) group elements via [4]:

R(ω) = exp(ω×) . (13)

The final cost function to be optimized takes the form:
∑

x

||Vt(π(KR(ω)K−1ẋ)− Vr(KRK
−1)||2 . (14)

The keyframe map is projected onto a final compositioning

surface. We use spherical projection, which projects each

keyframe onto a unit sphere, which is later unrolled into a

2D surface for viewing. An example mosaic produced by

our system is presented in Figure 4. We use an image of

size 224× 224 to extract features and align all of the levels.

The system runs in real-time 15-20 frames per second

using the whole pyramid. Extraction of 13 layers of convo-

lutional features takes around 1 ms per frame. Copying the

data from GPU takes 10ms, which can be avoided by further

modifications to the software. Time spent on performing the

alignment depends on the number of iterations performed at

different levels and usually is around 40–60ms.

6. Results

We present experiments which compare the performance

of image alignment for our CNN pyramid with raw RGB

and dense SIFT pyramids. For all tests we use our 3D cam-

era rotation tracker described in Section 5. We consider that

robustness is the most important factor in camera tracking,

and therefore use the size of basin of convergence as our

performance measure in the main results in Section 6.1.

We also investigate the possibility of improving the re-

sults and reducing the computational overhead through se-

lecting the most valuable feature maps in Section 6.2.

6.1. Robust, long­term tracking

In order to test the robustness of the proposed repre-

sentation in long-term tracking scenarios, three time-lapse

sequences from a static camera have been captured show-

casing real-world changing lighting conditions. The videos

cover 8–10 hours of outdoor scenes, and have been sub-

sampled into 2 minute clips.

In our tests we focus on two of the captured sequences

– window and home. The first features a highly specular

scene which undergoes major and irregular lighting changes

throughout the day with no major outliers. The home se-

quence shows a relatively busy street with frequent outliers.

This sequence contains less specular surfaces, the observed

illumination changes have more a global character.

We have selected three snapshots from each of these se-

quences containing different lighting conditions, and evalu-

ated the area of the convergence basin while trying to align

each possible pair of frames. To serve as a baseline com-

parison, we also present the results of alignment using RGB

(RGB) and dense SIFT features (SIFT).

In order to measure the size of the convergence basin,

we segment the parameter space into a regular grid and ini-

tialize the Lucas-Kanade algorithm at each point. Next, we

perform the optimization for 1000 iterations and inspect the

final result. We find that when convergence is successful,

the final accuracy is generally good, and therefore define

that if the tracking result is within 0.07 radians of ground

truth, we mark the tested point as belonging to the conver-

gence basin. The marked points are next used to calculate

the total area of the convergence basin.

The results are presented in Figures 5 and 8. Five pyra-

mids levels of SIFT and RGB have been used in the tests to

compare with the proposed CNN pyramid. The missing val-

ues were duplicated in the plots so that it is possible to easily

compare the convergence basin areas of the corresponding

image resolutions (e.g. RGB/SIFT level 5 corresponds to

CONV levels 11–13). Note that the LK alignment results

are not symmetric with regard to which image is used as the

template and which as the reference, as only the gradient

of the template image is used, which might have impact on

performance under varying lighting conditions and blur.

For frames from the window dataset (Figure 5), all of

the methods have a sensible basin of convergence on the

diagonal, where the images used for alignment are identical.

For more challenging, off-diagonal pairs, such as A2, A3

or B3, the RGB cost function fails to provide a minimum

in the correct spot, while SIFT and CONV still have wide,

comparable convergence basins. One of the failure cases is

showcased in more detail in Figure 6. The proposed CONV

method seems to excel at higher levels, which are believed

to have more semantic meaning.

In the second, home sequence (Figure 8) RGB performs

better, possibly due to the global character of the illumina-

tion changes. It still fails when the lighting changes sig-

nificantly (pair C2,B3). Similar to the previous sequence,

the proposed method performs at least as well as SIFT and

better than RGB at the highest levels of pyramid.

To evaluate how the proposed solution handles image

blurring, we have tested it with an alignment problem of

an image with a heavily blurred version of itself. Figure 7

presents the reference and template images used in this test,

selected cost landscape plots of RGB, CONV and SIFT and

a comparison of basin sizes. We can see that all methods are

robust to blur, with our proposed method providing the best

results at the highest pyramid levels. It provides a steady,

wide basin of convergence at the top pyramid levels regard-

less of the lighting conditions and blur.

6.2. Reducing the Number of Features

The results presented so far are based on aligning all

of the CNN feature maps produced at each pyramid level

jointly. One clear disadvantage of this approach is compu-

tational cost: the amount of work which needs to be done
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Figure 5. Comparison of sizes of convergence basins for aligning pairs of images with different lighting conditions (sampled from the

window sequence). Each array cell presents convergence basins areas of RGB (red), SIFT (green) and CONV (blue) at different pyramid

levels. The left column and top row images are used in LK as template and reference, respectively.
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Figure 6. Cost landscape plots and convergence basin areas of different methods for aligning an image with a blurred version of itself.

From left: template image, reference image, RGB cost landscape, SIFT cost landscape, CONV cost landscape, comparison of convergence

basin areas (RGB: red, SIFT: green, CONV: blue).
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Figure 7. Cost landscape plots and calculated convergence basin areas of different methods for aligning an image with a blurred version

of itself. From left: template image, reference image, RGB cost landscape, SIFT cost landscape, CONV cost landscape, comparison of

convergence basin areas (RGB: red, SIFT: green, CONV: blue).
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Figure 8. Comparison of sizes of convergence basins for aligning pairs of images with different lighting conditions (sampled from the home

sequence). Each array cell presents convergence basins areas of RGB (red), SIFT (green) and CONV (blue) at different pyramid levels.

Left and top images are used in LK as template and reference, respectively.
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at each alignment iteration to calculate a difference is pro-

portional to the number of features. It is apparent from any

inspection of the features generated by a CNN that there

is a lot of redundancy in feature maps, with many looking

very similar, and therefore it seemed likely that it is possi-

ble to achieve similar or better results through selection of

a percentage of features. Here we perform experiments to

compare a random selection with simple criteria based on

measures of texturedness and stability.

In standard Lucas-Kanade, the size of the convergence

basin depends highly on image content. For example, a ver-

tical stripe can only be used to detect horizontal translation;

the lack of vertical gradient makes it impossible to deter-

mine the movement in this direction. In order to correctly

regress the camera pose, a strong gradient in both feature di-

rections is required. As in Shi and Tomasi’s classic ‘Good

Features to Track’ paper [19], we measure the texturedness

of a feature based on its structure tensor:

Gf =
∑

x∈If

[

g2x gxgy
gxgy g2y

]

,

where If is the activation map of the feature in response to

a certain input image. We use the smallest eigenvalue of

matrix Gf as a comparable single score.

The other factor to consider is stability. Most valu-

able features provide stable activations that change only

due to changes in camera pose. Features that react to ob-

jects that are likely to change their location, or lighting

changes, are undesirable. We measure the instability of a

feature f by calculating the average sum of squared differ-

ences (SSD) between activations obtained from images of

the test sequence to the ones extracted from the first image

and warped to the current camera frame:

sf =
1

N − 1

N
∑

i=2

∑

x

‖(I1f (W(x;ω))− I
i
f (x)‖

2.

Averages of these two scores have been calculated across

frames of three video sequences — two timelapses and one

hand tracking sequence. We have selected and evaluated

several subsets of features of varying size that have the

optimal texturedness and stability. To assess their robust-

ness, we again use the size of convergence basin as a mea-

sure. Twelve challenging (outliers, varying lighting con-

ditions) image pairs sampled from our recorded sequences

have been used in the evaluation.

Figure 9 compares the average convergence basin size

achieved with the features selected with our proposed ap-

proach with a baseline of using random selections. Random

tests were performed in a range of 5–100% subsampling,

with a step of 5%. Each sampled subset was tested 20 times

against all twelve image pairs. We see very strongly that

the features selected using our simple criteria give excellent
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Figure 9. Average convergence basin size obtained by using our

proposed selection process (blue) and random sampling (red),

for different sampling percentage. Results were evaluated using

twelve image pairs representing the most challenging conditions

(outliers, lighting variations).

tracking performance when they are much fewer than the

whole set; while the performance of the randomly chosen

features tails off much faster. This promises more sophisti-

cated ways of learning ideal feature sets in the future.

7. Conclusions

We have shown that substituting the image pyramid in

standard Lucas Kanade dense alignment with a hierarchy of

feature maps generated by a standard VGG trained for clas-

sification straightforwardly gives much improved tracking

robustness with respect to large lighting changes.

While this is immediately a neat and convenient method

for tracking, we hope that it opens the door to further re-

search on new representations for dense mapping and track-

ing which lie in between raw pixel values and object-level

models. What levels of representation are needed in dense

SLAM in order actually to achieve tasks such as detecting

a change in an environment? A clear next step would be

to investigate the performance of m-estimators on the CNN

features to gate out outliers. Might we expect to see that

whole semantic regions which had moved or changed could

be masked out from tracking?

We imagine that a dense 3D model will be painted with

smart learned feature texture for tracking and updating,

rather than the raw pixel values of systems like DTAM [15].
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