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Abstract

Deluge Networks (DelugeNets) are deep neural networks

which efficiently facilitate massive cross-layer information

inflows from preceding layers to succeeding layers. The

connections between layers in DelugeNets are established

through cross-layer depthwise convolutional layers with

learnable filters, acting as a flexible yet efficient selection

mechanism. DelugeNets can propagate information across

many layers with greater flexibility and utilize network pa-

rameters more effectively compared to ResNets, whilst be-

ing more efficient than DenseNets. Remarkably, a Delu-

geNet model with just model complexity of 4.31 GigaFLOPs

and 20.2M network parameters, achieve classification er-

rors of 3.76% and 19.02% on CIFAR-10 and CIFAR-100

dataset respectively. Moreover, DelugeNet-122 performs

competitively to ResNet-200 on ImageNet dataset, despite

costing merely half of the computations needed by the lat-

ter.

1. Introduction

Deep learning methods [1, 24], particularly convolu-

tional neural networks (CNN) [20] have revolutionized

the field of computer vision. CNNs are integral compo-

nents of many recent computer vision techniques which

spread across a diverse range of vision application areas

[7]. Hence, developing more sophisticated CNNs has been

a prime research focus. Over the years, many variants of

CNN architectures have been proposed. Some works fo-

cus on improving the activation functions [8, 34], and some

focus on increasing the heterogeneity of convolutional fil-

ters within the same layers [30, 31]. Lately, the idea of im-

proving CNNs by greatly deepening them has gained much

traction, following the immense successes of Residual Net-

works (ResNets) [9, 10] in image classification.

ResNets make use of residual connections to support rel-

atively unobstructed information flows (shortcut) between

layers. Each succeeding layer receives the sum of all its

preceding layers1 outputs as input. Compared to traditional

non-residual deep networks, outputs of preceding layers in

ResNets can reach succeeding layers with minimal obstruc-

tions, even if the preceding layer and succeeding layer is

separated by a very long layer-distance. However, the cross-

layer connections between preceding and succeeding layers

of ResNet are fixed and not “selective”, and therefore the

succeeding layers are not able to prioritize or deprioritize

output channels of certain preceding layers. Instead, the

outputs of preceding layers are lumped together via simplis-

tic additive operation, making it very tough for succeeding

layers to perform layer-wise information selection. The in-

flexibility of residual connections also hinders the ability of

ResNets to learn cross-layer interactions and correlations.

Densely connected networks (DenseNets) [13] aim to

overcome this drawback of ResNets, by having con-

volutional layers to consider an extra dimension - the

depth/cross-layer dimension, in addition to the spatial and

feature channel dimensions used in regular convolutions.

In DenseNets, the input feature maps to succeeding lay-

ers are concatenations of preceding layers outputs, rather

than simple summations. Hence, when applying convolu-

tion operations on the concatenated feature maps, the con-

volutional filters have to learn spatial, cross-channel, and

cross-layer correlations altogether, entailing heavy amounts

of parameters (filter width × filter height × # input chan-

nels × # output channels × # preceding layers) and com-

putations. DenseNet-BC [13] was recently introduced as a

more efficient variant of DenseNet, in which the filters have

to consider just cross-channel and cross-layer correlations.

Despite that, considering that DenseNets’ composite lay-

ers receive inputs from several dozens of preceding layers,

the computation and parameter requirements are still rather

high.

To counter excessive computational complexity and pa-

rameter growth, DenseNet models are specifically config-

ured to have much lower output width (between 12 and 48

1The unit layer in ResNet, ResNet-like, and DenseNet models refers to

a composite layer formed by several basic layers. See Section 3.1.
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Figure 1. Deluge Network components: (a) a composite layer, (b) a block transition component, and (c) a block. Red-colored arrows

indicate 1× 1 cross-layer depthwise convolutions.

output channels) at each layer, compared to typical image

classification CNNs. However, it is crucial to have consid-

erable network width as contended by [35], and decreas-

ing output width too much is harmful to networks repre-

sentational power. Furthermore, by visualizing DenseNet’s

weight norms, Huang et al. [13] showed that the features of

preceding composite layers get reused directly by the suc-

ceeding composite layers in a rather infrequent manner. Yet,

these “diminished” features have to be processed by rela-

tively expensive convolution operations in DenseNets.

Thus, in this paper, we propose a new class of CNNs

called Deluge Networks (DelugeNets) which enable flex-

ible cross-layer connections yet have regular output

width in each composite layer. As a result of using reg-

ular output width, the information inflows from preced-

ing layers to succeeding layers in DelugeNets are massive,

in contrast to the lesser information inflows in DenseNets.

DelugeNets are inspired by separable convolutions [16, 15,

2, 22]. The efficiency of convolutions can be improved

by separating the combined dimensions involved, resulting

in separable convolutions. DelugeNets are designed such

that the depth/cross-layer dimension is processed indepen-

dently from the rest (channel and spatial dimensions), us-

ing a novel variant of convolutional layer called cross-layer

depthwise convolutional layer (see Figure 2) as described

in Section 3.2. Cross-layer depthwise convolutional lay-

ers handle only cross-layer interactions and correlations,

without getting burdened by other dimensions. They facil-

itate cross-layer connections in DelugeNets in a very effi-

cient and effective manner. Experiments show the superior

performances of DelugeNets in terms of classification accu-

racy, parameter efficiency, and more remarkably computa-

tional complexity.

2. Related Work

2.1. Training Deep Networks

Developing methods for training very deep neural net-

works is a rather significant research topic that has received

much attention over the years. Lee et al. [21] incorpo-

rate classification losses into intermediate hidden layers, al-

lowing unimpeded supervised signals to reach the layers.

In a similar spirit as [21], GoogleNets [30] and Inception

[31] models attach auxiliary classifiers to a few intermedi-

ate layers to encourage feature discriminativeness in lower

network layers. DelugeNets, by contrast, can readily back-

propagate the supervised signals to earlier layers without

relying on additional losses, due to connections supporting

flexible information inflows from preceding to succeeding

layers.

There is another stream of works focusing on improv-

ing the information flows between layers of very deep

networks, which is also the focus of our work. High-

way Networks [28, 6] make use of a Long-Short-Term-

Memory (LSTM [11])-inspired gating mechanism to con-

trol information flow from linear and nonlinear pathways.

Through appropriately learned gating functions, informa-

tion can flow unimpededly across many layers, which can

be thought of as a kind of flexible mechanism to combine

cross-layer information inflows. He et al. [9] propose

Residual Networks (ResNets) which compute the residual

(additive) functions of the outputs of linear and nonlinear

pathways, without complex gating mechanisms. ResNets

have shown to tackle well the vanishing gradient and net-

work degradation problems that occur in very deep net-

works. The pre-activation variants of ResNet (ResNet-v2)

[10] normalize incoming activations at the beginnings of

residual blocks to improve information flow and regulariza-

tion.

Instead of going deeper, Wide-ResNets [35] improve

upon originally proposed ResNets by having more convo-

lutional filters/channels (width) and less numbers of lay-

ers (depth). Motivated by the high model complexity

of ResNets in terms of depths and parameter numbers,

several “dropping”-based regularization methods [14, 27]

have been developed for regularizing large ResNet models.

ResNets can be seen as a less flexible special case of Delu-

geNets, in which the cross-layer connection weights are not
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learnable and fixed as ones. Densely connected networks

(DenseNets) [13] which we discuss extensively in Section 1

belong to the same stream of works.

2.2. Separable Convolutions

Separable convolutions have been adopted to construct

efficient convolutional networks. Earlier works [15, 4] com-

press convolutional networks by finding low-rank approx-

imation of convolutional layers of pre-trained networks.

Network-in-network [22] employs 1 × 1 pointwise (cross-

channel) convolutional layers to enrich representation learn-

ing in an efficient manner. 1× 1 pointwise convolutions are

generally coupled with other convolution variants (e.g., spa-

tial convolutions) to achieve separable convolutions. Flat-

tened convolutional networks [16] are equipped with one-

dimensional convolutional filters of 3 dimensions (channel,

horizontal, and vertical) which are processed sequentially

and trained from scratch. For maximal channel-spatial sep-

arability, a conventional convolutional layer can be replaced

with depthwise separable convolution (spatial depthwise

convolution followed by a 1× 1 pointwise convolution), as

demonstrated by Xception [2]. In contrast to these existing

works which mainly deal with channel-spatial separability,

the work in this paper deals with “cross-layer”-channel sep-

arability. Also, to the best of our knowledge, this paper

is the first work on cross-layer depth/channelwise convolu-

tions.

3. Deluge Networks

Similar to existing CNNs (ResNet [9, 10], VGGNet [26],

and AlexNet [18]), DelugeNets gradually decrease spatial

sizes and increase feature channels of feature maps from

bottom to top layers, with a linear classification layer at-

tached to the end. The layers operating on the same feature

map dimensions can be grouped to form a block. In Del-

ugeNets, the input to a particular layer comes from all of

its preceding layers of the same block. There is no in-

formation directly flowing from other blocks. Within any

block, the cross-layer information flows through connec-

tions established by the cross-layer depthwise convolutions

(see Section 3.2). For transition to the next block as de-

scribed in Section 3.3, we perform cross-layer depthwise

convolution followed by strided spatial convolution to ob-

tain feature map of matching dimensions. The structure of

block in DelugeNets is illustrated in Figure 1(c), with indi-

vidual layers separated by vertical dashed lines.

3.1. Composite Layer

In CNNs, a layer often refers to a composite layer of

several basic layers such as Rectified Linear Unit (ReLU),

Convolutional (Conv), Batch Normalization (BN) layers.

Inspired by [10], we use the bottleneck-kind of composite

layer BN-ReLU-Conv-BN-ReLU-Conv-BN-ReLU-Conv

in DelugeNets, as illustrated in Figure 1(a). This kind

of composite layer is designed to improve parameter

efficiency in deep networks, by employing 1 × 1 spatial

convolutional layers at the beginning to reduce channel

dimension, and at the end to increase channel dimension.

In the ResNet models proposed by [10], the base channel

dimensions are increased by 4 times. We however only

increase them by 2 times in this paper, for the reason that

we can allocate more computational and parameter budgets

to train deeper DelugeNets.

Such a composite layer has also shown to work very well

for very deep neural networks which combine information

from multiple sources, such as ResNets and the proposed

DelugeNets. The primary reason that it works well is that

combined multi-source information is normalized via BN

layers before it is passed into the upcoming weight (con-

volutional) layers. This reduces internal covariate shift and

regularizes the model more effectively [10] than just passing

unnormalized multi-source information to the weight lay-

ers.

Concatenation
Cross-layer

Depthwise

Convolution

···

···

···

···

···

···

1x1 conv 1x1 conv 1x1 conv 1x1 conv

c1 c2 c3 cM

Input to
Composite Layer

Output
channels

from
preceding
composite

layers

Figure 2. Cross-layer Depthwise Convolution. The columns cor-

respond to feature channel indices, and the rows correspond to

preceding composite layer indices.

3.2. Cross­layer Depthwise Convolutional Layers

To facilitate efficient and flexible cross-layer information

inflows, in this paper, we develop a cross-layer depthwise

convolution method. A cross-layer depthwise convolutional

layer concatenates the channels of feature map outputs of

many layers, and then applies (channel,spatial)-independent

filters to the concatenated channels. Equipped with such fil-

ters, DelugeNets are able to process the depth/layer dimen-

sion independently of the rest (channel and spatial dimen-

sions), as mentioned in Section 1. Figure 2 gives a graphical

illustration of cross-layer depthwise convolution operation.

Cross-layer depthwise convolutional layers facilitate the

inflows of information from preceding composite layers to

succeeding composite layers. Suppose that ℓ denotes the
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layer of an arbitrary composite layer, and hc

ℓ−i
∈ R denotes

the c-th channel of the preceding (ℓ−i)-th composite layer’s

output. And, there are N number of preceding composite

layers, as well as one preceding block transition output h0.

The c-th channel of the input xℓ to composite layer ℓ is:

xc

ℓ =

N+1∑

i=1

wc

ℓ−ih
c

ℓ−i + bcℓ (1)

where wc

ℓ−i
∈ R and bc

ℓ
∈ R are the filter weights and

bias respectively, for each channel. We streamline the equa-

tions by not having spatial location-related notations, and

the weights and biases are assumed to be shared across all

1 × 1 spatial locations (spatially independent) in the input

feature maps as mentioned earlier.

The parameter cost of adding cross-layer depthwise con-

volutional layer to any existing network architecture is rel-

atively low compared to other network parameters. For

an arbitrary composite layer in the network, the number

of additional parameters is merely N × M + 1, where

M is the number of feature channels. Experimentally, we

find that these extra parameters on average make up about

3% of entire model parameters. In terms of computational

complexity (measured in floating-point operation numbers

or FLOPs), cross-layer depthwise convolutions on average

cost 3% more, compared to baseline models without such

convolutions. DenseNets [13], on the other hand, require

heavy amounts of computations and parameters to connect

to preceding layers, through cross-layer output concatena-

tions followed by 3× 3 or 1× 1 spatial convolutions.

Advantages: Cross-layer depthwise convolutional lay-

ers are beneficial because they encourage features gener-

ated by a preceding composite layers to be taken as inputs

for many times by the succeeding layers (feature reuse).

This naturally leads to parameter efficiency because there

is no need to redundantly learn filters which generate the

same features in succeeding layers, in case those features

are needed again later. Furthermore, in conventional ReLU-

based convolutional networks, features that get turned off

by ReLU activation functions (at the beginnings of blocks)

cannot be recovered by other network parts or layers. In

DelugeNets, via the use of cross-layer depthwise convo-

lutional layers, output of a preceding composite layer can

be transformed differently for each succeeding composite

layer to serve as input. Consequently, input features that

get turned off at the beginning of certain succeeding com-

posite layers may be active in others.

In CNNs, the filter weights are shared across many spa-

tial locations in the feature maps. The weight sharing

mechanism acts as an effective regularizer. Similar to the

CNN’s weight sharing mechanism, the same features in

DelugeNets’ preceding composite layers are shared by the

succeeding composite layers. As a result, the weights of

composite layers in DelugeNets become more regularized.

Based on such consideration, we allocate more model pa-

rameters to the spatially smaller network blocks, by setting

the number of composite layer in succeeding block to be

larger than preceding block. The motivation behind this is

to achieve lower computational complexity (since smaller

feature maps are computationally cheaper to process), rely-

ing more on cross-layer feature reuse and less on parameter-

sharing across spatial locations, for regularization. Such an

allocation scheme differs from ResNets in which many lay-

ers and parameters are allocated for blocks with ge feature

maps to regularize filters better, and less for blocks with

spatially small feature maps to reduce overfitting (see Sec-

tion 4.2).

Besides encouraging feature reuse, cross-layer depth-

wise convolutional layers are advantageous from the per-

spective of gradient flow. The gradient flows in DelugeNets

are regulated by multiplicative interactions with the filter

weights in cross-layer depthwise convolutional layers, such

that the composite layers all receive unique backpropagated

gradient signals even if they come from the same block.

This is not true for ResNet models, in which the compos-

ite layers within the same block receive identical backprop-

agated gradient signals, due to simple addition (residual)

operation.

3.3. Block Transition

Different network blocks operate on feature maps of dif-

ferent spatial and channel dimensions. For block transition,

there is a need to transform the feature map to match the

spatial and channel dimensions of next block. In ResNet-

like models, block transition can be done with either 1 × 1
strided convolution, or strided average pooling with channel

padding. These block transition designs aim to preserve the

information from previous block by having only minimal

transformation as well as dismissing any non-linear activa-

tion function. Such block transition designs are suboptimal

for DelugeNets because they allow direct information flow

from just the last composite layer of the previous block, and

they conceivably hinder the information flows from other

composite layers.

To this end, we propose a new block transition compo-

nent which has a cross-layer depthwise convolutional layer

followed by 3 × 3 spatial convolutional layer. The cross-

layer depthwise convolutional layer allows direct informa-

tion inflow from all composite layers from the previous

block, therefore summarizing the outputs of all composite

layers of previous block. Then, the 3 × 3 strided spatial

convolutional layer (see Figure 1(b)) transforms the sum-

marized feature map to have matching spatial and channel

dimensions. 3×3 strided convolutional layer is chosen over

1 × 1 strided convolutional layer as the latter wastes the

features it receives, for many of the feature map’s spatial
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Model #Params Depth GigaFLOPs CIFAR-10 CIFAR-100

Highway Network [28] - - - 7.60 32.24

FractalNet [19] 38.6M 20 - 4.59 22.85

ResNet [9] 1.7M 164 - 5.93 25.16

ResNet [9] 10.2M 1001 - 7.61 27.82

ResNet with ELU [25] - 110 - 5.62 26.55

ResNet with Identity Mappings [10] 1.7M 164 - 5.46 24.33

ResNet with Identity Mappings [10] 10.2M 1001 - 4.62 22.71

ResNet with Swapout [27] 7.4M 32 - 4.76 22.72

ResNet with Stochastic Depth [14] 1.7M 32 - 5.23 24.98

ResNet with Stochastic Depth [14] 10.2M 1202 - 4.91 -

Wide-ResNet (04×width) [35] 8.7M 40 2.60 4.53 21.18

Wide-ResNet (08×width) [35] 11.0M 16 3.10 4.27 20.43

Wide-ResNet (10×width) [35] 36.5M 28 10.49 4.00 19.25

DenseNet (k = 12) [13] 7.0M 100 3.65 4.10 20.20

DenseNet (k = 24) [13] 27.2M 100 14.56 3.74 19.25

DenseNet-BC (k = 24) [13] 15.3M 250 10.09 3.62 17.60

DenseNet-BC (k = 40) [13] 25.6M 190 18.67 3.46 17.18

DelugeNet-146 6.7M 146 1.43 3.98 19.72

DelugeNet-218 10.0M 218 2.13 3.88 19.31

Wide-DelugeNet-146 20.2M 146 4.31 3.76 19.02

Table 1. CIFAR-10 and CIFAR-100 test errors (percentage) of existing models and DelugeNets.

locations, while the former does not. Similar to the block

transition designs in ResNets, we do not add non-linear ac-

tivation functions after the spatial convolutional layer.

4. Experiments

To rigorously validate the effectiveness of DelugeNets,

we evaluate DelugeNets on 3 image classification datasets

with varied degrees of challengingness: CIFAR-10 [17],

CIFAR-100 [17], ImageNet [23]. The experimental code

is written in Torch [3], and is available at https://

github.com/xternalz/DelugeNets.

4.1. CIFAR­10 and CIFAR­100

Datasets: CIFAR-10 and CIFAR-100 are 2 subsets of

the Tiny Images dataset [32] annotated to serve as image

classification datasets. There are 50,000 training images

and 10,000 testing images for each of the 2 CIFAR datasets.

For pre-processing, we subtract channel-wise means from

the images, and divide them by channel-wise standard de-

viations. During training, data augmentation is carried out

moderately as in [35, 13], with horizontal flipping and ran-

dom crops taken from images padded by 4 pixels on each

side. For all CIFAR-based models, the training is carried

out using a single GPU.

Implementation: A total of 3 different DelugeNet mod-

els are implemented and evaluated on CIFAR datasets. Sim-

ilar to [10, 35], all the 3 DelugeNet models have 3 blocks -

the first block works on spatially 32× 32 feature maps, fol-

lowed by 16×16 and 8×8 feature maps for second and third

blocks respectively. They vary only in terms of numbers of

composite layers and feature channel dimensions for the 3

blocks. To minimize manual tuning of architectural hyper-

parameters, we design different DelugeNet models based

on a simple principle that follows the parameter allocation

scheme mentioned in Section 3.2 - the second block has 2

times the numbers of composite layers and feature chan-

nel dimension (width) of the first block, the third block has

2 times of the second’s, and so on:

DelugeNet-146 has base feature channel dimensions

(widths) of {32,64,128}, and composite layer counts of

{8,16,24}, for its 3 blocks (in sequential ordering) respec-

tively.

DelugeNet-218 shares the same base widths as

DelugeNet-146, but it comes with larger composite layer

counts of {12,24,36} which make it a much deeper model.

Wide-DelugeNet-146 is a 1.75× wider variant of

DelugeNet-146, having base widths of {56,112,224}, while

the composite layer counts remain the same.

The proposed models (DelugeNet-146, DelugeNet-218,

and Wide-DelugeNet-146) for the 2 CIFAR datasets differ

only in the numbers of output labels (10 and 100). To train

the models, we run Stochastic Gradient Descent (SGD) over

a total of 300 training epochs, with Nestorov Momentum

[29] and weight decay rate of 1e−4. As most of the exist-

ing models we compare with in this paper do not use any

dropout-like regularization, we do not use any either, for

fairer comparison. The starting learning rate is 0.1, and it

is decayed by factor of 0.1 at epoch 150 and 225. We set

the mini-batch size as 64. All DelugeNet model parameters

are initialized using He’s initialization method [8], and they
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are trained using the same settings. The training settings

are in fact identical to the settings employed in [13] to train

DenseNets.

Results: The top-1 classification errors achieved by the

DelugeNets and existing models on both CIFAR datasets

are presented in Table 1. The results of existing mod-

els are obtained directly from their respective papers. As

shown in Table 1, DelugeNets can benefit from “deepening”

(DelugeNet-218) and “widening” (Wide-DelugeNet-146).

Parameter efficiency: DelugeNets are able to perform

well despite requiring much lower numbers of learnable

parameters compared to existing models. The parameter

efficiencies of Delugenets are second only to DenseNet-

BCs [13] which aggressively compress and reduce feature

channels to save parameters. Notably, DelugeNet-218 per-

forms competitively to Wide-ResNet (10×width), on both

CIFAR-10 and CIFAR-100 datasets, with merely 10M pa-

rameters compared to 36.5M parameters in Wide-ResNet.

Besides, Wide-DelugeNet-146 achieves CIFAR classifica-

tion errors comparable to those of DenseNet (k = 24), with

7M fewer parameters.

Computational complexity: In addition to parameter

numbers, we report the model complexities of DelugeNets

and several other comparable models (Wide-ResNets,

DenseNets, and DenseNet-BCs), in terms of floating-point

operation (FLOP in giga prefix unit, Giga/GFLOP) num-

bers. We find that in overall DelugeNets have significantly

fewer model complexities than other models. Surprisingly,

DelugeNet-218 requires just 1/5 of the FLOPs required by

Wide-ResNet (10×width) to achieve similar classification

errors. Although DelugeNets cannot exactly match or out-

perform DenseNet-BC, they (DelugeNets) can achieve ap-

preciable classification errors which are rather close to those

of DenseNet-BCs, at fractions of DenseNet-BCs’ complex-

ity costs. The lower model complexities of DelugeNets are

attributed to the parameter allocation scheme (Section 3.2)

as well as the capability of cross-layer depthwise convolu-

tions at alleviating overfitting, even when spatially smaller

network blocks have more parameters/layers than their spa-

tially larger counterparts.

Ablation study: In this work, we propose cross-layer

depthwise convolutional layer and a new kind of block tran-

sition design with 3×3 spatial convolution, which differen-

tiate DelugeNets from existing networks. To better under-

stand the contributions of these components, we construct

ResNet-like baselines on the 3 proposed DelugeNet mod-

els. There are 2 types of baselines for each of the DelugeNet

models: The first baseline has all of its cross-layer depth-

wise convolutions replaced by residual connections. Alter-

natively, the residual connections can be seen as cross-layer

depthwise convolutional layers, whose weights are fixed as

ones as pointed in Section 2. The second baseline is similar

to the first one except that it is equipped with 3 × 3 convo-

Model #Params GFLOPs Error PDiff

ResNet-like baseline

- 1x1 conv shortcut 6.15M 1.33 21.14 -

- 3x3 conv shortcut 6.50M 1.39 20.84 +0.30

DelugeNet-146 6.69M 1.43 19.72 +1.12

ResNet-like baseline

- 1x1 conv shortcut 9.26M 1.98 20.78 -

- 3x3 conv shortcut 9.55M 2.05 20.31 +0.47

DelugeNet-218 10.00M 2.13 19.31 +1.00

ResNet-like baseline

- 1x1 conv shortcut 18.76M 4.05 19.79 -

- 3x3 conv shortcut 19.82M 4.25 19.98 -0.19

Wide-DelugeNet-146 20.19M 4.31 19.02 +0.77

Table 2. Comparison with ResNet-like baselines on CIFAR-100

test errors. The fourth column reports the performance differences

(PDiff) between baselines and DelugeNets.

lutional shortcuts for block transitions, similar to our pro-

posed block transition design. Other than those mentioned,

all aspects of the baselines and their corresponding Delu-

geNets are the same, including training settings. We evalu-

ate the baselines on CIFAR-100. The results are shown in

Table 2.

Block transitions with 3× 3 convolutional shortcuts can

mildly improve the performances of DelugeNet-146’s and

DelugeNet-218’s baselines. However, there is slight overfit-

ting (19.79% → 19.98%) from adding 3× 3 convolutional

shortcuts to Wide-DelugeNet-146’s baseline. The overfit-

ting issue is greatly eased by having cross-layer depthwise

convolutions in Wide-DelugeNet-146. As evidenced by the

significant performance improvements (about 1%) of Delu-

geNets over the baselines, the biggest contributor is cross-

layer depthwise convolutional layer. Yet, the parameter

costs incurred by adding these layers are very marginal. The

smallest DelugeNet model, DelugeNet-146 (19.72%) with

just 6.69M parameters and complexity of 1.43 GFLOPs,

suprisingly outperforms the biggest ResNet-like baseline

(19.79%) with 18.76M parameters and complexity of 4.05

GFLOPs. Furthermore, just tiny increases in complexity

(about 3%) are needed by cross-layer depthwise convolu-

tions to achieve considerable performance gains. These

findings reaffirm the advantages of the proposed cross-layer

depthwise convolutional layer for deep networks.

Cross-layer connectivity: For better understanding of

cross-layer depthwise convolutional layers, we compute

layer-wise L2-norms of the cross-layer depthwise convolu-

tional filter weights of DelugeNet-218, on CIFAR-10 and

CIFAR-100. We provide visualizations in Figure 3. The

weight’s L2-norms are normalized2 by dividing them with

the maximum layer-wise L2-norms of every block. We con-

sider only cross-layer depthwise convolutional layers in the

Block Transition 1 (from Block 1 to Block 2), Block Tran-

2The relative (as opposed to absolute) L2-norm values are sufficient,

since BN layers follow cross-layer depthwise convolutional layers.
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Figure 3. Layer-wise L2-norms of cross-layer depthwise convolution weights. Each of the 3 columns corresponds to a different block tran-

sition stage in the networks. Vertical axes indicate the indices of the preceding composite layers, and horizontal axes indicate normalized

L2-norm values. The longer the horizontal bar of a composite layer, the larger its contribution.

sition 2 (from Block 2 to Block 3), and the cross-layer

depthwise convolutional layer (from Block 3 to classifica-

tion) before classification layer. These are the cross-layer

depthwise convolutional layers with the highest numbers

cross-layer connections in the networks.

Generally, all of the preceding composite layers con-

tribute reasonably, with a few dominating. The weights

(initialized uniformly) are no longer uniform for all lay-

ers in the trained models, being different from the con-

nection rigidity exhibited by ResNets. For first and sec-

ond block transitions, the last composite layers always con-

tribute the most, somehow approximating the behaviors of

conventional neural networks where all incoming informa-

tion comes solely from the layer just before the current

layer. On the other hand, for the cross-layer depthwise

convolutional layer (before classification layer) connected

to the third network block, the early composite layers gen-

erally contribute the most, and the final composite layer

contributes moderately. We reckon that the features com-

puted by the earlier composite layers are fairly ready for

classification, and the subsequent composite layers just re-

fine them further. Such phenomenon has also been observed

in ResNets [33], where upper layers could be deleted with-

out hurting performance much. In addition, we notice that

some composite layers in the first block of DelugeNet-218

(CIFAR-100) hardly have any contributions to Block Tran-

sition 1. This observation may suggest that layer sparsity

can be potentially exploited for training DelugeNets.

4.2. ImageNet

Dataset: ImageNet (1000 classes) dataset [23] is the

most widely used large-scale image classification dataset

in recent years. We report the results for validation im-

ages. We follow the data augmentation scheme adopted

in GoogleNet/Inception [30, 31] and ResNet-v2 [10] with

the following augmentation techniques: scale [18] & as-

pect ratio [30] augmentation, PCA-based lighting augmen-

tation [18], photometric distortions [12], and horizontal flip-

ping. The images are normalized by subtracting them from

channel-wise means and dividing them by channel-wise

standard deviations.

Implementation: We implement and evaluate 3 differ-

ent DelugeNet models on ImageNet dataset. Similar to

ResNet models [10], before being passed to the first block,

the feature map (after first layer) is downsampled to spa-

tial dimensions of 56×56 via max-pooling. We set the base

feature channel dimensions (widths) of all ImageNet-based

DelugeNet models to be identical to those of ResNets [10]

- {64,128,256,512}. Most of the network architectural de-

tails follow ResNets’ closely, and they are not necessarily

optimal for DelugeNets. Moreover, we emphasize on great

simplicity when choosing the composite layer counts for

DelugeNets, setting the number of composite layers in each

block to be larger than or equal to that of its preceeding
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block. This is in contrast to the carefully tuned composite

layer counts [10] (e.g., {3,4,23,3}, {3,8,36,3}) in ResNets.

The specifications of DelugeNet models are as follows:

DelugeNet-92 has composite layer counts of {7,7,8,8},

for its 4 blocks (in sequential ordering) respectively.

DelugeNet-104 and DelugeNet-122 are two deeper Delu-

geNet models, with composite layer counts of {7,8,9,10}
and {7,9,11,13} respectively.

The ImageNet-based models are initialized similarly to

the CIFAR models. Training is carried out with SGD over

a total of 100 training epochs, with Nestorov Momentum

[29] and weight decay rate of 1e−4. We start with learning

rate of 0.1, and decay it by factor of 0.1 at the end of every

thirty epoch. The training mini-batch size is 256. In view of

large model and image sizes, we train the models in multi-

GPU mode with 8 GPUs, splitting each mini-batch into 8

portions. These are standard training settings and similar to

those [5] used to train ImageNet-based ResNets.

Results: The top-1 and top-5 classification errors

achieved by DelugeNets on ImageNet validation dataset are

presented in Table 3, along with the numbers of floating-

point operations (GigaFLOPs/GFLOPs) required by the

models to process one image. For comparison, we in-

clude the results of ResNet-v2 [10], Wide-ResNet [35], and

DenseNet [13].

DelugeNet-92 with merely 43.4M parameters outper-

form ResNet-101 (top1 +0.39%, top5 +0.18%) and even

ResNet-152 (top1 +0.11%, top5 +0.13%). Besides, with

25.5M less parameters and about half (11.8 GFLOPs) of

the Wide-ResNet-50’s FLOPs (22.8 GFLOPs), DelugeNet-

92 performs comparably to Wide-ResNet-50. Both deeper

models DelugeNet-104 and DelugeNet-122 further push

down the classification errors substantially. Remark-

ably, DelugeNet-122 attains classification errors compa-

rable to ResNet-200’s, despite needing just about half

(15.2 GFLOPs) of the computations required by ResNet-

200 (30.1 GFLOPs). With the flexible cross-layer con-

nections established by cross-layer depthwise convolutions,

DelugeNet-122 is robust against the overfitting issue caused

by allocating more parameters to the spatially smaller

blocks. Moreover, DelugeNet-122 outperforms DenseNet-

161 (best DenseNet model reported for ImageNet dataset)

given similar model complexities.

Given similar or considerably lower model budgets

(GFLOPs, number of parameters), DelugeNets are able to

surpass ResNets, although DelugeNets’ composite layer

counts are configured in a rather simple manner.

5. Memory Usage

In ResNets, the residual (addition) operation allows

memory buffers to be shared or reused across consecutive

composite layers. However, for DelugeNets and DenseNets

[13], the output activations and gradients of the last con-

Model #Params GFLOPs Top-1 Top-5

ResNet-101 [10] 44.6M 15.7 22.44 6.21

ResNet-152 [10] 60.3M 23.1 22.16 6.16

ResNet-200 [10] 64.8M 30.1 21.66 5.79

Wide-ResNet-50 [35] 68.9M 22.8 21.9 6.03

DenseNet-161 [13] 28.7M 15.5 22.2 -

DelugeNet-92 43.4M 11.8 22.05 6.03

DelugeNet-104 51.4M 13.2 21.86 5.98

DelugeNet-122 63.6M 15.2 21.53 5.86

Table 3. ImageNet validation errors (single 224×224 crops).

volutional layer of every composite layer have to be re-

tained persistently during training. For instance, when do-

ing training (T̂) and inference (Î) with Wide-DelugeNet-

146 on CIFAR-100 (batch size of 32), the occupied GPU

memory is roughly {T̂: 2.8G, Î: 0.61G}, while its ResNet-

baseline counterpart only requires {T̂: 1.3G, Î: 0.44G}.

The gap is smaller during inference (1.5×) than in training

(2.2×). On the other hand, DenseNet(k = 24), DenseNet-

BC(k = 24), and DenseNet-BC(k = 40) require {T̂: 6.3G,

Î: 0.87G}, {T̂: 8.6G, Î:0.75G}, and {T̂: 8.4G, Î: 1.1G} re-

spectively. Wide-DelugeNet-146 is more memory-efficient

than DenseNet(k = 24), while DenseNet-BCs are very

memory-costly.

6. Conclusion

We extend depthwise convolutional layers to cross-layer

depthwise convolutional layers, which facilitate cross-layer

connections in our proposed DelugeNets. The cross-layer

information inflows in DelugeNets are flexible (cross-layer

depthwise convolutional filters are learned) yet massive

(output widths of composite layers are regular). Exper-

iments indicate that DelugeNets are quite comparable to

state-of-the-art models in terms of accuracies, and yet Del-

ugeNets have lower model complexities. This suggests that

DelugeNets may have potentials in energy-efficient deep

learning. In future, we would like to investigate regular-

ization techniques (e.g., layer dropout [14]) in the context

of cross-layer connectivity, as well as applying DelugeNets

to other vision applications.
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