

Abstract

The problem of one-on-one target tracking from a single

monocular image acquired from the viewpoint of a follower

robot itself is studied in this paper. Previous works mainly

depended on locating, onboard sensors with control

mechanism, while robot may not carry advanced onboard

equipment for localization or GNSS may also fail in

GNSS-denied/Indoor environments. In this paper we

propose a novel approach based on a deep convolutional

neural network called Deep-Track, which trains a

supervised image classifier only using images captured by

the camera in the follower robot. Specifically, the

Deep-Track system can output the estimated velocity of the

target as well as the velocity control for the follower, by

operating merely on two adjacent frames. In order to verify

the effectiveness of Deep-Track, we build up a large-scale

dataset in the simulator, in which the performance of the

Deep-Track is evaluated and it is shown that a high

tracking accuracy is achieved.

1. Introduction

In the research field of traditional computer vision, the

problem of tracking is very common and many methods

have been proposed for addressing the problem in certain

scenarios, such as tracking a target from a video or in many

images. Target detection, tracking and recognition are

closely interrelated areas with significant overlaps. When

tracking a target in a video, the target should be recognized

and labeled in each frame of the video. Naiyan Wang et al.

[1] cast this problem by training a stacked denoising

auto-encoder offline to learn generic image features that are

more robust against variations. Hyeonseob Nam et al. [2]

propose a novel visual tracking algorithm based on the

representations from a discriminatively trained

Convolutional Neural Network. Tracking in many pictures

also aims to identify the target. Fayao Liu et al. [3] propose

to use the feature learning pipeline for visual tracking.

Tracking problem is also necessitated in a variety of

multi-robot systems. For example, a police robot may track

a criminal target or an unmanned aircraft may track an

adversarial target [4], which may be formulated as

one-on-one target tracking: a moving target is tracked by a

moving follower. Solving the problem of one-on-one

tracking is also important for many other applications,

including flocking and formation control, where a robot

may need to track and follow the leader robot [5].

Several previous works deal with target tracking in

multi-robot system based on locating and control

mechanism. Paolo Pirjanian et al. [6] propose an approach

for multi-robot coordination in the context of cooperative

target acquisition, which is based on multiple objective

behavior coordination extended to multiple robots and may

also be used in one-on-one target tracking. Some other

works propose to use directional onboard sensors [7], [8]

and implemented the directional sensing of electromagnetic

waves [9].

For specific formation and flocking scenarios, some

works also develop the tracking method by exploiting the

prior knowledge exhibited in the target-follower

geometrical relationships. For example, when a team of

unmanned vehicles perch a line, a robot may identify the

robot in front as the target and follow it. Kartik Mohta et al.

[10] formulate the position-based visual servoing problem

for a quadrotor equipped with a monocular camera and an

IMU relying only on features on planes and lines in order to

fly above and perch on arbitrarily oriented lines. However,

in a lot of scenarios, unmanned vehicles may not carry

advanced onboard equipment for localization, while GNSS

may also fail in GNSS-denied/Indoor environments.

Therefore, most methods proposed in the literature may fail

or their performance may degenerate significantly.

Against the background, we propose a novel approach

called Deep-Track in this paper that only depends on

monocular images captured by a single forward-looking

camera and cast the tracking problem in flocking and

formation control as an image classification task.

Specifically, we estimate the approximate velocity of the

target only depending on the two images perceived by the

followers in two adjacent frames. By adopting a supervised

end-to-end machine learning approach based on Deep

Convolutional Neural Networks (DCNNs), which operates

directly on the image’s raw pixel values, Deep-Track

outputs action controls for the robot. Our main

contributions of this paper are described as follows:

End-to-End Visual Target Tracking in Multi-Robot Systems

Based on Deep Convolutional Neural Network

Yawen Cui, Bo Zhang, Wenjing Yang, Zhiyuan Wang, Yin Li, Xiaodong Yi, Yuhua Tang

National University of Defense Technology, China

{cuiyawen16, zhangbo10, wenjing.yang, wzy, liyin13, yixiaodong, yhtang}@nudt.edu.cn

1113

Figure 1: The target moves from the state of T1 to the current state of T2. Image1 and image2 are perceived by the follower in T1 and T2

respectively. After that, we construct a network to learn the difference and recognize the velocity of the target. Then, the velocity will be

sent to the follower in order to keep tracking.

 Firstly, a one-to-one target tracking algorithm relying

only on monocular images is proposed, called Deep-Track,

is exempted from explicit determination on the

characteristic features of the target.

 Secondly, a large-scale dataset is efficiently acquired in

simulation environments, which is used for training and

testing the Deep-Track algorithm.

 Finally, remarkable tracking performance is achieved by

the proposed Deep-Track.

2. Visual tracking of the target

In order to successfully track a target, a robot has to

perceive where the target is and how it moves from the last

time step, then react in order to maintain the distance from

the target. In this paper, we propose a DCNN-based

approach for one-on-one visual target tracking and show

experimental results on an autonomous robot. We consider

two monocular images in two adjacent frames from a

forward-looking camera as inputs, as illustrated in Figure 1.

Using a single monocular image may also train a classifier

with lower computational complexity, however the decision

is not reliable as it exploits very little 3-D information for

capturing the velocity. Our method of using two adjacent

images may be seen as the simplest form for

image-sequence based classifier, which extracts 3-D

information [11] by exploiting the visual difference in

adjacent frames, achieving higher classification reliability.

When a target moves with a certain velocity, there are

rules to follow which is about the differences of some pixels

between images perceived by the followers in two adjacent

frames (see in Figure 2). We may adopt machine learning to

acquire these rules and cast the tracking problem as an

image classification task by labelling input images with

different velocities.

a(1) a(2)

b(1) b(2)

c(1) c(2)

Figure 2: The target moves from the state of last time step T1 to

the state of current time step T2 with the linear velocity of 0.2 m/s

and the angular velocity of 0.2 m/s. There are three pairs of data.

Image1 (the left one) and image2 (the right one) are perceived by

the follower Turtlebot in T1 and T2 respectively.

Image2 in T2

Target in T2

Target in T1
Follower

Image1 in T1

1114

As for this tracking problem, it may also be suitable to

use regression because the velocity of robot is continuous.

However, this paper considers a demo with affordable

computational complexity, by casting control problems of

robots as classification tasks as in [12] and [13]. In our

future work, a comprehensive comparison between

regression and classification based approaches will be

carried out.

During our experiment, we choose Turtlebot-2 as the

target and the follower. TurtleBot-2 is a low-cost, personal

robot kit with open-source software. It was created at

Willow Garage by Melonee Wise and Tully Foote in

November 2010. With TurtleBot, we are able to build a

robot that can drive around the indoor environment, possess

enough horsepower to create exciting applications. More

importantly, its full-3D model is available in simulators,

which captures the sensing, control, kinematics and

dynamics behavior of TurtleBots.

a(1) a(2)

b(1) b(2)

c(1) c(2)

Figure 3: There are three pairs of images that are collected when

the linear velocity is 0.5 m/s and the angular velocity is 0.5 m/s.

When the target robot moves, it may get out of the view of the

camera on the follower robot easily (See the second image of each

pair of data).

Due to the limitation of robotic maneuverability and in

order to track accurately, we consider a discrete set of

velocities for the target robot: the range of the linear

velocity and the angular velocity are (0.0 m/s, 0.5 m/s] and

[-0.3 m/s, 0.3 m/s] respectively. The two kinds of velocities

are not within the same range because target tracking may

fail when the angular velocity of target is too large and

beyond the perceiving capabilities of the camera on the

follower robot (See in Figure 3). The follower robot can

change its pose until the camera is able to perceive the target

robot, but this process is time-consuming, thus cannot meet

the real- time requirement. Therefore, we consider a

velocity set that contains eight velocities for the sake of

classification, as illustrated in Figure 4.

(1) Linear velocity: 0.2m/s

Angular velocity: 0.0 m/s

(2) Linear velocity: 0.5 m/s

Angular velocity: 0.0 m/s

(3) Linear velocity: 0.4 m/s

Angular velocity: 0.3 m/s

(4) Linear velocity: 0.4 m/s

Angular velocity: -0.3 m/s

(5) Linear velocity: 0.5 m/s

Angular velocity: 0.2 m/s
(6) Linear velocity: 0.5 m/s

Angular velocity: -0.2 m/s

(7) Linear velocity: 0.2 m/s

Angular velocity: 0.2 m/s

(8) Linear velocity: 0.2 m/s

Linear velocity: -0.2 m/s

Figure 4: Illustrations of the selected velocity classes.

2.1. Dataset

One of the advantages of Deep-Track in one-on-one

target tracking is that the information about the distances

and positions of robots can be effectively and directly

extracted from the visual images. The DCNN-based

classifier in Deep-Track needs to be trained to achieve

satisfactory performance and there is no dataset readily

available, hence a wide range of data is collected with

different poses, positions and distances between the target

and the follower.

Each pair of images is classified according to its

Euclidean distance from the candidates in the velocity

1115

classes, i.e. associated to its ground-truth class. All images

are perceived by a forward-looking camera and we collect

Figure 5: This is the scenario when we collect the dataset and there

is no obstacle.

Step 1: At first, the follower robot captures the 1-st image of the

target.

Step 2: A certain velocity is sent to the target robot.

Step 3: At the meantime, the follower robot captures the 2-nd

image of the target

Step 4：The follower robot adopts the same velocities as the

target.

Figure 6: The process when we collect the dataset.

the dataset in the scenario illustrated in Figure 5. The

dataset is composed by 8000 pairs, namely, 16000 images

collected at 20 positions. For a certain pair of the images

generated in the dataset, the follower robot captures the 1-st

image of the target, then a sequence of velocities is sent to

the target robot in the next time step and the target robot

moves. At the meantime, the follower robot captures the

2-nd image of the target, then adopts the same velocities as

the target. In this paper, we use a vector to represent the

velocity: [linear velocity, angular velocity].

A labeled data is composed of two images perceived by

camera on the follower, along with the label indicating its

ground-truth velocity within the velocity class. The process

is described in Figure 6 and three examples of data are

shown in Figure 7.

a.(1) a.(2)

(a) Left image is the first one and right image is the second

image. The groundtruth class is the velocity of [0.5, 0.2].

b.(1) b.(2)

(b) Left image is the first one and right image is the second

image. The groundtruth class is the velocity of [0.2, -0.2].

c.(1) c.(2)

(c) Left image is the first one and right image is the second

image. The groundtruth class is the velocity of [0.5, 0.0].

Figure 7: two examples of data.

2.2. Deep Convolutional Neural Network for Tracking

Based on the labeled dataset, we address the tracking

problem as a supervised machine learning task. We use

DCNN as the image classifier, and design its architecture as

shown in Figure 8. We consider two matrices with a size of

 Vt

Vt

1116

Figure 8: The architecture for the Deep Convolutional Neural Network used in our method. The input image I1, as well as image I2, are all

fed into a 6 × 6 convolution with stride 2, followed by a 5 × 5 convolution and a 3 × 3 max-pooling. This is followed by a 5 × 5 convolution

and a 3 × 3 max-pooling again. Then they are merged to the size of 27 × 27 ×64 using concatenation. The result is then processed by three

5 × 5 convolutions, two 3 × 3 max-pooling layers, and four fully connected layers after which the network outputs the classification result.

3×472×472 as inputs, followed by several hidden layers and

eight output neurons. The input image pair is firstly resized

from 640×480 to 472×472 pixels, and the resulting

3×472×472 RGB values are directly mapped to the neurons

in the input layer.

Then, the images pass through a two-stage DCNN, where

the first stage includes two independent channels, while the

second stage merges the two channel outputs using the

operation of concatenation and extracts the difference

feature together with the output of the classification results.

As a first remark on the DCNN design, we divide the DCNN

into two channels at first. As for two channels, we extract

features of the first image and the second image

respectively. It can be more efficient and targeted when we

extract features than merging the two images at first.

The two stages are described as follows:

 First-stage: Each pair of images is passed through the

network respectively to extract the features of each image.

After 6 × 6 convolution with stride 2, followed by two 5 × 5

convolutions and two 3 × 3 max-pooling layers, they are

compressed to feature vectors having the size of 27 × 27

×64.

 Second-stage: In order to extract the features of

differences between two images in one pair, the result after

concatenation is then processed by three 5 × 5 convolutions,

two 3 × 3 max-pooling layers, and three fully connected

layers with 8 units, after which the network outputs the

classification result. For a given input, the DCNN outputs

eight values, representing the probability that the input has

for each velocity class.

The network takes the image I2 of the current time step T2,

together with an additional image I1 perceived in the last

time step T1 as inputs. This additional image is used to be

compared with the current image and they are all passed

through the hierarchical classifier and the classifier outputs

the velocity of the target according to raw pixels. In order to

keep tracking, the velocity retrieved from the network is

then sent to the follower.

Implementation details of the layers in the Deep-Track

DCNN is given below:

1. Firstly, layers of the first-stage are all processed by the

batch normalization except concatenation layer. We use a

decreasing learning rate from 0.01 to 0.0001 and the

iterations of training phase is 30000.

2. Secondly, the convolutional layer performs 2D

convolutions of their input channels with a rectangular filter

[14]. If there are several channels in the previous layer, the

1117

results of the corresponding convolutions are summed and passed by a scaled hyperbolic tangent activation function. If

3. the filter better matches the content of the map, a higher

activation is given.

4. Thirdly, the max-pooling layers [15] also referred to

subsampling layer are adopted for decreasing the map size,

thus reducing the network complexity.

Finally, the output layer is a fully connected layer with

one neuron per class activated by a soft-max function. Each

output neuron’s activation can be interpreted as the

probability of the input image belonging to that class. We

train this network with a Cross-Entropy loss and using

Gradient Decent method for optimization.

3. Experimental results

In order to validate the effectiveness of our method, we

first choose an environment to collect the data, then

construct, train and test the DCNN in Deep-Track.

3.1. Experimental setup

As for the first work, we form our dataset in the simulator

named Gazebo [16] based on Robot Operating System

(ROS) [17]. The ROS is a set of software libraries and tools

that enable us to build robot applications. Gazebo offers the

ability to accurately and efficiently simulate populations of

robots in complex indoor and outdoor environment. In ROS,

programs exist in the form of nodes and message exchange

occurs among nodes when one node publish or subscribe

topics. Considering formation or flocking applications, we

assume that the target and the follower are at the same pose

all the time.

The developed message publishing and subscribing

structures in data collection process and testing process in

ROS are illustrated in Figure 9 and Figure 10 respectively.

(1) The data collection process:

As shown in Figure 9, there are two modules, the data

collection module and the simulation module. In the data

collection module, node A is responsible for collecting the

image data consisting of multiple image pairs denoted by I1

and I2, while node B is responsible for collecting the image

labels, namely the velocities of the target robot. In the

simulation module, node C and node D simulate the

behavior of the follower and the target robot in the Gazebo

environment respectively.

The detailed steps of the data collection process are given

below:

 Firstly, node A subscribes the topic referring to message

of the camera in the follower robot and stores the image as

I1.

 Then, node E publishes the topic referring to the velocity

of the target for 5-second, while the target robot

implemented by node D subscribes the topics.

 Afterwards, node A subscribes the topic referring to

message of the camera in the follower robot again and stores

the image as I2.

 The topic lasting 5-second about the velocity of the

target/follower is published by node E again, while the

follower robot implemented by node C subscribes the topic

in order to keep track of the target robot.

Following the process indicated in Figure 10, we collect

8000 pairs, 16000 images in one scenario that are described

in Section 2.

Figure 9. The nodes relationship graph for the training process.

1118

Figure 10. The nodes relationship graph for the testing process.

(2) Testing process

The nodes relationship graph for the testing process is

shown in Figure 9. Compared to the data collection process,

the major difference implemented in the testing process is

that an additional module DCNN is adopted, which is the

core module in Deep-Track.

The DCNN subscribes the images captured by the camera

of the follower robot, classifies its class and hence gets the

velocity of the follower robot. In comparison, in the data

collection process, the velocity of follower robot is directly

generated from node E.

When constructing the model of DCNN, we program it

with the library of TensorFlow [18] which is an open source

software library for numerical computation using data flow

graphs. Computation nodes in the data flow graph represent

mathematical operations, while the graph edges represent

the multi-dimensional data arrays (tensors) that flow

between them. When we construct the model of DCNN,

roughly five steps are required:

 Define the layers: convolutional layer, pooling layer and

normalization layer.

 Define the variables of weights and bias and construct the

graph using the layers that are defined before. The images

used as input and labels are all described as placeholders.

 Define loss, accuracy and optimization function.

 Initialize all variables. Create the session to run the graph

and feed data to placeholders.

 Create circles to optimize the loss using the method of

Gradient Decent.

In the period of training, A GPU with the memory of 6G is

used to speed up training.

3.2. Results

During the training stage, our experiment involves 5-fold

cross validation. Specifically, the dataset is divided into five

folds of equal size, according to the positions of two robots

with same poses. The DCNN model is trained based on four

of the folds and tested in the remaining fold. We repeated

the process five times, for each an individual fold as test

data and computed the average accuracy of each model in

three iterations as its final result. The result is shown is

Table 1

1119

Iteration 1 2 3 4 5 Average

Accuracy 0.783 0.813 0.750 0.807 0.778 0.786

Table 1: The classification accuracy after training.

3.3. Discussions and future work

We take a further analysis by looking into the cases of

failure. Figure 11 reports three of the most representative

failure cases.

a(1) a(2)

b(1) b(2)

c(1) c(2)

Figure 11: Two failure cases, where the ground-truth of the

velocity is [0.2, 0.2] and the network all outputs the class of [0.4,

0.3].

Hence, our future work will be devoted to addressing the

following limitations of the Deep-Track:

(1) The set of velocities is limited to eight discrete classes,

which should be extended for practical fine-grained

tracking.

(2) The environment around Turtlebots is relatively simple.

Further work will incorporate more sophisticated

environment models.

 With regard to the limitations, we will do the next work:

(1) We will collect the dataset in a larger scale of positions

and velocities.

(2) More kinds of collisions will be put into the

environment including moving objects.

(3) We will find a mechanism for continuous servoing

when the robot tracks the target that moves

continuously.

4. Conclusions

In this paper, we propose an end-to-end visual target

tracking method called Deep-Track in Multi-Robot Systems

using deep convolutional neural networks (DCNNs).

Deep-Track only relies on monocular images captured by a

forward-looking camera and cast the tracking problem as an

image classification task. By operating the raw pixels

directly, we train a DCNN to complete the classification

task with a large scale dataset. The performance of the

Deep-Track is evaluated and it is shown that a high tracking

accuracy is achieved.

5. Acknowledgement

This work was supported by the National Natural Science

Foundation of China under Grant Nos. 91648204,

61532007 and 61601486, the Research Programs of NUDT

under Grant No. ZDYYJCYJ20140601.

References

[1] N. Wang D. Yeung, “Learning a Deep Compact Image

Representation for Visual Track,” Advances in Neural

Information Processing Systems, Stateline, Nevada, 2013.

[2] H. Nam, B. Han, “Learning Multi-Domain Convolutional

Neural Networks for Visual Tracking,” Conference on Computer

Vision and Pattern Recognition, Las Vegas, Nevada, 2016.

[3] F. Liu, C. Shen, I. Reid, A. Hengel, “Online Unsupervised

Feature Learning for Visual Tracking, ” Image and Vision

Computing, vol.51, pp. 84-94, Jul. 2016.

[4] J. S. McGrew, J. P. How, B Williams, N. Roy, “Air-Combat

Strategy Using Approximate Dynamic Programming,” Journal of

Guidance Control and Dynamics, Vol. 33, No. 5, Sep.–Oct. 2010.

[5] Z. Cai, X. Chang, Y. Wang, X. Yi, X. Yang, “Distributed

control for flocking and group maneuvering of nonholonomic

agents,” Computer animation & virtual worlds, vol.28, Issue 3-4,

May/Aug. 2017.

[6] P. Pirjanian and M. Mataric, "Multi-robot target acquisition

using multiple objective behavior coordination," International

Conference on Robotics and Automation, San Francisco, CA,

2000.

[7] M. Mazo, A. Speranzon, K. H. Johansson and Xiaoming Hu,

"Multi-robot tracking of a moving object using directional

sensors," IEEE International Conference on Robotics and

Automation, New Orleans, LA, 2004.

[8] Karol Hausman, J Müller, Abishek Hariharan, Nora Ayanian

and Gaurav S Sukhatme, “Cooperative multi-robot control for

target tracking with onboard sensing,” The International Journal

of Robotics Research, Vol. 34(13), pp. 1660–1677, 2015.

[9] G. Lee, K. Tatara and N. Y. Chong, "Hardware-assisted

direction estimation for mobile robot target tracking applications,"

2015 IEEE International Conference on Mechatronics (ICM),

Nagoya, 2015.

1120

[10] K. Mohta, V. Kumar and K. Daniilidis, "Vision-based

control of a quadrotor for perching on lines,"2014 IEEE

International Conference on Robotics and Automation (ICRA),

Hong Kong, 2014.

[11] David A. Forsyth and J. Ponce. Computer Vision: A modern

Approach. Prentice Hall, 2003.

[12] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen,

“Learning Hand-Eye Coordination for Robotic Grasping with

Deep Learning and Large-Scale Data Collection,” The

International Journal of Robotics Research, Jun.2017.

[13] A. Giusti, J. Guzzi, D. Cireşan, F. He, J. Rodríguez, F.

Fontana, M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, et

al., “A machine learning approach to visual perception of forest

trails for mobile robots,” IEEE Robotics and Automation Letters,

vol. 1, no. 2, pp. 661–667, 2016.

[14] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient

backProp,” New York, NY, USA: Springer, 1998, pp.9-50.

[15] D. Scherer, A. Müller, and S. Behnke, “Evaluation of

pooling operations in convolutional architectures for object

recognition,” International Conference on Artificial Neural

Networks, Thessaloniki, Greece, 2010.

[16] D. Roberts, R. Wolff and O. Otto, “Constructing a Gazebo:

Supporting Teamwork in a Tightly Coupled, Distributed Task in

Virtual Reality,” Presence, Volume: 12, Issue: 6, Dec. 2003.

[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J.

Leibs, R.Wheeler, and A.Y. Ng, “ROS: An open-source robot

operating system,” Proc. ICRA Open-Source Softw. Workshop,

2009.

[18] M. Abadi, A. Agarwal et al., “Tensorflow: Large-scale

machine learning on heterogeneous distributed systems,”

arXiv:1603.04467, 2016.

1121

