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Abstract

In this paper, we propose a novel framework for inte-

grating geometrical measurements of monocular visual si-

multaneous localization and mapping (SLAM) and depth

prediction using a convolutional neural network (CNN). In

our framework, SLAM-measured sparse features and CNN-

predicted dense depth maps are fused to obtain a more ac-

curate dense 3D reconstruction including scale. We con-

tinuously update an initial 3D mesh by integrating accu-

rately tracked sparse features points. Compared to prior

work on integrating SLAM and CNN estimates [26], there

are two main differences: Using a 3D mesh representation

allows as-rigid-as-possible update transformations. We fur-

ther propose a system architecture suitable for mobile de-

vices, where feature tracking and CNN-based depth predic-

tion modules are separated, and only the former is run on

the device. We evaluate the framework by comparing the 3D

reconstruction result with 3D measurements obtained using

an RGBD sensor, showing a reduction in the mean residual

error of 38% compared to CNN-based depth map prediction

alone.

1. Introduction

Computer vision has long been successfully employed to

track camera motion and reconstruct 3D structure from im-

age sequences. These methods have been applied e.g. in the

visual effects industry [6], the robot vision community [4],

or various types of 3D reconstruction from a large scale [1]

to a small scale on a mobile device [14]. In the past decade,

mobile applications for augmented reality (AR) and mixed

reality (MR) have become ubiquitous. Since most current

mobile devices come with a single (back-facing) camera,

these applications rely on monocular visual SLAM to re-

cover camera pose [5, 20]. Visual SLAM estimates depth

from small-baseline stereo matching over pairs of nearby

frames. This assumes that the camera translates in space

over time, so that pairs of consecutive frames are equivalent

Figure 1. 3D Scene Mesh. Result of our method, reconstructed

from a CNN-predicted mesh, deformed using 3D points obtained

by SLAM, which are indicated as light green dots.

to the pairs of frames captured using a stereo rig. Tradi-

tionally, visual SLAM has relied on 2D feature matching

due to its efficiency and robustness in scenes with sufficient

texture [5, 20]. Recent methods that employ contour infor-

mation or the whole image have been shown to add robust-

ness, but come with higher computational cost [9, 11, 22].

A known limitation of monocular SLAM is that it cannot

estimate the scale of the scene. This can be estimated by

including additional information, such as data from an iner-

tial measurement unit (IMU) [19], or prior knowledge about

object sizes [29]. Another shortcoming is that monocular

visual SLAM is ill-conditioned for certain camera motions

like rotation without translation.

Recently, neural networks have been shown to provide

good predictions of geometry, i.e. depth and normals, from

a given input image [7, 8, 15]. An end-to-end trained CNN

is able to predict geometry densely, even for less textured ar-

eas. Unlike the geometry from monocular SLAM, the depth
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Figure 2. System Overview. Monocular SLAM is run on the mobile device. Images and 3D points are sent to the server side, where CNN

depth prediction and surface mesh deformation is carried out and is sent back to the client for visualization.

map includes an absolute scale, as learned from the training

examples. One drawback of current methods is that occlud-

ing boundary regions tend to be overly smooth and shape

details are lost.

Recent work on combining 3D SLAM measurements

and depth predictions from a CNN has shown that both

sources can complement each other [26], see Table 1. In this

paper we propose a framework to fuse monocular SLAM

with CNN-based depth predictions in a new way: Feature

point-based ORB-SLAM is run on the mobile device, yield-

ing sparse but accurate 3D points. Depth maps are asyn-

chronously predicted on a server and converted to a mesh

representation. The mesh is then deformed, in an as-rigid-

as-possible manner, using the sparse, but accurate feature

points, and the updated mesh sent to the device. This ap-

proach corrects both coarse global geometric errors and

reintroduces some shape details, see Figure 1. We evalu-

ate the method on challenging office scenes, comparing the

result with depth-sensor ground truth.

2. Related work

We review three areas of related work, monocular visual

SLAM, CNN-based depth prediction, and surface mesh de-

formation.

Monocular visual SLAM can be classified into two cat-

egories [30], feature-based [13, 20] and direct approaches

[9, 22]. One of the state-of-the-art methods in the feature-

based category is ORB-SLAM[20]. The method extracts

sparse ORB features and reconstructs them in 3D using

bundle adjustment and pose graph optimization. In con-

trast, direct methods carry out pose estimation using all im-

age pixels. The first real-time method in this category was

Dense Tracking and Mapping (DTAM) [22]. Since process-

ing every pixel is computationally more expensive, DTAM

achieved real-time performance using a GPU. Engel et al.

[9] proposed Large-Scale Direct Monocular SLAM (LSD-

SLAM) which runs in real-time on a CPU. The method es-

timates depth at pixels near image boundaries and recovers

a semi-dense map. Apart from higher computational com-

plexity, direct matching tends to work better for short base-

lines even with motion blur, while the invariance property of

feature-based approaches allows large viewpoint changes.

Engel et al. [10] proposed Semi-dense Visual Odometry

(SVO), a hybrid between feature-based and direct SLAM

methods, using a combination of direct methods to estab-

lish feature correspondences and feature-based methods to

refine the camera pose estimates.

Depth prediction from single images has been a long-

standing research problem, and deep learning methods have

been shown to exceed methods using hand-crafted features

in terms of the accuracy [7, 8, 15, 17, 18, 27]. Recent

methods combine CNN-based depth predictions with visual

SLAM. Laina et al. [15] proposed a fully convolutional ar-

chitecture and residual learning to predict depth maps from

images. In their evaluation, the predicted depth maps were

input to Kellers Point-Based Fusion RGB-D SLAM algo-

rithm [12]. The estimated 3D geometry lacks some shape

detail because of blurred regions in the predicted depth

maps. Recently, Tateno et al. [26] proposed CNN-SLAM

in which predicted depth and normal maps are fused with

direct monocular SLAM inspired by LSD-SLAM.

Depth fusion is an important process for reconstructing

accurate and complete 3D shape from depth maps. Cur-
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Method 3D Reconstruction Computational complexity Accuracy Scale

Monocular visual SLAM

(feature based)

Sparse (scene complexity

dependent)

Low (runs on mobile device) High None

CNN-based depth pre-

diction

Dense (estimated for

each pixel)

High (a few seconds for each

frame)

Medium (training-data

dependent)

Available

Proposed framework Dense (estimated for

each pixel)

High (but only visual SLAM

runs on mobile device)

High Available

Table 1. Properties of individual reconstruction methods and of their combination, which retains desirable properties of each.

less et al. proposed to use averaging truncated signed dis-

tance functions (TSDF) for depth susion [3] which is simple

yet effective and used in a large number of reconstruction

pipelines including KinectFusion [21].

Mesh deformation techniques are widely used in graph-

ics and vision. Especially, linear variational mesh deforma-

tion techniques were developed for editing detailed high-

resolution meshes, like those produced by scanning real-

world objects [2]. For local detail preservation mesh defor-

mations that are locally as-rigid-as-possible (ARAP) have

been proposed. The ARAP method by Sorkine et al. [25]

optimizes rigid transformations in 1-ring neighborhoods

(“cells”), maintaining consistency between adjacent pairs of

rigid transformations by single overlapping edges. Levi et

al. [16] introduced SR-ARAP energy formulation in which

rotation of local neighborhood on mesh are constrained to

be similar to neighbors, and enhance the smoothness of the

ARAP method. In this work we convert depth maps to sur-

face meshes and employ ARAP deformations using geo-

metric constraints.

3. Depth fusion by geometric constraints

We designed our framework consisting of three parts,

monocular visual SLAM, CNN-based depth prediction,

and surface mesh deformation for fusing depth maps con-

strained by geometric constraints generated by the SLAM

process. Figure 2 shows the pipeline of our framework.

For the implementation we use a client-server design, where

feature-based monocular SLAM runs on the mobile device

and distinctive key-frames together with camera poses and

2D and 3D feature coordinates are sent to the server. On the

server side, a depth map is predicted for each key frame and

converted to a surface mesh. Finally, the surface meshes are

deformed using 3D features as geometric constraints, and

fused to a 3D reconstruction. Updates of the 3D reconstruc-

tion are returned to the client and where it is visualized for

the current camera position. In the following subsections,

we will detail each stage of the framework, SLAM process

in Section3.1, depth prediction in Section 3.2, and surface

mesh deformation in 3.3.

3.1. Monocular visual SLAM

Although our framework is compatible with any type of

feature-based monocular visual SLAM methods, we em-

ploy ORB-SLAM [20] because of its robustness and ac-

curacy. ORB-SLAM incorporates three parallel threads:

tracking, mapping and loop closing. The tracking is in

charge of localizing the camera in every frame and deciding

when to insert a new key-frame. The mapping processes

new key-frames and performs local bundle adjustment for

reconstruction. The loop closing searches for loops with

every new key-frame.

Each key-frame Kt is associated with camera pose Tkt
at

time t, locations of ORB features p2D(t) and correspond-

ing 3D map points p3D(t). Note that Tkt
and p3D(t) are

defined in the map coordinates, which lacks absolute scale.

3.2. CNNbased depth prediction

For depth prediction, we use the state-of-the-art archi-

tecture proposed in [7]. When a new key-frame is created

and sent to the server-side, a depth map is predicted by the

CNN. The CNN of [7] is a three-step multi-scale network

that predicts the structure of the scene taking context into

account by including pooling and convolution layers with

different stride and kernel sizes. The network is trained

using an element-wise L2 loss that explicitly accounts for

depth relations between pixel locations, in addition to the

point-wise error. The loss is defined as:

Ldepth(D,D∗) =
1

n

∑

i

d2i −
1

2n2

(

∑

i

di

)2

+
1

n

∑

i

[(▽xd
2
i ) + (▽yd

2
i )],

(1)

where D and D∗ are predicted depth and ground truth

depth, respectively, the loss equals D −D∗.

After computing the depth map Dt of key-frame Kt, we

convert it to a point cloud in which points correspond to

pixels in the map, and a surface mesh Scam
t defined in cam-

era coordinates at time t. Surface mesh Scam
t is fused with

other meshes to form a unique 3D reconstruction in the next

step. In this deformation process, the mesh needs to be wa-
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Figure 3. Correspondences between 3D map points and mesh ver-

tices.

tertight to avoid mesh corruption because of the local dis-

parities of deformation force. We simply define edges be-

tween vertices based on the pixel connectivities on the map.

3.3. Mesh deformation for depth fusion

We fuse surface mesh Scam
t into a unique 3D reconstruc-

tion in world coordinates based on map points p3D(t) de-

fined in map coordinates. We first convert Scam
t to S

map
t

defined in map coordinates by reprojecting each vertex us-

ing the associated camera pose Tkt
recorded in map coordi-

nates. Secondly, we scale Scam
t by minimizing the distance

between map points p3D
i (t) and corresponding vertices vi

in Scam
t as follows:

s
map
t = argmin

s

∑

i

‖ svi − p3D
i (t) ‖2, (2)

where s
map
t is the scale factor for Scam

t . The correspon-

dences f : vi 7→ p3D
i (t) can be easily found by projecting

a ray from the camera center to map points and find the ver-

tex nearest to its intersection with the mesh (see Figure 3).

Our mesh deformation is inspired by as-rigid-as-possible

(ARAP) transformations proposed in [25]. We use the set

of map points p3D
i (t) as the geometric constraint of the

deformation and define the one-ring neighborhood of each

vertex. Ideally the deformation seeks to keep the transfor-

mation for the surface in each local neighborhood as rigid

as possible. Overlap of local neighborhoods is necessary to

avoid surface stretching or shearing at the boundary of the

local neighborhoods. By using the local neighborhood con-

cept, we can define the following energy function for the

local neighborhood Ci, corresponding to vertex vi, and its

deformed version C ′

i:

E(C ′

i) =
∑

vj∈Ci

wij ‖ (v′

i − v′

j)−Ri(vi − vj) ‖
2, (3)

where Ri is a 3 × 3 rotation matrix and wij denotes the

cotangent weight:

wij =
1

2
(cotαij + cotβij), (4)

where αij , βij are the angles opposite of the mesh edge

(i, j). We define the energy function of the whole mesh by

summing over the deviations from rigidity per local neigh-

borhood as follows:

E(S′

t) =
∑

vi∈St

wiE(C ′

i), (5)

where wi is a weight for the local neighborhood Ci.

We expand the ARAP method by defining wi based on

the normal vector corresponding to the local neighborhood

of each vertex. As we define St as a watertight surface

mesh, and its corresponding depth map is generated from

a single camera viewpoint, there are areas in which their

normals are nearly perpendicular to the ray from the cam-

era center, i.e., the observability from the camera is low.

These areas tend to be boundary areas between objects in

the scene, and do not correspond to objects in the actual

scene. To maintain shape details of the objects in the scene,

we selectively deform these areas as much as possible by

defining the weight wi by a sigmoid function as follows:

wi =
1

1 + e−a(x+bπ)
, (6)

where x denotes the angle between the normal of the lo-

cal neighborhood and the ray from the camera center to the

vertex, a and b are empirically defined parameters. Figure 4

shows the distribution of wi on a surface mesh.

We further introduce a bending factor Bij , as suggested

in [16], as follows:

Bij = αA ‖ Ri −Rj ‖, (7)

where α is a weighting coefficient, A is the surface area for

scaling invariance, and finally update Equation 5 as follows:

E(S′

t) =
∑

vi∈St

wiE(C ′

i) +Bij . (8)

After this deformation, we scale the deformed mesh by

the absolute scale sworld
t estimated for time t as follows:

sworld
t =

t
∑

t s
cam
t

. (9)

The scaled 3D mesh is sent to the client, and rendered

from the current camera position or any other viewpoints

specified by the user.
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Figure 4. (Top) Distribution of weights wi for the deformation and

(bottom) the corresponding textured mesh. Larger intensity values

in the top figure indicate the higher weights.

4. Experiments

We evaluate our framework quantitatively by comparing

the 3D reconstruction result with ground truth data. For the

acquisition of the ground truth data and the input images,

we used a tablet equipped with an RGB-D StructureSensor

[23]. The sensor captures RGB images at VGA resolution

and depth images at QVGA resolution, and is able to cap-

ture within a range of 40 to 350 cm distance to the camera

(see Figure 5).

Our CNN architecture is trained on the NYU Depth

Dataset v2 [24], and thus performs well on typical indoor

scenes. Our framework is designed for the case in which

the CNN-predicted depth map is inaccurate. We captured

a new challenging office dataset with many poorly textured

surfaces.

We fed the image sequences into the proposed frame-

work. ORB-SLAM runs in real-time (5 to 10 fps) on the

client, specifically, an iPhone 6 with an A8 processor and a 8

mega-pixel camera. The other components, CNN depth es-

timation and mesh adaptation is carried out on the server, a

PC with Intel Xeon dual core CPU, 2.4GHz, 96GB of RAM

and an Nvidia GeForce GTX Titan X GPU with 12GB of

VRAM. To adjust to the original implementation of the

CNN and increase speed, both input RGB images and esti-

mated depth images are resized to 320 × 240. The average

processing time of the depth prediction for each key-frame

is 2.6 seconds. This is longer than the duration between key-

frames detected by ORB-SLAM because these are selected

based on visual changes. We filter out those key-frames us-

ing a spatio-temporal distance criterion similar to the other

feature-based approaches, e.g., PTAM, and send them to the

server.

The key-frames are processed on the server and the depth

image for each frame is estimated by the CNN architecture.

In the fusion process, we convert the depth images to a re-

fined mesh sequence as shown at the bottom of Figure 5.We

also make the ground truth mesh sequence correspond to the

refined one from the raw depth maps captured by the depth

sensor on the other hand. We compute residual errors be-

tween the refined mesh and the ground truth as shown in Ta-

ble 2 and Figure 6. We can observe that our framework ef-

ficiently reduces the residual errors for all sequences. Both

the average and the median of the residual errors fall within

the range from about two thirds to a half.

We also evaluate the absolute scale estimated from depth

prediction as shown in the rightmost column in the Table 2.

The average error of the estimated scales for our six office

scenes is 20% of the ground truth scale.

5. Conclusion

In this paper, we proposed a framework fusing the re-

sult of geometric measurement, i.e., feature-based monocu-

lar visual SLAM and CNN-based depth prediction. We have

shown its efficiency andpotential for applications which can

run on standard mobile devices only equipped with a single

camera. Thanks to the capability of CNN for depth predic-

tion, some of the main limitations of feature-based monoc-

ular visual SLAM, such as lack the absolute scale, sparse

3D reconstruction, were overcome. The 3D map acquired

by monocular visual SLAM also compensate the limitation

of CNN-based depth maps by refining it with surface mesh

deformation to maintain shape details. There are several

possible directions of future work. The first is global mesh

refinement and integration based on the photometric and

geometric consistency between meshes to obtain a unified

reconstruction result similar to [28]. As the current defor-

mation is constrained only by sparse 3D features, refined

meshes are not fully registered with each other as show at

the bottom of Figure 5. Second direction is IMU-based

scale estimation. As the absolute scale in the current frame-

work is predicted by CNN and highly depend on the train-

ing data, we expect the its accuracy can be enhanced if we

fuse it with IMU measurement. Another direction is full

use of CNN-based prediction, e.g., semantic labeling. By

utilizing semantic labeling, we can selectively manipulate

the 3D reconstruction result. For instance, we can recog-

nize real furniture in the reconstruction and replace it with

a virtual one.
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Sofa area 1 Sofa area 2 Sofa area 3 Desk area 1 Desk area 2 Meeting room

Figure 5. Input data for our depth fusion and the reconstructed scenes. From top to bottom row: color images, feature tracking result

of SLAM, corresponding ground truth depth images, depth images estimated by DNN, and 3D reconstruction results on six office scenes,

respectively.

Scene Mesh from CNN depth map Refined mesh by our method

Mean Median Std dev Mean Median Std dev Scale

Sofa area 1 112.2 110.8 39.5 81.4 77.0 36.7 0.73

Sofa area 2 87.2 80.0 40.3 53.0 39.0 40.7 0.83

Sofa area 3 26.6 20.6 25.9 16.8 10.2 23.2 1.18

Desk area 1 48.0 34.8 40.0 35.1 22.3 37.4 0.96

Desk area 2 41.1 27.8 38.5 37.1 20.7 52.5 0.98

Meeting room 31.4 21.6 31.4 21.3 11.7 27.7 1.54

Table 2. Accuracy improvement results. Comparison of residual errors [cm] from the ground truth obtained using a depth sensor, and

the absolute scale estimated based on depth prediction.
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