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Abstract

Video contents are inherently heterogeneous. To exploit

different feature modalities in a diverse video collection for

video summarization, we propose to formulate the task as

a multi-view representative selection problem. The goal is

to select visual elements that are representative of a video

consistently across different views (i.e., feature modalities).

We present in this paper the multi-view sparse dictionary se-

lection with centroid co-regularization (MSDS-CC) method,

which optimizes the representative selection in each view,

and enforces that the view-specific selections to be similar

by regularizing them towards a consensus selection. The

problem can be efficiently solved by an alternating minimiz-

ing optimization with the fast iterative shrinkage threshold-

ing algorithm (FISTA). We also show how the formulation

can be applied to category-specific video summarization by

incorporating visual co-occurrence priors. Experiments on

benchmark video datasets validate the effectiveness of the

proposed approach in comparison with other video summa-

rization methods and representative selection methods.

1. Introduction

Video summarization can be seen as a representative

selection problem. Although the resulting visual sum-

maries can take many different forms, such as key ob-

jects [31, 29, 27], keyframes [22, 21, 25], key shots [18, 48],

montages [40], dynamic synopses [36], etc., the common

goal is essentially to select representative visual elements

that well delineate the essence of a video. However, the rep-

resentativeness of the selected visual elements can be highly

dependent on their representations, i.e., the specific features

used to describe them. For instance, when a video is repre-

sented by appearance features, the resulting summary could

be quite different from that obtained from motion features.

To incorporate multiple features, the conventional solu-

tion is to concatenate them in to a single one before select-

ing representatives (Sec. 3.1). However, this simple con-

catenation does not always produce optimal summaries, as

∗Equal contributions

Figure 1: An illustration of the proposed video summariza-

tion via multi-view representative selection. The top row

shows two views of a video’s frames side by side. There are

3 clusters (key visual concepts) in each view, and our aim

is to delineate all the 6 clusters by selecting only 3 repre-

sentatives. Note that features in the two views have differ-

ent distributions, e.g., the green cluster in View 1 is scat-

tered in View 2 (similarly for the purple and cyan clusters).

Therefore, representatives selected after concatenating the

two views may miss clusters in View 2 (e.g., the 3 dark blue

circles in each view). In comparison, red triangles are better

representatives as they cover the 3 clusters in both views.

the underlying data distributions in individual views (i.e.,

feature modalities) can be drastically different. In addition,

if the feature dimensions differ greatly, high dimensional

features may become dominant thus shadowing low dimen-

sional ones. Moreover, noisy features could adversely affect

the selection results.

Although multi-view sparse subspace/dictionary learn-

ing approaches have been proposed [2, 23, 19, 43, 3, 15],

they require feature fusion to be conducted in advance to

learn unified data representations for selection. However,

when there are discrepancies between different views, e.g.,

when data points belong to different groups in different

views, it is difficult for the unified representations to well

characterize the underlying distribution of the data across

multiple feature spaces, thus affecting the performance of

the subsequent representative selection.
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In view of the above limitations, we propose to formu-

late video summarization as a multi-view representative se-

lection problem, which aims to find a consensus selection

of visual elements that is agreeable with all views (i.e., fea-

ture modalities). Fig. 1 illustrate the idea in comparison

with concatenation. Specifically, we present the multi-view

sparse dictionary selection with centroid co-regularization

(MSDS-CC) method. It optimizes the representative selec-

tion in each view, and enforces that the view-specific selec-

tions to be similar by regularizing them towards a consensus

selection (i.e., centroid co-regularization, see Sec. 3.2). Our

formulation provides the following benefits:

• It can produce a consensus selection of visual ele-

ments across different views, resulting in summaries

that are consistently representative across multiple fea-

ture modalities.

• As we directly optimize for consensus selection

weights based on the view-specific selection weights

optimized view-wise, which follow view-specific dis-

tributions, our formulation is better at preserving the

underlying data distributions of individual views and

handling unbalanced feature lengths.

• Our formulation can better handle noisy features by

incorporating view-specific selection priors (Sec. 3.4)

to guide the representative selection towards more rel-

evant visual elements. This permits the use of exter-

nal data or/and supervision to improve summarization

quality, a scheme that has been shown to be effective

in previous work [21, 39, 31, 6, 47].

• Compared with multi-view clustering, which needs to

be re-run to generate a summary of different size, the

proposed multi-view sparse dictionary selection offers

better scalability in that summaries of various sizes can

be produced by analyzing the video only once.

Our formulation can be solved efficiently via an alternat-

ing minimizing optimization with the fast iterative shrink-

age thresholding algorithm (FISTA) [1]. Comparative ex-

periments on challenging benchmark datasets demonstrate

the efficacy of the proposed MSDS-CC. We also show how

it can be applied to category-specific video summariza-

tion by using visual co-occurrence as priors. The result-

ing category-specific video summaries reflect both the local

representativeness within individual videos and the global

visual commonness among multiple videos of the same

topic (i.e., visual concepts that appear repeatedly, Fig. 3).

2. Related work

Video summarization Previous work in video summariza-

tion can be grouped into three broad categories: domain-

specific [4, 45, 26, 52, 30], supervised [17, 35, 18, 47, 48,

38] and unsupervised [24, 5, 6, 49, 21, 39, 11, 27, 34, 50]

methods. Domain-specific methods focus on summarize

videos in specific genres, such as surveillance [7], sports [4,

52] and egocentric videos [26, 45, 30]. Supervised meth-

ods usually generate summarizations by learning from hu-

man annotations. For instance, to make a structured pre-

diction, submodular functions are trained with user created

summaries [18]. Gygli et al. [17] train a linear regression

model to estimate the interestingness score of shots. More

recently, Gong et al. [16] and others [48, 38] define novel

models to learn from human-created summaries for select-

ing representative and diverse subsets. In addition, Zhang

et al. [47] shows summary structures can be transferred

between videos that are semantically consistent. Unsuper-

vised methods usually summarize videos by seeking the vi-

sual relevance and structure. A popular method is to select

representative frames/objects by learning a dictionary from

videos [11, 49, 31]. Alternatively one can leverage infor-

mation from other sources such as video titles and web im-

ages [34, 39, 22]. Recently, video co-summarization [6] has

also been proposed, which summarized shots that co-occur

among multiple videos of the same topic.

Representative selection There are two main categories

of methods to find representatives: clustering based meth-

ods and subspace learning based methods. Existing clus-

tering based methods include, for example, K-medoids al-

gorithm [20], sparse selection of clustering centers [10, 9],

affinity propagation [13, 14], and density peak search [37].

For these methods, representatives are determined by clus-

tering centers. Subspace learning based methods are moti-

vated in a different way, where representatives are required

to approximate the data matrix in the sense of linear re-

construction. Such circumstances fall into dictionary learn-

ing and selection [7, 11, 44, 28, 8, 31, 42]. Despite the

advances in representative selection, most of the methods

are not applicable to multiple features. Feature fusion such

as [2, 23, 19, 43, 3, 15] has to be conducted in advance so

that unified data representations can be learned for repre-

sentative selection. However, it is difficult for the unified

representations to keep the underlying distribution informa-

tion of the data in multiple feature spaces, thus challenging

the subsequent representative selection.

3. Problem formulation

We formulate the problem of video summarization as

multi-view representative selection. Given n visual ele-

ments (e.g., objects, frames, shots, etc.) extracted from

a video sequence, each of them can be represented by V
views of features. Our goal is to find a subset that are repre-

sentative across the multiple views. Below, we arrange the

vth view of features as the columns of the matrix X
(v) ∈

R
d(v)×n, and denote by w

(v) = [w
(v)
1 , w

(v)
2 , ..., w

(v)
n ]T ∈

R
n the vector of selection weights corresponding to the vth

view. In addition, we use w = [w1, w2, ..., wn]
T ∈ R

n to

denote the vector of consensus selection weights resulting
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from multiple views.

3.1. Preliminaries: feature concatenation

Let Y = [X(1);X(2); · · · ;X(V )] ∈ R

∑
V
v=1 d(v)×n be

the concatenated feature matrix of multiple views. Then,

we have, ∀S ∈ R
n×n,

‖Y −YS‖2F =

V∑

v=1

‖X(v) −X
(v)

S‖2F. (1)

As a result, the following representative selection objec-

tive in (2) is tantamount to that of feature concatenation for

sparse dictionary selection [7].

min
S∈Rn×n

V∑

v=1

1

2
‖X(v) −X

(v)
S‖2F + λ‖S‖1,2, (2)

where ‖S‖1,2 =
∑n

i=1 ‖Si.‖2, associated with the parame-

ter λ as a regularization to the sum of reconstruction errors

of multiple views, and ‖Si,·‖2 is the l2 norm of the ith row

of the selection matrix S. In this case, wi = ‖Si,·‖2, mea-

suring the selection confidence to the ith sample. The solu-

tion to (2) can be obtained by the proximal gradient method

[1]. Finally, exemplars can be found by ranking the consen-

sus selection weights wi, for i = 1, 2, · · · , n.

3.2. Centroid co­regularization

It is worth noting that in (2), features in different views

are treated equally to learn a consensus selection matrix.

However, different views of features may differ signifi-

cantly, which can heavily influence the selection result. To

better handle multiple features, we propose to learn indi-

vidual selection matrices S
(v), v = 1, 2, · · · , V for differ-

ent features, and simultaneously unify them to a consensus

weighting vector w, with its ith entry wi measuring the se-

lection confidence of the ith sample. We thus formulate our

objective function as multi-view sparse reconstruction with

centroid co-regularization:

min
S(v),w

V∑

v=1

{
1

2
‖X(v) −X

(v)
S
(v)‖2F + λ(v)‖S(v)‖1,2

}

︸ ︷︷ ︸

J1

+η

{

1

2

V∑

v=1

‖w(v) −w‖22 + τ‖w‖1

}

︸ ︷︷ ︸

J2

,

(3)

where the weighting vector w(v) consists of the l2 norms

of rows of S
(v), with the ith entry w

(v)
i = ‖S

(v)
i,. ‖2, and

the parameters for selection learning and consensus are

{λ(v)}Vv=1, η, and τ . By solving Problem (3), we optimize a

sparse reconstruction objective for each view to make sure

the selection weights fit the distribution of the features. The

final centroid co-regularization term further enforces selec-

tion weights to match all feature modalities.

The objective function in (3) (O for short) can be solved

by iterating between: (1) optimizing S
(v) by fixing S

(u)

(u 6= v) and w, and (2) optimizing w by fixing S
(v) (v =

1, 2, ..., V ).

3.2.1 Optimize S
(v) by fixing S

(u) (u 6= v) and w

Regroup the objective function in (3) as

O =
V∑

v=1

O(v) + ητ‖w‖1, (4)

where

O(v) =
1

2
‖X(v) −X

(v)
S
(v)‖2F + λ(v)‖S(v)‖1,2

+
1

2
η‖w(v) −w‖22.

(5)

Therefore, minS(v) O ⇔ minS(v) O(v) when S
(u) (u 6=

v) and w are fixed. Moreover, Ov can be rewritten as

O(v) =
1

2
‖X(v) −X

(v)
S
(v)‖2F + λ(v)‖S(v)‖1,2

+
1

2
η(‖S(v)‖2F + ‖w‖22 − 2w(v)T

w)

=
1

2
tr{X(v)T

X
(v) − 2X(v)T

X
(v)

S
(v)

+ S
(v)T

(

ηI+X
(v)T

X
(v)

)

S
(v)}

+ (λ(v)
1− ηw)T

w
(v) +

1

2
η‖w‖22.

(6)

Then, we let

f(S(v)) =
1

2
tr{X(v)T

X
(v) − 2X(v)T

X
(v)

S
(v)

+ S
(v)T

(

ηI+X
(v)T

X
(v)

)

S
(v)}+

1

2
η‖w‖22,

(7)

and

g(S(v)) = (λ(v)
1− ηw)T

w
(v), (8)

which leads to

O(v) = f(S(v)) + g(S(v)). (9)

Since O(v) is decomposed into two convex functions, with

f smooth and g non-smooth, the problem becomes itera-

tively solving the following using FISTA [1]:

proxR (Z) = argmin
S(v)∈Rn×n

1

2

∥
∥
∥S

(v) − Z

∥
∥
∥

2

F
+

1

L(v)
g(S(v)),

(10)

where

Z =S
(v) −

1

L(v)

∂

∂S(v)
f(S(v))

=S
(v) −

1

L(v)

{

−X
(v)T

X
(v) +

(

ηI+X
(v)T

X
(v)

)

S
(v)

}

.

(11)
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Here L(v) is the smallest Lipschitz constant of
∂

∂S(v) f(S
(v)), which is the spectral radius (r(.)) of

ηI+X
(v)T

X
(v), i.e.,

L(v) = r(ηI+X
(v)T

X
(v)) = η + r(X(v)T

X
(v)). (12)

Follow the proximal decomposition [51], Problem (10)

is solvable. For i ∈ [1, n],

S
(v)
i,· = argmin

s∈Rn

1

2
‖s− Zi,·‖

2
2 + λ̂

(v)
i ‖s‖2, (13)

where

λ̂
(v)
i =

1

L(v)

(

λ(v) − ηwi

)

. (14)

After applying soft-thresholding [46], we have, for i =
1, 2, ..., n,

S
(v)
i,· = Zi,· max{(1−

λ̂
(v)
i

‖Zi,·‖2
), 0}. (15)

3.2.2 Optimize w while fixing S
(v)

Denote the first term in the objective function (3) as J1 and

the second term as J2, then minw O ⇔ minw J2 when fix-

ing S
(v), and

J2 =
1

2

V∑

v=1

‖w(v) −w‖22 + τ‖w‖1. (16)

By applying soft-thresholding, we obtain

w =sign(
1

V

V∑

v=1

w
(v))⊙max{(

1

V
|

V∑

v=1

w
(v)|)−

1

V
τ, 0}

=max{
1

V
(

V∑

v=1

w
(v) − τ), 0}.

(17)

We show the optimization procedure in Algorithm 1,

where we adopt an alternating minimizing strategy and inte-

grate decomposed soft-thresholding into the proximal gra-

dient iteration.

3.3. Parameter setting

Dictionary selection parameter λ(v) in the vth view. We

introduce this parameter to control the sparsity of dictio-

nary selection in each single view. As indicated by the

thresholding of Z in (15), when λ(v) is large enough, we

have S
(v) = 0, which results in an empty selection. To

avoid such an empty selection in the initialization, we let

λ(v) ≤ λ
(v)
max and solve λ

(v)
max by substituting S

(v) = 0 into

(15) as follows:

λ(v)
max = L(v) max

0≤i≤n
‖Zi,·‖2. (18)

Algorithm 1 Multi-view Representative Selection via Centroid Coreg-

ulerization (3).

Input: features {X(v)}Vv=1, parameters {λ(v)}Vv=1, η, τ

Output: selection matrices for each view {S(v)}Vi=1, consensus weight-

ing vector w

// Initialization

1: w = 0

2: for v ∈ [1, V ] do

3: L(v) ← η + r
(

X(v)T
X(v)

)

(Eq. (12))

4: end for

// Iteratively solve the objective function (Eq. (3))

5: repeat

6: // Optimize S(v) by fixing S(u) (u 6= v) and w

7: for v ∈ [1, V ] do

8: S(v) ← 0, V← S(v), t← 1
9: repeat

10: Z← V + 1
L(v)

{

X(v)T
X(v) −

(

ηI+X(v)T
X(v)

)

V

}

(Eq. (11))

11: U← S(v), S
(v)
i,· ← Zi,· max{(1− λ̂

(v)
i

‖Zi,·‖2
), 0}, i ∈ [1, n]

( Eq. (15))

12: q = t− 1, t← (1 +
√
1 + 4t2)/2

13: V← S(v) + q(S(v) −U)/t
14: until convergence

15: end for

// Optimize w while fixing S(v)

16: w← max{ 1
V
(
∑V

v=1 w
(v) − τ), 0} ( Eq. (17))

17: until convergence

It is worth noting that in Algorithm 1, we initialize S
(v) by

a zero matrix, and w by a zero vector. Then according to

(11), after the first iteration, we have

Z =
1

L(v)
X

(v)T
X

(v). (19)

Therefore,

λ(v)
max = max

0≤i≤n
‖x

(v)
i

T

X
(v)‖2. (20)

In our experiments, we let λ(v) =
λ(v)
max

αλ
and tune the

hyper-parameter αλ. Given λ(v), a smaller αλ indicates a

larger λ(v), which implies a sparser selection.

Centroid co-regularization parameter η. As shown in

(3), this parameter trades-off the first dictionary selection

term J1 and the second centroid co-regularization term J2
(16). When η → 0, we will immediately reach the consen-

sus by feeding individual dictionary selection results into

(17). When η → +∞, minimizing (3) will lead to a zero

J2, thus making w
(v)(v ∈ [1, V ]) and w to be 0. As a re-

sult, we cannot select anything from the data. Furthermore,

we can see from (14), η balances the contributions of λ(v)

and w to the dictionary selection of the vth view in (15).

For ease of tuning η, we let

η =
minv∈[1,V ]{λ

(v)}

αη

, (21)

and tune the hyper-parameter αη .
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Sparse consensus parameter τ . This parameter controls

the sparsity of selection consensus by minimizing (16). Ac-

cording to the solution to (16) in (17), a larger τ implies a

sparser selection result. To facilitate tuning τ , we introduce

an auxiliary parameter ατ and let

τ =
maxi∈[1,n]

{
∑

v∈[1,V ] w
(v)
i (1)

}

ατ

, (22)

where w
(v)
i (1) denotes the result of w

(v)
i after the first round

of optimization.

3.4. Extension to incorporate priors

As selection priors such as canonical viewpoints [21], vi-

sual co-occurrence [6] and objectness scores [31] have been

shown to improve video summarizaiton results, we also ex-

tend our method to a weighted multi-view representative se-

lection to capture view-specific selection priors. Formally,

we propose the new objective as follows:

min
S(v),w

V∑

v=1

{

1

2
‖X(v) −X

(v)
S
(v)‖2F + λ(v)

n∑

i=1

ρ
(v)
i w

(v)
i

}

+η

{

1

2

V∑

v=1

‖w(v) −w‖22 + τ‖w‖1

}

,

(23)

where prior ρ
(v)
i is the selection cost for the ith sample ac-

cording to vth view of features, where the smaller the ρ
(v)
i ,

the more likely it will be selected as the representative.

The optimization of (23) follows a similar procedure

as shown in Subsections 3.2.1 and 3.2.2. We only need

to update the non-smooth term g(S(v)) (shown in (9))

to suit the new objective function in (23) by g(S(v)) =
(Λ(v) − ηw)T

w
(v), where Λ

(v) ∈ R
n, and its ith element

is λ(v)ρ
(v)
i . Therefore, the solution to S

(v) is still given by

(15), but with a different λ̂
(v)
i compared to (14), and λ̂

(v)
i

becomes

λ̂
(v)
i =

1

L(v)

(

λ(v)ρ
(v)
i − ηwi

)

. (24)

For equal prior selection costs with ρ
(v)
i = 1, (24) and (14)

become the same. Problem (23) will perfectly degenerate

into Problem (3).

To facilitate setting parameters {λ(v)}Vv=1, η, and τ , we

also refine the calculation of λ
(v)
max in Subsection 3.3 when

optimizing (23) with the addition of priors. According to

(24) and (15), we calculate λ
(v)
max by

λ(v)
max = L(v) max

0≤i≤n

1

ρ
(v)
i

‖Zi,·‖2

= L(v) max
0≤i≤n

1

ρ
(v)
i

‖x
(v)
i

T

X
(v)‖2.

(25)

4. Experiments

4.1. Baselines

We refer to the proposed method as Multi-view Sparse

Dictionary Selection with Centroid Co-regularization

(MSDS-CC), and compare with the below baselines.

Clustering-based baselines include the standard K-

medoids [20] and two multi-view spectral cluster-

ing methods: Affinity aggregation spectral clustering

(AASC) [19] and Co-regularized multi-view spectral clus-

tering (CMSC) [23]. We use the centroid-based co-

regularization for CMSC.

Subspace learning based baselines include the state-

of-the-art Sparse Modeling Representative Selection

(SMRS) [11] and Locally Linear Reconstruction induced

Sparse Dictionary Selection (LLR-SDS) [31].

For the two multi-view clustering methods, AASC and

CMSC, we adapt them for multi-view representative selec-

tion by selecting representatives from the embedding fea-

ture space, where representatives are the closest points to

the cluster centers in that space. For the other baselines,

feature concatenation is performed before representative se-

lection.

In our experiments, we use the authors’ implementation

of each method, except for K-medoids, for which we used

the MATLAB implementation. α for SMRS and α1 for

LLR-SDS are tested on a range of {5, 8, 10, 20, 30}. For

LLR-SDS, we use the default k = 3 to construct the locality

prior matrix and tune α2 in a range of {−1.5,−1,−0.5, 0}.

The default λ = 0.5 is used for CMSC. For our pro-

posed MSDS-CC, we tune the hyper-parameters αλ ∈
{3, 5, 10, 20, 30}, αη ∈ {0.1, 1, 2, 5, 10} and fix ατ = 10.

And we report the best result for each method.

4.2. Experiments on synthetic data

We first evaluate the effectiveness of our proposed

method on synthetic data in multiple views while varying

the number of clusters and data dimensions (Table 1). For

simplicity, we consider the representative selection on two

views and randomly generated 2D-dimensional data points,

where D is the dimension of the ambient space for each

view. In each view, data points are uniformly projected to

N clusters whose centers are drawn uniformly from a unit-

norm ball. Each data point is corrupted with independent

Gaussian noise of standard deviation ε = 0.1. Follow-

ing [31], we evaluate the performance of the top n represen-

tatives by the average recall. Results are averaged over 25

trials. As can be seen, the proposed approach outperforms

all baselines in the test cases. It is worth noting that di-

rect concatenation of multiple features does not necessarily

perform better than the single-view selection. In addition,

multi-view clustering methods (i.e., AASC and CMSC) per-

form worse than ours, which can be attributed to the diffi-

culty faced by these methods in handling the disagreement
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Table 1: Average recall of synthetic data on 2 views. In each view, data points are projected to N clusters, and the feature

dimension of each view is indicated by D. Results are averaged over 25 trials.

D N
Single View Selection Concatenated View Selection Multi-View Selection

KM SMRS LLR-SDS KM SMRS LLR-SDS AASC CMSC MSDS-CC

2 3 0.87 0.70 0.71 0.79 0.78 0.69 0.78 0.78 0.90

3 3 0.86 0.77 0.71 0.81 0.78 0.68 0.83 0.77 0.91

3 5 0.84 0.85 0.68 0.81 0.77 0.62 0.81 0.73 0.87

5 5 0.83 0.73 0.64 0.72 0.75 0.60 0.71 0.76 0.84

5 7 0.82 0.69 0.64 0.69 0.78 0.60 0.69 0.81 0.84

in the feature distributions in different views, e.g., when

data points belong to different groups in different views.

4.3. Proof of concept

We further validate the effectiveness of the proposed

multi-view representative selection on the EPFL stereo face

dataset [12]. The dataset consists of 100 subjects, each

recorded from 8 different viewpoints by a pair of calibrated

stereo cameras. We randomly select 4 subjects and 4 poses

to form a dataset of 16 images. Our goal is to capture all

the 4 subjects and 4 poses by selecting a few representative

faces. In the ideal case, as few as 4 face images should cap-

ture all the 4 subjects and the 4 poses. Similar to [31], we

evaluate the performance of representative selection by the

average recall of the subjects and poses.

To capture the face appearance and pose, for each face

image we extract both the 4096D CNN feature extracted

from the fc7 layer of the pre-trained model VGG-Face [33]

and the 136D facial landmark/fiducial points extracted from

dlib (68 face landmarks with (x,y) coordinates).

Fig. 2 shows qualitative comparisons of different ap-

proaches when selecting 4 representative faces with corre-

sponding Average Recall@4. Our approach captures all the

4 subjects and 4 poses with the 4 selected faces, outperform-

ing the other methods with an Average Recall @4 = 1.

4.4. Video summarization

4.4.1 Datasets

To demonstrate the effectiveness of our approach on video

summarization, we experiment on two benchmark datasets,

TVSum [39] and SumMe [17]. TVSum consists of 50

videos within 10 categories representing various genres. It

also provides shot-level importance scores obtained from

user annotations. SumMe consists of 25 short user videos

covering a variety of events. Each video has multiple user

summaries in the form of key shots. The average duration

of the ground-truth is 13.1% of that of the original video.

In our experiments, we summarize videos into key shots to

facilitate comparisons with prior work [39, 17, 18, 47, 48]

and evaluate the performance accordingly.

4.4.2 Settings

Features We extract GIST [32] and CNN features from

each frame. GIST descriptors are computed with 32 Gabor

filters at 4 scales, 8 orientations and 4× 4 blocks, resulting

(a) (b) (c) (d) (e) (f)

Figure 2: EPFL stereo face: visualization on the first 4 rep-

resentatives selected by each method (column-wise). Du-

plicate subjects or poses in each column are highlighted by

bounding boxes of the same color. (a) K-medoids captures

all 4 subjects but only 2 poses (Average Recall@4 = 0.75).

(b) AASC captures 3 subjects and 3 poses (Average Re-

call@4 = 0.75). (c) CMSC captures all 4 subjects but 3

poses (Average Recall@4 = 0.875). (d) SMRS and (e) LLR-

SDS both select 3 subjects and 4 poses (Average Recall@4

= 0.875). In comparison, (f) our MSDS-CC captures all the

4 subjects and 4 poses (Average Recall@4 = 1).

in 512D features. CNN features(1024D) are extracted from

pool 5 layer of the pre-trained GoogLeNet model [41].

Shot segmentation Since neither of the datasets provides

ground-truth temporal segmentation, we first temporally

segment videos into disjoint intervals by Kernel Temporal

Segmentation(KTS) method [35]. The average length of in-

tervals/shots are around 5 seconds. We sample 5 frames per

shot to reduce the computational cost.

Summary generation To generate a video summary of

length l, we follow [39, 17] to solve the knapsack problem:

max

s∑

i=1

uiφi s.t.

s∑

i=1

uini ≤ l, ui ∈ {0, 1} (26)

where s is the total number of shots, φi is the importance

score of the i-th shot, and ni is the length of the i-th shot.

The summary is produced by concatenating shots with ui =
1 chronologically. As in prior work [39, 17, 18, 48], we set

the length budget l to be 15% in duration of the original
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Table 2: Performance (F-score) of various video summa-

rization methods on TVSum and SumMe. The top sec-

tion lists the performance of clustering-based and subspace

based methods. The bottom section lists results from pub-

lished work. † denotes methods that use additional web im-

ages and ‡ denote methods that use annotated video sum-

maries for training. Dashes denote unavailable dataset-

method combinations.

Methods TVsum SumMe

K-medoids [20] 31.4 29.7

AASC [19] 31.8 35.8

CMSC [23] 32.7 33.1

SMRS [11] 41.0 37.3

LLR-SDS [31] 49.7 40.4

MSDS-CC (ours) 52.3 40.6

TVsum† [39] 50.0 -

SumMe‡ [17] - 39.4

Submodular‡ [18] - 39.7

Summary Transfer‡ [47] - 40.9

dppLSTM(Canonical)‡ [48] 54.7 38.6

video for both datasets.

Implementation details Similar to [39], for the subspace

learning based baselines (i.e., SMRS [11], LLR-SDS [31])

and our proposed MSDS-CC, we predicts the importance

score of each shot φi by the importance score of its frames.

Specifically, the importance score of each frame is predicted

by the resulting selection weights from each method (e.g.,

the consensus weight w in (3) for MSDS-CC), and the shot-

level scores φi in (26) is calculated by selecting the maxi-

mum score of frames within each shot.

We follow [39] to evaluate clustering based baselines

(i.e., K-medoids, AASC [19] and CMSC [23]). As in [39],

clustering is performed on the video frames with the num-

ber of clusters set to 100. We first compute the distance of

each frame to its closest centroid. Then the shot-level dis-

tances is calculated as the average distance of the frames be-

longing to the most frequently assigned cluster within each

shot. Finally, the summary is generated by selecting the

shots closest to the centroid of the largest clusters, with a

length budget l.

4.4.3 Evaluation

Following prior work [39, 17, 18, 47, 48], we evaluate the

generated summaries by the F-score (F). Pairwise preci-

sion (P) and recall (R) are computed between the result-

ing summary and each human-created summary accord-

ing to the temporal overlap. Then F-score is computed as

F = P ·R
0.5(P+R) . As in [48], we follow [39, 18] to compute

the metrics when there are multiple human-created sum-

maries of a video.

4.4.4 Results

Table 2 shows the performance of our approach (MSDS-

CC) on TVSum and SumMe. Our approach outperforms

all clustering-based and subspace-based baselines on both

datasets. For comparison, we also report results of other

summarization methods from published prior work [39, 17,

18, 48, 47]. It is shown that the proposed MSDS-CC per-

form competitively without relying on external images [39]

or learning from user annotated summaries [17, 18, 47, 48].

Specifically, on TVSum, our approach performs better than

the TVSum benchmark results [39], which uses additional

title-based image search results to help identify canonical

visual concepts shared between the video and images. Al-

though dppLSTM (Canonical) [48] performs slightly better

than ours, it uses the user annotations on 80% videos from

TVSum for training and the remaining 20% for testing. On

SumMe, our MSDS-CC outperforms the SumMe bench-

mark results [17], Submodular [18] and dppLSTM (Canon-

ical) [48] and is comparable to Summary Transfer [47],

which uses additional videos for training.

4.5. Category­specific video summarization with vi­
sual co­occurrence priors

Next, we show how our formulation can be applied to

category-specific video summarization by using visual co-

occurrence as priors in (23). This is motivated by video

co-summarization [6], which aims to summarize shots that

co-occur most frequently in videos of the same topic, while

discarding the infrequent ones. Similarly, for videos from

the same category, we would like to explore visual co-

occurrence to guide the summary towards common con-

cepts among videos of the same category. However, dif-

ferent from co-summarization, we would like to also keep

shots that are representative of individual videos even if they

do not occur in other videos.

We evaluate our approach with priors, i.e., MSDS-CC

(prior) in Table 3, on TVSum dataset that provides video

categories. We first use the following criteria to filter videos

that are visually disparate from the rest in each category.

Given a feature modality (i.e., view v), we first calculate

the frame-level pair-wise similarity, excluding pairs from

the same video. The similarity between two frame fea-

tures x
(v)
i and x

(v)
j is defined as Si,j(k, l) = exp{−‖x

(v)
i −

x
(v)
j ‖2/2σ2}, where i index frames in video k and j index

frames in video l, and video k, l belong to same category.

σ is calculated as the average euclidean distance of the top

20% closest neighbours in a category. Then the video-level

pairwise similarity is computed by averaging correspond-

ing pairwise frame distances. We use a threshold of 0.65

to remove videos that are not similar to others in its cate-

gory. After filtering, 15 videos in 6 categories remain, and

we report results on this subset. For MSDS-CC (prior),

the frame weight ρ
(v)
i of video k in (23) is calculated as
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(a) The first video from Making Sandwich(MS). The averaged F-score is 54.5.

(b) The second video from Making Sandwich(MS). The average F-score is 60.0.

Figure 3: Sample results for category-specific summarization: a pair of videos from the same category, Making Sandwich

(MS), in TVSum. For each video, the first colorbar shows Ground Truth (i.e., user annotated importance scores); the second

colorbar shows our summarization results, where yellow intervals indicate shots selected by our MSDS-CC (prior). The

bottom row shows sampled frames from selected shots. Co-occurring concepts are highlighted by green rectangles.

Table 3: Category specific summarization results on TVSum. Specific Categories are VU (getting Vehicle Unstuck), GA

(Grooming an Animal), MS (Making Sandwich), PR (PaRade), FM (Flash Mob gathering) and BT (attempting Bike Tricks).

Cat K-medoids AASC CMSC SMRS LLR-SDS MSDS-CC MSDS-CC (prior)

VU 45.1 43.1 48.5 38.3 53.0 55.4 56.2

GA 24.6 35.0 38.0 32.8 39.4 45.7 48.5

MS 43.3 38.3 36.7 37.8 51.9 56.2 57.3

PR 41.0 44.0 31.4 41.6 45.5 54.0 57.1

FM 27.7 34.9 36.1 42.0 52.4 52.3 52.8

BT 32.9 22.6 28.2 48.6 52.4 55.5 57.7

Avg 35.8 36.3 36.5 40.2 49.1 53.2 54.9

ρ
(v)
i =

∑

l maxj Si,j(k, l).

Summarization results in comparison with the baselines

are shown in Table 3. As seen in table 3, when using visual

co-occurrence as view-specific selection priors (i.e., MSDS-

CC (prior)), the performance of the proposed MSDS-CC

can be further improved across all categories. Both MSDS-

CC (prior) and MSDS-CC outperform the baseline repre-

sentative selection methods overall and in each category.

Fig. 3 shows visual examples of the category-specific

video summarization by MSDS-CC (prior) on two videos in

the Making Sandwich (MS) category. It shows that the pro-

duced summaries can capture both repeated visual contents

that reflect the global commonness in a given category and

local contents that are representative of individual videos.

The weakness of the co-occurrence priors, however, is that

unimportant shots may also be selected if they are similar

to shots from other videos of the same category (e.g., the

leftmost frames of the two videos in Fig. 3).

5. Conclusions

Video summaries can be produced by selecting repre-

sentative visual elements (e.g., objects, frames, shots) from

a video. However, as the representativeness depends on

the visual representation (i.e., features), the question be-

comes how to derive a consensus selection across multi-

ple views (i.e., feature modalities). To this end, we pro-

pose to formulate the video summarization problem as the

multi-view sparse dictionary selection with centroid co-

regularization (MSDS-CC), which optimizes the selection

in each individual view while regularizing the view-specific

selections towards a consensus selection (i.e., centroid co-

regularization). Experimental results on challenging bench-

mark datasets demonstrate the effectiveness of the proposed

approach for generic and category-specific video summa-

rization.
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