
Homography Estimation from Image Pairs with

Hierarchical Convolutional Networks

Farzan Erlik Nowruzi, Robert Laganiere

Electrical Engineering and Computer Science

University of Ottawa

fnowruzi@uottawa.ca, laganier@eecs.uottawa.ca

Nathalie Japkowicz

Computer Science

American University

japkowic@american.edu

Abstract

In this paper, we introduce a hierarchy of twin convo-

lutional regression networks to estimate the homography

between a pair of images. In this framework, networks

are stacked sequentially in order to reduce error bounds of

the estimate. At every convolutional network module, fea-

tures from each image are extracted independently, given

a shared set of kernels, also known as Siamese network

model. Later on in the process, they are merged together

to estimate the homography. Further, we evaluate and com-

pare effects of various training parameters in this context.

We show that given the iterative nature of the framework,

highly complicated models are not necessarily required,

and high performance is achieved via hierarchical arrange-

ment of simple models.

Effectiveness of the proposed method is shown through

experiments on MSCOCO dataset, in which it significantly

outperforms the state-of-the-art.

1. Introduction

In the recent years, modern deep learning models [19]

have achieved a great success in many fields including im-

age classification [17][27], object detection [14], scene seg-

mentation [8], natural language processing [23] and many

others. In the field of the computer vision, they have en-

countered significant success over traditional methods. One

of the main differences between deep models and traditional

methods is the automation of previously hand-crafted fea-

ture extraction that optimizes itself to specific data and task.

This novelty led to an ever-growing amount of interest in

using these methods in many research fields. During re-

cent years, various architectures have been proposed to deal

with specific problems, such as Convolutional Neural Net-

works (CNN) to extract image features, Recurrent Neural

Networks (RNN) and Long Short Term Memory (LSTM)

to extract order and temporal information from the inputs

[20].

Besides the various models and architectures being pro-

posed almost on a daily basis, there are novelties regarding

the ways that a model could be trained. These modifications

aim at improving the convergence and speed up the exhaus-

tive learning process, which can be of crucial importance.

Such methods include regularization methods as Batch Nor-

malization [16], Weight Normalization [28], or optimiza-

tion methods like momentum optimizer [31], Adam opti-

mizer [18].

Another hot topic among researchers and industrials is

autonomous driving. Using deep methods in autonomous

robotics and vehicles is currently focused on sensor data

processing [10][3], planning [7], or end-to-end learning [4].

However, there are still many open problems such as odom-

etry extraction, localization, mapping, or 3D model genera-

tion that have not been investigated thoroughly. Improving

the effectiveness of deep methods on these tasks is essential.

All of these tasks at some point require a form of match-

ing and regression. We therefore, study here the fundamen-

tal task of extracting deformation parameters from two ob-

servations. This is the building block of almost all tasks

dealing with multiple observations and trying to build mod-

els from them. For example, when a camera calibration task

is performed by using a planar rectangular grid in front of

the camera, one must extract features from them. Then, us-

ing a regression module the homography is estimated and

subsequently, extrinsic parameters between stereo cameras

are calculated [33]. Similar ideas are applied for panoramic

image generation [5]. To generate 3D models of the en-

vironment, all models use a similar frameworks to extract,

localize and register features from various images to get rel-

ative poses information [2]. These methods later are used

as building blocks in various fields, such as in autonomous

driving, augmented reality, indoor robotic tasks and so on.

In this paper, we introduce a method that significantly

improves accuracy of planar homography estimation from

image pairs using deep convolutional neural networks. We

show that a hierarchical framework can learn to relate im-

913

ages to each other and extract accurate results. The pro-

posed model also benefits from real-time computational

complexity, that makes it suitable for many tasks.

2. Literature Review

The basic approach to tackle a homography estimation

is to use two sets of corresponding points in Direct Lin-

ear Transform (DLT) method. However, finding the corre-

sponding set of points from images is not always an easy

task. In this regard, there have been significant amount of

research. Features such as SIFT [22] and ORB [26] are used

to find the interest points, and employing a matching frame-

work, point correspondences are achieved. Commonly, a

RANSAC approach is applied on the correspondence set in

order to avoid incorrect associations. And, after an iterative

optimization process, the best estimate is chosen [5][24].

One major problem with such methods is their require-

ments for the hand-crafted features and exhaustive match-

ing step. Deep models automate feature extraction and pro-

vide much stronger features than conventional approaches.

Their superiority has been shown many times in various

tasks [3][14][17][27]. Recently, there have been attempts

to address matching problem with similar models. Flownet

[13] targets optical flow estimation by employing a paral-

lel convolutional network model to extract features from

each image independently. A correlation layer is used to

locally match extracted features against each other and ag-

gregate them with responses. The expanded feature set is

then used in further convolutional layers. Finally a refine-

ment stage consisting of de-convolutions is used to map op-

tical flow estimates back to the original image coordinates.

Most recently, Flownet 2.0 [15] was introduced that is using

Flownet models as building blocks to create a hierarchical

framework to solve the same problem.

Similarly, [25] proposes an optical flow estimation

method that employs a deep matching process with convo-

lutions. From each image, patches of size 4×4 are extracted

and described based on SIFT descriptors. Then, they are fed

into a convolutional layer to produce correlation maps. This

process is repeated and a pyramid of responses are created,

which are used later to find local maximas and track them

through the pyramids to get pixel correspondences.

Our paper is vastly inspired by the work of DeTone, Mal-

isiewicz, and Rabinovich [11], where a deep neural network

is devised to tackle the homography estimation task. To

be compatible and comparable, we strictly followed their

guidelines when developing the model and for the bench-

mark of it. As they proposed, a homography between two

images are defined by relocation of a set of 4 points, also

known as 4-point homography. Their model is based on

the VGG’s architecture [17] with 8 convolutional layers, a

pooling layer after each 2 convolutions, and 2 fully con-

nected layers with an L2 loss function that results from the

difference between predicted and true homography values.

Their model starts with stacking up images in two chan-

nels and processing them together through the network. In

contrast, the core of our model targets each input indepen-

dently from the other. Motivation behind this approach is to

have corresponding feature sets that will be merged in later

stages, which has been shown in [9] to be more suitable for

the tasks requiring feature matching.

Most of the existing deep models aim to solve the prob-

lem through a single, and in many cases, large model. In-

dependent from how deep or wide the model is, an error

margin will always be found, especially in tasks such as re-

gression. This is due to the trade-off imposed on the model

to fit the training data and also to be able to generalize. A

well learned model should be able to minimize both errors

in training and testing sets.

Based on concepts from iterative optimization ap-

proaches, boosting, or genetic models, we propose to stack

the same model in a hierarchical manner such that first

model takes an image pair and produces an estimation,

along with a new image pair. The newly generated image

pair has a smaller homography residual as the first model

already estimated part of it. Next, a copy of the same model

takes this data in and then provides a better approximation

with an even smaller error bounds. Continuing this pro-

cess will sequentially reduce error bounds until error mar-

gin is so low that there is nothing else to correct. As we will

discuss later, in this situation, the train and test errors start

to diverge, which indicates the model has entered the over-

fitting region. A similar idea was introduced by Carreira et

al. in [6] for human pose estimation. In their work, the body

part point coordinates are estimated using [32] and are iter-

atively updated to fit the human pose in a single image. In

contrast to that work, we are introducing a visual warping

step between each iteration to drive the model towards the

target transformation, while using a smaller network. To the

best of our knowledge, this framework has never been ap-

plied to the homography estimation task, which is a natural

fit for the problem.

This framework produces mid-level results that are im-

portant in many real-world tasks. It provides a way to ob-

serve how system evolves thus preventing false behavior of

the components. In addition, coarse-to-fine results could be

used by other modules, thus reducing system latency. Mod-

ularity of this framework is another benefit. On a case-by-

case basis, each model could be retrained, or replaced with

a larger or smaller model, to fix the problem specific tasks.

Further, training a small network is much faster and less

cumbersome than a large one. Based on the required error

bounds various combinations of networks can be coupled in

the framework. We believe this framework could be applied

to any problem that includes regression and/or optimization.

In the Section 7, we will discuss how it can be adapted to

914

Figure 1. Sample output and the warping process. Source and target images are provided to the system. Due to shrinking error residual

after each module, warped image is getting visually more similar to the target at each step.

the sensor odometry problem. Our model achieves real time

performance on consumer available graphics cards that sat-

isfies industrial requirements.

In essence, our proposed model takes the basics of the

Siamese network model [9] that are shown to be more effec-

tive in extracting similarities between inputs using parallel

layers with shared weights. We performed extensive testing

and compared performance of multiple parameters for the

model training.

3. Hierarchical Convolutional Network Model

In this section, we present our network architecture in

detail and show ho to calculate the four point homography

estimate from an image pair. This network is shown in Fig-

ure 2.

3.1. Network Architecture

Similar to [11], the main network in our method consists

of 8 convolutional layers followed by two fully connected

layers. In contrast to that model, the first 4 layers of our

network are designed to process images in parallel. Input

images are both normalized and each image is fed to one of

the identical parallel layers. A filter with a kernel size of

3×3 is used to create features in 32 dimensions. At the end

of parallel convolutional layers, two 32 dimensional fea-

ture vectors are concatenated along their third dimension,

totaling in a 64 dimensional feature vector. Another 4 con-

volutional layers are applied on the merged feature map to

conclude the convolutional layer. After each 2 convolutions

a max pooling layer with strides of 2 is applied on feature

output. To avoid over-fitting, commonly used drop-out [30]

scheme with a drop probability of 0.5 is employed prior to

passing the output to the fully connected layer. The two

fully connected layers have a dimensionality of 1024 and 8
respectively in which the latter is the flattened output ho-

mography estimate. Instances are processed in batches of

size 64.

Rectified Linear Units (ReLU) are used in each neurons

fire module to add non-linearity to the feature outputs. Both

the momentum and Adam optimizers have been tested for

the proposed system. For momentum optimizer, as pro-

posed in [11], a momentum value of 0.9 with piecewise

constant learning rate of 0.005 with a decay factor of 0.1
applied in the iterations 30000 and 55000. For Adam op-

timizer, we kept the learning rate and decay factor as the

same as momentum optimizer with the epsilon set to 0.1.

Total number of epochs per model is set to 75000 which

roughly equates to 10 rounds over the dataset.

To evaluate and train the network, an L2-norm on the

difference of the target Hi and estimate H∗

i
is used as the

loss function.

loss =
1

2

∑
||Hi −H∗

i
||
2

(1)

3.2. Hierarchical Model

A hierarchical model arranges neural network modules

in a stacked manner and successively reduces estimation er-

ror bounds. In each module, an approximate H∗

i
of targeted

homography Hi is generated. To prepare data for the next

module, a new target homography Hi is calculated by sim-

ply subtracting estimate from the target of processed mod-

ule, and a new image pair (I1
i
, I2

i
) is generated by warping

one image in the pair using the new target.

Hi = Hi−1 −H∗

i−1

(I1
i
, I2

i
) = (I1

i−1
∗Hi, I

2

i−1
)

(2)

It is worth noting that the dynamic range of Hi at each

iteration is smaller than the previous iteration. In other

words, the new target is actually the error residual of es-

timates calculated in the module.

max(Hi)−min(Hi) < max(Hi−1)−min(Hi−1) (3)

915

Figure 2. Twin convolutional neural network architecture used as the core module.

Figure 3. Hierarchical Model Framework. Each of the convolutional homography estimator modules consists of twin convolutional neural

networks that perform homography estimation on an input image pair.

As explained, each module estimates the residual value

of the overall homography. To calculate the final result that

can directly transform one image to another, all 4-point es-

timates of the successive modules are added up together.

Early modules tend to have larger values than later modules

in the framework, since the residuals have lower dynamic

ranges.

H∗ =
∑

i=0..n

H∗

i−1
(4)

Overall, this approach is similar to an iterative optimiza-

tion scheme. Each module in this hierarchy is trained on

the outputs of the previous module in order to produce a

smaller error residual. This is in essence similar to Boosting

methods [29] that divide feature space into chunks and as-

sign them to various weak learners. After a learner is done,

another weak learner starts learning based on the features

assigned to it, and this process iteratively continues until all

weak learners create a strong learner eventually. In contrast,

our proposed framework is not dividing the feature space.

Instead, it trains the next model only on the residual of the

previous module. Boosting also uses a weighting mecha-

nism. In our model, weighting scheme can be considered

as an implicit function, as each module provides a smaller

valued estimate. Figure 3 depicts the proposed hierarchical

framework.

Warping with predicted homography values for each

module results in a visually more similar patch pair. This

can be visualized as a geometric morphing process that

takes one image and successively makes it to look alike the

other, shown in Figure 1.

One relatively important benefit of modular design of the

hierarchy is that it is not restricted to the use of one specific

network architecture. At each level, depending on the er-

ror boundaries, data statistics, accuracy and speed require-

ments, different networks could be used.

4. Dataset

We are using the Microsoft Common Objects in Context

(MSCOCO) 2014 dataset [21]. First, all the images are con-

verted to gray-scale and are down-sampled to a resolution

of 320 × 240. To prepare training and test samples, they

are divided in two groups. A training set with 77870 and a

test set of 5000 base images. Later, five samples from each

base image is generated in order to increase the dataset size.

To achieve this, five random rectangles of size 128 × 128,

exclude a boundary region of 32 pixels, is chosen from each

base image. A random perturbation in the range of 32 pix-

els is added to each corner point of the rectangles. This pro-

vides us with the target 4-point homography values. Tar-

get homography is used with the OpenCV library to warp

original images. Finally, original corner point coordinates

are used within the warped images to extract the warped

patches. The pair of chosen patches along with the values

of random perturbations (4-point homography) are fed as

inputs to the system.

916

Model

Parallel

layer

dimensions

Merged

layer

dimensions

64 dims 32× 4 64× 4
128 dims 64× 4 128× 4

256 dims deep 64× 4 128× 4 + 256× 4

Table 1. Model names and parameters.

5. Implementation

We have realized a Tensorflow1 [1] implementation of

the proposed module. In addition, we have introduced a

slightly different implementation of the weight normaliza-

tion paradigm. To train we have used local machines and

Google Cloud Machine Learning Engine 2, but all the tests

were performed on a local machine equipped with an Intel

Core-i7 CPU at 4.0Ghz, 32GB of memory, and an Nvidia

Titan Xp graphics card with 12GB of available memory.

During the test time, we achieved an average processing

speeds of 3 milli-seconds per network. When the same

neural network model is used in each module, the overall

computational complexity is given by,

de = (lm + lw)× n (5)

where de is the end-to-end delay, lm average latency at each

module, lw over-head of warping to generate a new pair,

and n number of modules used in the framework. The real-

time processing speed and flexibility of the proposed model

satisfies the requirements most of potential applications.

6. Experiments

In this section, we report training and test performance of

our method under varying conditions. First, we show how

our framework ranks up against state-of-the-art approaches.

Then, the results of single deep modules are compared. For

this purpose, a series of models with different layer widths

as described in table 1 are implemented. The performance

of the proposed model against occlusions is demonstrated in

the third subsection. Then, effects of various parameters are

evaluated. And finally, we discuss how the optimal number

of iterative modules is chosen.

6.1. Accuracy Results

First, we experimentally compared the corner error of

our hierarchical convolutional network with two other ap-

proaches. The corner error is achieved by calculating L2

distance between target and estimate corner locations and

averaging them over 4 corners. The approaches used for

comparison consist of a traditional one and a convolutional

1https://www.tensorflow.org/
2https://cloud.google.com/ml-engine/

Method Pixel Error Error reduction

ORB+RANSAC 11.7 —

HomographyNet[11], 9.2 21.37%

Proposed 3.91 66.58%

Table 2. Test Results. Comparison of our method with a tradi-

tional feature-based (ORB key-points) robust estimation scheme

and homographyNet, both reported in [11], against our proposed

approach.

Figure 4. Test Error. Corner pixel error comparison of various

methods.

one. The selected traditional approach is based on ORB

key-point matching followed by a robust RANSAC homog-

raphy estimation scheme. The reference deep convolutional

approach is the HomographyNet by [11].

Using our network, we report in Figure 4 the progres-

sive improvement that results by iteratively stacking several

networks. This is compared with the other two approaches.

HomographyNet-classification provides worst results in this

case. It’s lower performance is attributed to the quantiza-

tion performed on the range of values to extract bins for

each value. Our net result is a drop in pixel error from 12
pixels to less than 4 pixels in the case of our hierarchical

network. The comparable convolutional HomographyNet

only achieves an error of 9 pixels.

For the sake of simplicity, we kept the same model at

each module of training. However, multiple combinations

are also possible, which will be discussed in Section 7. As

more models are stacked, higher accuracy is achieved. This

is due to the fact that each model is trained to reduce error

bounds of the previous model. There are down sides for

having more models in the stack. One is introduction of an

end-to-end delay. However, the high speed of our network

largely compensates for the introduced delay.

917

Figure 5. Training curves showing the learning process for imple-

mented models in log(L2) scale.

6.2. Single Module Comparison

Another conducted experiment targets the width of the

network. To address the learning process, we report the L2

training loss curves in logaritmic scale at Figure 5. As

expected, the narrower the network, the lower the perfor-

mance. Using wider network configurations only slightly

increases the performance with an additional cost on mem-

ory requirement. We have also observed that any network

narrower than 64 dims provides notably worse results, and

anything wider than 128 dims produces negligible increase

in performance, while significantly increasing model size

and training time. In fact, stacking a simple module such

as 64 dims twice in the hierarchy is capable of providing

significantly better results than any of other methods.

6.3. Occlusion Analysis

In this section the performance of proposed system is

benchmarked against occlusion. To simulate occlusion, the

Caltech-101 [12] dataset is used. Each image in this dataset

is resized to patches of size 32 × 32 and 64 × 64. Then,

we randomly augment MSCOCO dataset with generated oc-

clusion patches from Caltech-101 and create three datasets.

First dataset is only augmented with 32× 32 patches repre-

senting an occlusion ratio of 6.25%. Second one is created

using 64×64 patches resulting in an occlusion ratio of 25%.

And the final dataset is a fair mix of no-occlusion, 6.25%,

and 25% occluded images.

First, we test the model that has never encountered any

disturbances during training, against the noisy data. Sec-

ond, we retrain the model with the occlusion dataset and

test again for all the scenarios. The result of these tests are

shown in Table 3.

Train
Test No

noise

6.25%
noise

25%
noise

mix

of all

No noise 3.91 7.5 12.56 8.21
Mix of all 4.58 6.41 9.04 6.74

Table 3. Effect of occlusion on the performance. The left column

shows the datasets used for training. The pixel-wise corner ac-

curacy of each test dataset is noted underneath the corresponding

column header.

6.4. Parametric Evaluations

6.4.1 Deeper model evaluation

As shown in Figure 5, a deeper network increases the per-

formance but by only a small margin, while significantly

increasing model complexity observed margin is not satis-

factory. The reason for this is the fact that extracted features

are already capturing variations to the full extent as they

can. While in the hierarchical usage, warping function in-

troduces a sort of geometric information that convolutional

models are having hard time to capture from a single input

set. The fact that more pooling layers are applied leads to

the loss of spatial information.

To justify these claims, we have implemented a model

with 4 extra convolutional layers. This results in a model

with 4 twin layers, 8 convolutional layers with a pooling

layer after each 2 convolutional layers, and 2 fully con-

nected layers. For the newly added convolutional layers a

feature dimension size of 256 is assigned. Results of this

comparison are also shown in Figure 5, which confirms our

hypothesis stating that more parameters and layers aren’t

assistive in this specific case. However, when using the

second module in the hierarchy, our proposed framework

clearly outperforms the competition.

6.4.2 Regularizers and Optimizers

Batch normalization aims at providing a faster learning con-

vergence by reducing the effect of the covariate shift in the

data using statistics from the batches. Weight norm has

also a similar goal, however instead of normalizing the in-

puts of layer, normalization is applied on the layer weights.

We have compared these two approaches and our results

show that batch normalization has better performance for

this task. Weight norm results in a slower convergence and

under-fitting in the model. The comparative experiment is

shown in Figure 6. Another important aspect to note is that

having a regularization function is vital in training phase

and failing to use any exhibited devastating effects on the

learning performance.

We have concluded that both methods have a very similar

performance in training and their differences are negligible.

Results of this comparison are shown in Figure 6.

918

Figure 6. Parametric Evaluation. Batch normalization is bench-

marked against Weight normalization. Effectiveness of batch nor-

malization is shown for homography estimation. Performance of

Momentum optimizer and Adam optimizer are very similar.

Figure 7. Hierarchy size evaluation: training error vs. test error.

6.5. Optimal Number of Modules

Finding optimal number of modules to use depends on

complexity of the task and on the complexity of the module

to be employed. As it is shown in Figure 7, for the 64 dims

model, after the fourth module, error residual is too shallow

and it is very difficult for the model to learn. This is also

showed in 5 where the training loss for the forth module

has almost plateaued.

As in all machine learning approaches, a zero error value

can not be achieved by chaining many modules together.

This is due to the fact that after a few modules error residual

gets very small and it becomes extensively difficult for it to

learn. This results in test error that starts to diverge from

training error, indicating that an over-fitting phenomenon is

happening in the module.

7. Conclusion

In this paper, we have proposed a hierarchical model to

use convolutional neural networks in order to target homog-

raphy estimation. We showed that with our simple hierar-

chical model, results are significantly better than the state-

of-the-art. This paper proves that deep neural networks

are capable of effectively learning to regress homography

from image pairs. Reduced parameter space entails faster

and more manageable implementations. In our architecture,

twin modules are unaware of each other until the merge

function happens. Adding correlation features between par-

allel layers could potentially lead to better solutions. In ad-

dition to stacking, parallel modules could also be used in

this hierarchy. The significance of our results is convincing

enough to adapt this approach to further tasks such as odom-

etry estimation, which are currently dominated by conven-

tional approaches. Adapting our model to odometry esti-

mation is ultimately straightforward. However, in order to

handle the complexity of odometry, multiple measures must

be taken. Augmenting model to use semantic information

could provide robustness against outliers such as dynamic

objects. To capture a wider range of transformational cues,

a better convolutional model needs to be designed. And fi-

nally, to handle the error propagation through consecutive

frames, a sequential learning models must be utilized.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and

S. Ghemawat. Tensorflow: Large-scale machine learning

on heterogeneous distributed systems. In arXiv preprint

arXiv:1603.04467, 2016. 5

[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. In

Communications of the ACM, pages 105–112, 2011. 1

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. In arXiv preprint arXiv:1511.00561, 2015. 1,

2

[4] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner,

B. Flepp, P. Goyal, L. Jackel, M. Monfort, U. Muller,

J. Zhang, and X. Zhang. End to end learning for self-driving

cars. In arXiv preprint arXiv:1604.07316, 2016. 1

[5] M. Brown and D. G. Lowe. Automatic panoramic image

stitching using invariant features. In International journal of

computer vision, pages 59–73, 2007. 1, 2

[6] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human

pose estimation with iterative error feedback. In IEEE Con-

919

ference on Computer Vision and Pattern Recognition, pages

4733–4742, 2016. 2

[7] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving:

Learning affordance for direct perception in autonomous

driving. In IEEE International Conference on Computer Vi-

sion, pages 2722–2730, 2015. 1

[8] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. In arXiv preprint

arXiv:1412.7062, 2014. 1

[9] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, volume 1, pages 539–546, 2005. 2,

3

[10] M. Cordts, T. Rehfeld, L. Schneider, D. Pfeiffer, M. En-

zweiler, S. Roth, M. Pollefeys, and U. Franke. The stixel

world: A medium-level representation of traffic scenes. In

Image and Vision Computing, 2017. 1

[11] D. DeTone, T. Malisiewicz, and A. Rabinovich. Deep image

homography estimation. arXiv preprint arXiv:1606.03798,

2016. 2, 3, 5

[12] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: an incremental

bayesian approach tested on 101 object categories. In IEEE

Conference on Computer Vision and Pattern Recognition,

Workshop on Generative-Model Based Vision, 2004. 6

[13] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazrbaş,

V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In arXiv preprint arXiv:1504.06852, 2015. 2

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In IEEE conference on computer vision and

pattern recognition, pages 580–587, 2014. 1, 2

[15] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In arXiv preprint arXiv:1612.01925,

2016. 2

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 1

[17] S. Karen and A. Zisserman. Very deep convolutional net-

works for large-scale image recognition. In arXiv preprint

arXiv:1409.1556, 2014. 1, 2

[18] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In arXiv preprint arXiv:1412.6980., 2014. 1

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1

[20] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. In

Nature, pages 436–444, 2015. 1

[21] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European Conference on Com-

puter Vision, pages 740–755. Springer. 4

[22] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. In International journal of computer vision, pages

91–110, 2004. 2

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. In arXiv

preprint arXiv:1301.3781, 2013. 1

[24] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam:

a versatile and accurate monocular slam system. In IEEE

Transactions on Robotics, pages 1147–1163, 2015. 2

[25] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

Deepmatching: Hierarchical deformable dense matching. In

International Journal of Computer Vision, pages 300–323,

2016. 2

[26] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb:

An efficient alternative to sift or surf. In IEEE International

Conference In Computer Vision, pages 2564–2571, 2011. 2

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, and

A. C. Berg. Imagenet large scale visual recognition chal-

lenge. In International Journal of Computer Vision, pages

211–252, 2015. 1, 2

[28] T. Salimans and D. Kingma. Weight normalization: A sim-

ple reparameterization to accelerate training of deep neural

networks. In Advances in Neural Information Processing

Systems, number 901, 2016. 1

[29] R. E. Schapire. The boosting approach to machine learn-

ing: An overview. In Nonlinear estimation and classifica-

tion, pages 149–171. Springer New York, 2003. 4

[30] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15(1929-1958), 2014. 3

[31] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the

importance of initialization and momentum in deep learning.

In International Conference on Machine Learning, pages

1139–1147, 2013. 1

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In IEEE conference on

computer vision and pattern recognition, 2015. 2

[33] M. Warren, D. McKinnon, and B. Upcroft. Online calibra-

tion of stereo rigs for long-term autonomy. In IEEE Interna-

tional Conference on Robotics and Automation, pages 3692–

3698, 2013. 1

920

