
RGB-D Object Recognition Using Deep Convolutional Neural Networks

Saman Zia, Buket Yüksel, Deniz Yüret, Yücel Yemez

Koç University, İstanbul

{szia13, byuksel13, dyuret, yyemez}@ku.edu.tr

Abstract

We address the problem of object recognition from

RGB-D images using deep convolutional neural networks

(CNNs). We advocate the use of 3D CNNs to fully exploit

the 3D spatial information in depth images as well as the

use of pretrained 2D CNNs to learn features from RGB-D

images. There exists currently no large scale dataset avail-

able comprising depth information as compared to those

for RGB data. Hence transfer learning from 2D source

data is key to be able to train deep 3D CNNs. To this end,

we propose a hybrid 2D/3D convolutional neural network

that can be initialized with pretrained 2D CNNs and can

then be trained over a relatively small RGB-D dataset. We

conduct experiments on the Washington dataset involving

RGB-D images of small household objects. Our experi-

ments show that the features learnt from this hybrid struc-

ture, when fused with the features learnt from depth-only

and RGB-only architectures, outperform the state of the art

on RGB-D category recognition.

1. Introduction

Object recognition is a fundamental problem with nu-

merous applications in computer vision and robotics. With

easy availability of low-cost sensors like Microsoft Kinect,

depth and color information can be simultaneously captured

and included in recognition of objects. Depth provides ad-

ditional information about the 3D structure of the physical

environment and has proven to improve the recognition per-

formance when paired with color information. Unlike RGB

images, depth images are invariant to lighting and allow bet-

ter background separation.

Object recognition and classification have been exten-

sively studied for RGB images, and there are large datasets

available. Convolutional Neural Networks (CNNs) have

been particularly successful and have produced state of the

art results on these large datasets in challenges like Ima-

geNet [18]. The ImageNet challenge has led to develop-

ment of successful deep CNNs for image classification like

AlexNet [12], VGGnet [20], GoogleNet [23] and ResNet

[10]. The availability of such models that produce mean-

ingful features for RGB images are important for tasks that

have smaller datasets available, since collection of large

datasets is in general time-consuming and requires large

amount of processing time while training. Likewise, while

depth sensors are widely popular in robotics, there are no

large scale dataset or models available as compared to those

for color information. The topic of RGB-D object recogni-

tion is being widely researched on, but most of them fo-

cus on hand-designed feature descriptors. In this work,

we utilize deep convolutional neural networks pretrained

on a large RGB dataset and address the problem of trans-

fer learning from 2D source to 3D for object recognition

on relatively small RGB-D datasets containing 3D informa-

tion. In particular, we conduct experiments on the RGB-D

Washington dataset involving household objects [13].

We present an approach that exploits the RGB informa-

tion learnt by large scale models, particularly the VGGnet,

so as to train a novel hybrid 2D/3D convolutional neural

network and boost the recognition performance via fusion.

Our contributions include:

1. We exploit the information in the pretrained VGGnet

model to extract features from RGB images and train a

linear SVM (Support Vector Machine) with these fea-

tures for RGB-based category recognition. Our ap-

proach exceeds the state-of-the-art on the Washington

dataset.

2. We study the problem of training 3D convolutional

neural networks from scratch based on RGB-D im-

ages. We preprocess the depth information to produce

a spatial 3D voxel representation combining depth and

RGB information.

3. We modify the VGGnet in such a way that it can ac-

cept 3D inputs and after the first layer it continues as

2D like the original VGGnet. By modifying the first

layer of the VGGnet, we can initialize the resulting

2D/3D hybrid network, that we refer to as VGG3D,

by transferring the weights from the original VGGnet.

4. Finally, we fuse the features resulting separately from

896



VGGnet, 3D CNN and VGG3D architectures. Our

fusion results exceed the state-of-the-art for category

recognition.

2. Related Work

The previous methods proposed for RGB-D objected

recognition are broadly divided into two categories: the

methods that use hand-designed descriptors and those that

learn features. These features are then fed into classifiers

along with their labels for the final classification task which

is usually based on SVMs or softmax regression. Some of

the methods that use feature learning include sparse coding,

hierarchical matching pursuit [3, 4], convolutional k-means

descriptors [2], regularized reconstructed ICA network [11]

and coupled classifiers [15].

In recent years, deep learning has become extremely

popular and has been extensively applied to machine learn-

ing tasks. In particular, convolutional neural networks are

being popularly used to solve vision related task such as

scene labeling [7], object recognition [21], face verification

[24] and pose estimation [26]. Convolutional neural net-

works were originally introduced by [14] for a hand writ-

ten digit recognition problem. Since then they have been

used on datasets that include rich images like ImageNet and

have achieved state-of-the-art performance on the ImageNet

Large Scale Visual Recognition Challenge [18]. Recently,

application of convolutional neural networks for RGB-D

data has become popular and various methods have been

suggested to achieve superior performance as compared to

hand-designed descriptors [9].

Convolutional neural networks have been used in com-

bination with other architectures to solve the RGB-D ob-

ject recognition problem. One such technique is a com-

bination of convolutional and recursive neural networks,

that is based on the idea that convolutional layers extract

low level features and recursive neural networks extract

high level features [21]. Another work modifies this tech-

nique to boost the RGB-D based recognition performance

by proposing a semi-supervised framework based on co-

training, which uses less labeled data but achieves compet-

itive results as compared to the state of the art [5]. A re-

cent work tackling the same problem of joint learning in-

troduces a multimodal layer to a CNN-based neural net-

work [27]. Another interesting work [19] converts depth

images to RGB images using a color map and then uses a

deep convolutional neural network (AlexNet) pretrained on

color images. An extension of this method further improves

the recognition performance by introducing a multi-modal

scheme to learn joint features from the pretrained AlexNet

[6].

Due to the availability of faster GPUs and dedicated

CUDA libraries for deep learning, 3D convolutional neu-

ral networks are now increasingly becoming popular. 3D

CNNs are currently being used for region proposal, ob-

ject recognition and medical imaging. One such work

focuses on neuroimaging using 3D MRI scans to predict

Alzheimer’s disease. The network consist of 3D convo-

lutional layers pretrained via unsupervised learning using

sparse auto-encoders [17]. Several approaches have been

suggested to get a 3D voxel representation from depth im-

ages to be fed into 3D CNNs that allow to better exploit the

3D structure present in depth images. One such approach,

called ShapeNets, represents the depth information into a

voxel grid in the form of truncated signed distance func-

tion (TSDF) [22]. VoxNets is another approach that encodes

depth information into a volumetric occupancy grid [16].

Transfer learning is a technique which improves the

learning on target task using the information gathered on

source task [25]. Especially in the case of object recog-

nition, transfer learning is widely used with deep convolu-

tional neural networks. The most common strategy is to use

a deep CNN architecture pretrained on a large dataset as a

feature extractor [22], [19] or to fine-tune it on a smaller

dataset [6], [27]. When the target dataset is small, using a

network that is pretrained with a larger dataset shows better

performance on object recognition as investigated in [28].

This strategy of transfer learning however is currently ap-

plicable, particularly in the case of object recognition, only

when the source and target datasets are of the same type,

i.e., involving purely 2D image data. Transfer learning from

2D source to 3D target remains to be an open problem that

we attempt to tackle in this work.

3. The Dataset

We conduct experiments on the Washington RGB-D

dataset [13]. The dataset consists of 300 small household

objects such as fruits, vegetables, boxes and water bottle,

which are instances of 51 categories. Hence the dataset is

grouped by category as well as by instance. For example,

apple is a category that has five instances each of which can

be red, green or yellow. Each instance has depth and RGB

images from three video sequences. Each video sequence

consists of a full turn table rotation with placing the camera

at a certain angle, while the object is kept stationary. The

video sequences are captured with the camera at 30◦, 45◦,

and 60◦. In this work, we use the cropped version of the

dataset, which consists of bounding box images, along with

the segmentation masks that filter the background from both

depth and RGB images. Our evaluation is based on a subset

of this dataset, which consists of every fifth frame of each

of the video sequences, resulting in about 42000 images.

Out of these images, around 35000 instances are used for

training and 7000 for testing.

The Washington dataset can be considered as tricky for

the object recognition task due to various reasons. For ex-

ample, the ball object can have instances that are not only of

897



Figure 1. Our pretrained VGGnet-based architecture for RGB object recognition.

different colors but also of different shapes and sizes. The

instances include tennis ball, golf ball and baseball. For

category recognition experiments, the testing set includes

instances that are completely different from the training set.

Also, some round objects like tomato and sponge that are

similar in both shape and color are indeed hard to differen-

tiate.

4. VGGnet for RGB-only recognition

For RGB-only object recognition, we extract features us-

ing the pretrained VGGnet [20], which was the runner-up

architecture in the ImageNet [18] classification and local-

ization challenge in 2014. The VGGnet has a deep but sim-

ple structure, deploying very small (3 × 3) filters in all of

its convolutional layers. Hence it is relatively easy to im-

plement and train, and therefore commonly used in com-

puter vision for feature extraction from RGB images. More

specifically, we use the 16-layer VGGnet which consists of

stacks of convolution layers followed by maxpooling lay-

ers. In this deep architecture, the feature maps increase in

number as the depth increases, and the convolutional layers

are eventually followed by three fully connected layers.

While the initial layers of the VGGnet learn general fea-

tures, deeper layers are expected to learn more dataset spe-

cific features. To extract the most meaningful features and

make best use of the VGGnet for our task, we investigate

the last three fully connected layers of the VGGnet to un-

derstand where the network inclines towards learning more

dataset specific features. For this, we remove the first, sec-

ond, and third fully connected layers from the VGGnet re-

spectively (or their combinations) and extract features for

each image by applying a forward pass on the pretrained

VGGnet with no fine-tuning. The resulting features are

then used for training a linear SVM in each case. Based

on the experimental results that we will later present in Sec-

tion 5, we use the VGGnet up to the depth of its first fully

connected layer as the final architecture, as shown in Fig-

ure 1, where “Conv” stands for 3× 3 convolution followed

by ReLU activation, ”Pool” for max-pooling and ”FC” for

fully connected layer.

5. 3D Pipeline

5.1. 3D Input Representation

The first step in our 3D recognition pipeline is to con-

vert the input depth information into an adequate 3D rep-

resentation. Rather than encoding the depth information as

any function or descriptor such as truncated signed distance

function as in [22], we represent the depth information as

raw as possible along with RGB information and investi-

gate if a 3D CNN can learn meaningful features.

We represent the depth information in a 3D voxel grid

by defining a third dimension based on the depth values

present in the RGB-D images of the dataset. We create a

3D voxel representation, with the same height and width as

the original image, and with a depth determined by the dif-

ference between the maximum and minimum depth values

found in the images. Each RGB-D pixel of an image is then

placed at the same position in the voxel grid but at its cor-

responding depth. This results in a 3D representation that

simultaneously encodes the 3D spatial and color informa-

tion of a given object. Incorporating the RGB information

into the 3D representation helps to jointly learn features that

are related to both depth and color rather than learning fea-

tures from depth only. Our voxel representation (only for R

channel for simplicity) is shown in Figure 2.

The depth images in the dataset have missing values in

some regions where the depth sensor is not able to capture

properly. We process these images by doing an interpola-

tion to fill the missing values. We then apply the provided

segmentation mask to filter out the background information

and encode only the object shape since the turntable in the

background has similar depth values to the object and inter-

fere with its shape.

5.2. 3D CNN Architecture

We follow the VGGnet [20] in terms of architecture

while designing our 3D CNN. We employ two convolu-

tional layers, each followed by a max-pooling layer. Two

898



Figure 2. Illustration of how RGB-D images are converted

to voxel representations for a 3× 3 input image (fragment),

where depth values are quantized into 6 intervals.

fully connected layers are added to the end of the network,

as shown in Figure 3. We rescale the resolution of the voxel

representation to 30×30×30, which is considerably smaller

than the resolution of the original RGB-D images, but suf-

ficient to train the network so as to obtain a decent perfor-

mance. Note also that training 3D CNNs is significantly

more demanding in terms of computation and memory re-

quirements when compared to 2D CNNs. We use 64 filters

at each convolutional layer and keep the filter size small

(3 × 3). The number of filters is maintained through the

convolution layers to retain information since the input size

is already smaller as compared to the original object size.

The weights are randomly initialized using the Xavier tech-

nique [8] and the network is trained by backpropagation us-

ing softmax classifier.

5.3. Hybrid CNN Architecture (VGG3D)

In order to transfer learning from 2D source to 3D target,

we define a VGGnet-like hybrid CNN structure than can be

initialized with the VGGnet and trained with backpropaga-

tion over the 3D RGB-voxel input generated as described

in Section 5.1. The main idea is to modify the 2D VGGnet

into a network that can accept 3D information. To this end,

we replace the first layer of VGGnet-16 with a 3D convo-

lutional layer by adding a dimension to the pretrained filter

weights. After the first layer, the resulting hybrid network

continues as 2D like the original VGGnet, and produces the

same result as the original VGGnet would generate when

fed with the corresponding RGB input image. This provides

us with a good starting point to fine-tune the weights trans-

ferred from the VGGnet. We call this modified network as

VGG3D and visualize its structure in Figure 4.

In our experiments with the hybrid network, we encode

the depth values via non-uniform quantization based on the

distribution of pixels along the third dimension that we de-

note by d, resulting in a N×N×D×3 voxel representation,

where D denotes the depth of the voxel grid and 3 is the

number of color channels. We set N = 224, which is the

image size given as input to the VGGnet. The depth values

are quantized into D− 1 intervals of varying length so as to

include equal number of pixels (points) at each interval over

the whole dataset. The last depth interval D is spared to the

depth values corresponding to the background. We compute

background depth values using the inverse of the segmen-

tation masks provided. We choose D = 6 as an optimal

value in terms of memory constraints and the performance

it gives.

The filters at the first layer of the hybrid network are

3D convolution kernels of size 3 × 3 × D. The weights

of these filters are initialized by replicating the filters of the

first layer of the VGGnet along the depth dimension d. The

filters at the remaining layers all remain 2D, initialized di-

rectly with the weights of the corresponding layers of the

VGGnet.

In the sequel, we explain more rigorously how we ini-

tialize the hybrid CNN so that the output of the modified

first layer generates exactly the same output as the first layer

of the VGGnet when fed with the same sample (RGB or

RGB-voxel). Let x(2)(i, j) denote the 2D input image of

size N ×N and x(3)(i, j, d) the input 3D voxel grid of size

N×N×D. For simplicity, we assume that the input images

are monochrome with single channel, but the analysis can

easily be generalized to RGB images. The kth filter at the

first layer of the VGG3D, denoted by w
(3)
k

(i, j, d) of size

3×3×D, is generated by replicating the corresponding 2D

filter of the VGGnet along dimension d so that

w
(3)
k

(i, j, d) = w
(2)
k

(i, j), (1)

where w
(2)
k

(i, j) is the kth filter at the first layer of the VG-

Gnet, which is of size 3 × 3. The corresponding outputs at

the first layers of the VGGnet and VGG3D are then given

by y
(2)
k

(i, j) = x(2)(i, j) ∗ w
(2)
k

(i, j) and y
(3)
k

(i, j, d) =

x(3)(i, j, d) ∗ w
(3)
k

(i, j, d), respectively. By Eq. 1, we can

then write

y
(3)
k

(i, j,D/2) = y
(2)
k

(i, j) (2)

assuming D is even, since the 3D input is originally a depth

image so that x(3)(i, j, d) is non-zero for at most one value

of d, i.e., only one voxel is occupied for a given pixel (i, j).

When the output y
(3)
k

(i, j,D/2) of the first layer of the

VGG3D is then fed to the next layer, the VGG3D generates

exactly the same final output as the VGGnet would produce

with the same sample. The illustration of this process is

shown in Figure 5.

6. Fusion

We fuse the outputs of the pretrained VGGnet, the 3D

CNN and the VGG3D architectures to get our final over-

all RGB-D recognition performance. We basically concate-

nate the features that we get from individual architectures

and then feed the resulting vector to the linear SVM. Al-

though the 3D voxel input already contains RGB informa-

tion, the 3D CNN is trained on a much lower resolution

than the VGGnet resulting in a loss of RGB information.

899



Figure 3. Our 3D CNN architecture

Figure 4. Our Hybrid 2D/3D CNN architecture (VGG3D)

So we do not expect it to model the RGB information as

good as the VGGnet does. But incorporation of RGB in-

formation into the 3D CNN helps to train it from scratch

using random initialization on a smaller dataset and to con-

tribute to the overall performance by exploiting mainly the

depth information. Moreover, the inclusion of the VGG3D

in the fusion is expected to compensate some of the 3D in-

formation that cannot be modeled by the 3D CNN due to

difficulties in its training, and the VGG3D achieves this via

transfer learning.

Figure 5. Illustration of VGG3D (top row) and VGGnet (bottom

row) first layer responses.

7. Experiments

7.1. Setup

We implement all the networks using Julia programming

language [1] and Knet framework [29]. The experiments

are carried out for the category recognition problem over 10

splits as in [13]. Each split contains randomly selected ob-

jects from each category (51 in total) in the test set and the

remaining 249 objects are included in the training. The re-

ported performance results are all outputs of the linear SVM

fed by the features resulting from individual architectures or

their combinations. Validation and parameter optimization,

regarding both SVM classifiers and CNN architectures that

we employ, are performed on Split 1 and repeated with fixed

settings over the remaining splits.

For 3D CNN training, we fix the learning rate to 0.1 and

the number of epochs to 10. The network is trained using

back-propagation. For VGG3D network training, the soft-

max layer is first trained with back-propagation by freezing

all the other layers with the weights transferred from the

pretrained VGGnet. This learnt layer is then used to ini-

tialize the softmax layer prior to training of the VGG3D as

a whole with backpropagation. For VGG3D training, we

choose a low learning rate of 0.0001, which helps prevent

overfitting.

VGG Layer Feature Size Accuracy (%)

FC1 4096 91.08

FC2 4096 89.25

FC3 1000 72.24

FC1+FC2 8192 91.11

FC2+FC3 5096 89.20

Table 1. Recognition performance results with features extracted

from fully connected VGGnet layers over Split1, where FC-n de-

notes the nth fully connected layer.

Prior to the experiments, all the images in the Washing-

ton dataset are re-scaled to the input size of the original VG-

Gnet (224 × 224) and then mean-normalized (the mean is

computed over the training set). Beside this, no other pre-

900



Split VGGnet 3D CNN VGG3D VGGnet + 3D CNN VGGnet + 3D CNN + VGG3D

1 91.04 76.33 91.22 91.03 91.90

2 92.69 76.88 92.51 92.09 92.76

3 86.15 79.96 87.88 90.90 91.69

4 87.62 74.69 87.56 90.27 90.31

5 88.84 78.63 89.53 92.39 92.63

6 89.72 79.61 90.02 90.40 91.02

7 90.70 83.12 90.92 92.57 92.82

8 87.87 77.40 88.32 91.64 92.27

9 88.79 77.40 89.91 90.35 90.76

10 86.15 80.30 89.97 91.56 92.21

Mean 88.96 78.43 89.78 91.29 91.84

Dev 2.13 2.41 1.55 0.86 0.89

Table 2. Accuracy results (%) with 10-fold split validation for VGGnet, 3D CNN, VGGnet and fusion combinations.

processing is applied.

7.2. Results

We first compare the performances of the features ex-

tracted from different layers of the VGGnet in Table 1 (see

also Section 4). We observe that as we move closer to the

last fully connected layer of the VGGnet, the performance

significantly worsens. This is because these layers learn fea-

tures specific to the object categories of the original dataset.

The first fully connected layer performs the best as antici-

pated. We also consider fusing the features resulting from

a combination of fully connected layers as in [19]. We ob-

serve that when the best performing layers are fused, we get

only an increase of 0.03% in the performance. Since the

feature size doubles while fusing, we decide to include only

the best performing layer in our VGGnet based architecture

for RGB recognition (see Figure 1).

Table 2 shows the 10-fold recognition results for VG-

Gnet, 3D CNN and VGG3D architectures, and their combi-

nations, along with the corresponding mean accuracies and

standard deviations. The VGGnet shows good performance

of around 89% recognition rate on RGB images while the

3D CNN performs around 78% with incorporation of depth.

However, the 3D CNN adds a significant 2.5% boost to

the recognition performance when fused with the VGGnet.

There are a number of reasons why the 3D voxel input, al-

though comprising both depth and RGB information, does

not yield better results than the RGB-only data itself. First,

unlike the VGGnet, the 3D CNN is trained from scratch via

random initialization and thus can not take any advantage

of any previously learnt information. Second, the Washing-

ton dataset is a small dataset when compared to the Ima-

geNet RGB database on which the VGGnet was pretrained.

Moreover, the RGB-D images in the Washington dataset

need to be re-scaled into a small voxel resolution in order

to train the 3D CNN structure, which inevitably yields loss

of both RGB and depth information. But when fused with

the VGGnet, the 3D CNN that jointly learns information

from depth and RGB adds significantly to the performance.

When the VGG3D is finally incorporated into the fusion

scheme, the VGG3D compensates for some part of the loss

in 3D information via transfer learning, and the overall per-

formance is further boosted and exceeds the state of the art,

as given in Table 3, which presents 10-fold recognition re-

sults in comparison to previous methods. Note also that the

performance of our VGG3D network is superior to the indi-

vidual performances of the VGGnet and the 3DCNN. To the

best of our knowledge, our overall fusion scheme achieves

the highest accuracy on category recognition compared to

the previous methods tested on the Washington dataset.

Method RGB Depth RGB-D

[13] 74.30 ± 3.3 53.1 ± 1.7 81.90 ± 2.8

[4] 82.40 ± 3.1 81.2 ± 2.3 87.50 ± 2.9

[19] 83.10 ± 2.0 N/A 89.40 ± 1.3

[21] 80.80 ± 4.2 78.90 ± 3.8 86.80 ± 3.3

[11] 85.65 ± 2.7 83.94 ± 2.8 89.59 ± 3.8

[5] 85.20 ±1.2 81.2 ± 2.3 90.10 ± 1.1

[6] 84.10 ± 2.7 83.8 ± 2.7 91.30± 1.4

[27] 74.6 ± 2.7 N/A 86.90 ± 2.9

Ours 88.96 ± 2.1 78.43 ± 2.4 91.84 ± 0.89

Table 3. Comparison of our fusion scheme with previous methods

for category recognition: Accuracy results (%) with RGB-only,

Depth-only and RGB-D modalities.

8. Conclusion

This work can be considered as an attempt to transfer

learning from 2D source to 3D target for the object recogni-

tion problem where the datasets comprising 3D information

are not large enough to be able to train deep neural network

architectures from scratch. Our findings show that explicit

handling of 3D spatial information as an additional modal-

ity to RGB data (using 3D CNNs in our case) significantly

contributes to the recognition performance. Moreover, even

a small amount of learning transferred from 2D source data

to 3D (in terms of the first layer of the VGGnet transferred

to the VGG3D in our case) can help further boost the per-

formance beyond the state of the art. We believe that there

901



is still room for even further improvements and hence need

for better and more comprehensive architectures that can

be trained via transfer learning in order to fully exploit the

3D information available for object recognition and possi-

bly for other multimodal vision tasks as well.

Acknowledgements

This work was supported by the Scientific and Tech-

nological Research Council of Turkey (TUBITAK) Grants

114E628 and 215E201.

References

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Ju-

lia: A fresh approach to numerical computing. SIAM Review,

59(1):65–98, 2017. 5

[2] M. Bluml, J. T. Springenberg, J. Wülfing, and M. Riedmiller.

A learned feature descriptor for object recognition in RGB-D

data. In Robotics and Automation (ICRA), 2012 IEEE Inter-

national Conference on, pages 1298–1303. IEEE, 2012. 2

[3] L. Bo, X. Ren, and D. Fox. Hierarchical matching pursuit

for image classification: Architecture and fast algorithms. In

NIPS, volume 1, page 6, 2011. 2

[4] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for

RGB-D based object recognition. In Experimental Robotics,

pages 387–402. Springer, 2013. 2, 6

[5] Y. Cheng, X. Zhao, K. Huang, and T. Tan. Semi-supervised

learning and feature evaluation for RGB-D object recogni-

tion. Computer Vision and Image Understanding, 139:149–

160, 2015. 2, 6

[6] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and

W. Burgard. Multimodal deep learning for robust RGB-D

object recognition. In 2015 IEEE/RSJ International Confer-

ence on, pages 681–687, 2015. 2, 6

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(8):1915–

1929, 2013. 2

[8] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Aistats, vol-

ume 9, pages 249–256, 2010. 4

[9] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learn-

ing rich features from rgb-d images for object detection and

segmentation. In European Conference on Computer Vision,

pages 345–360. Springer, 2014. 2

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016. 1

[11] I. Jhuo, S. Gao, L. Zhuang, D. T. Lee, and Y. Ma. Unsu-

pervised feature learning for RGB-D image classification.

In Asian Conference on Computer Vision, pages 276–289.

Springer, 2014. 2, 6

[12] A. Krizhevsky, I. Sutskever, and G. H. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012. 1

[13] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical

multi-view RGB-D object dataset. In Robotics and Automa-

tion (ICRA), pages 1817–1824. IEEE, 2011. 1, 2, 5, 6

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 2

[15] X. Li, M. Fang, J. Zhang, and J. Wu. Learning coupled clas-

sifiers with RGB images for RGB-D object recognition. Pat-

tern Recognition, 61:433–446, 2017. 2

[16] D. Maturana and S. Scherer. Voxnet: A 3D convolutional

neural network for real-time object recognition. In Intelligent

Robots and Systems (IROS), 2015 IEEE/RSJ International

Conference on, pages 922–928. IEEE, 2015. 2

[17] A. Payan and G. Montana. Predicting alzheimer’s disease: A

neuroimaging study with 3D convolutional neural networks.

arXiv preprint arXiv:1502.02506, 2015. 2

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. FeiFei. Imagenet large scale visual recog-

nition challenge. International Journal of Computer Vision,

115(3):211–252, 2015. 1, 2, 3

[19] M. Schwarz, H. Schulz, and S. Behnke. RGB-D object

recognition and pose estimation based on pre-trained con-

volutional neural network features. In Robotics and Automa-

tion (ICRA), 2015 IEEE International Conference on, pages

1329–1335, 2015. 2, 6

[20] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1, 3

[21] R. Socher, B. Huval, B. P. Bath, C. D. Manning, and A. Y.

Ng. Convolutional-recursive deep learning for 3D object

classification. In NIPS, volume 3, page 8, 2012. 2, 6

[22] S. Song and J. Xiao. Deep sliding shapes for amodal 3D

object detection in RGB-D images. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 808–816, 2016. 2, 3

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015. 1

[24] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1701–1708, 2014. 2

[25] L. Torrey and J. Shavlik. Transfer learning. Handbook of

Research on Machine Learning Applications and Trends: Al-

gorithms, Methods, and Techniques, 1:242, 2009. 2

[26] A. Toshev and C. Szegedy. Deeppose: Human pose estima-

tion via deep neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1653–1660, 2014. 2

[27] A. Wang, J. Lu, J. Cai, T. Cham, and G. Wang. Large-margin

multi-modal deep learning for RGB-D object recognition.

IEEE Transactions on Multimedia, 17(11):1887–1898, 2015.

2, 6

902



[28] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In Advances in

Neural Information Processing Systems, 2014. 2

[29] D. Yuret. Knet: beginning deep learning with 100 lines of

julia. In Machine Learning Systems Workshop at NIPS 2016,

2016. 5

903


