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Abstract

In this paper, we address the issue of efficient compu-

tation in deep kernel networks. We propose a novel frame-

work that reduces dramatically the complexity of evaluating

these deep kernels. Our method is based on a coarse-to-

fine cascade of networks designed for efficient computation;

early stages of the cascade are cheap and reject many pat-

terns efficiently while deep stages are more expensive and

accurate. The design principle of these reduced complex-

ity networks is based on a variant of the cross-entropy cri-

terion that reduces the complexity of the networks in the

cascade while preserving all the positive responses of the

original kernel network. Experiments conducted – on the

challenging and time demanding change detection task, on

very large satellite images – show that our proposed coarse-

to-fine approach is effective and highly efficient.

1. Introduction

With the era of big data, there is an exponential growth of

image collections in the web and this makes their manual

annotation and search completely out of reach. With this

growth rate, there is an urgent need for reliable and also

efficient automatic solutions able to annotate and search

these large collections. Visual concept detection is one of

these major challenges that consists of recognizing and

localizing concepts/events into flows of visual contents

using variety of machine learning and inference techniques;

among these techniques, deep and convolutional neural

networks [15, 11] are particularly successful (see for

instance [29, 20, 41, 43, 14, 34, 19, 22, 27, 50, 21]). Recent

breakthroughs and success stories of deep learning – in

vision, pattern recognition and neighboring fields – are also

due to the development of extremely efficient hardware

resources that make running deep learning models on

bigdata much more tractable. However, on widely used

cheap hardware devices, deep learning models are still very

time demanding and require careful algorithmic design in

order to achieve efficient computation while maintaining a

high accuracy.

Deep learning models usually operate on vectorial

data; the underlying parametric models take vectorial

inputs and return discriminatively-trained representations

and similarities [9, 44]. When only relationships (or

similarities) between input data are available1, deep kernel

networks become better alternatives [42, 51, 25, 26, 47, 8].

These networks are defined as recursive multi-layered

combinations of standard kernels (e.g., Gaussian, random

walks, etc.) that capture simple linear as well as intricate

nonlinear relationships between input data. Learning the

parameters of these networks together with classifiers

allows us to achieve deep learning on non-vectorial data2

more effectively compared to existing standard kernels as

well as shallow multiple kernels [10, 3]. However, the

downside of the deep kernel networks resides in their com-

putational overhead. Indeed, the computational complexity

of evaluating these networks scales quadratically w.r.t the

cardinality of data and this is further exaggerated in the

regime of very deep networks. Existing state-of-the art

solutions mitigate this issue; for instance, authors in [5]

reduce the number of kernel evaluations by approximating

a heavy kernel-based radial-basis function with a reduced

set of kernels, and authors in [32] train convolutional

networks that best capture a particular class of invariant

kernels. Other generic solutions reduce the number of

units and connection weights (and hence speedup deep-

nets) using pruning and weight sharing [17, 17, 49, 18],

singular value decomposition [12], regularization and

sparsity [46, 7, 39, 48] as well as hardware design [16]. Our

proposed solution, in this paper, is conceptually different

from all the aforementioned techniques: on the one hand,

our efficient kernel network design is not restricted to a

specific class of kernels; it is generic and can be applied to

more general classes of deep kernels (see also Eq. 1 and

Section 3). On the other hand, in sparsity and regularization

based methods, a given (targeted) cost may not necessarily

be reached (i.e., after solving optimization) while in our

1for instance through graphs in social networks.
2in the Hilbert space associated to these kernels.
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method any targeted cost, fixed a priori, can be reached

(at the expense of a some loss in precision) thanks to the

coarse-to-fine design as shown subsequently.

In this paper, we propose a novel coarse-to-fine frame-

work for efficient deep kernel network evaluation. This

approach is based on a cascade of kernel networks with a

gradual increase of complexity and discrimination power.

Networks in the early stages of the cascade are relatively

shallow and used to reject most of the dominant patterns

(with a negligible cost) while networks in the subsequent

stages of the cascade are more accurate (but expensive)

and reserve intense computation only to the rare positive

patterns. This makes the cascade very suitable for classifi-

cation problems – such as change detection in very large

satellite images – where “target/no-target” classes are very

imbalanced.

Starting from a pretrained deep kernel network (referred to

as f -network) which is also highly accurate and expensive,

we build its surrogates (referred to as g-networks) with a re-

duced complexity using a variant of the cross-entropy crite-

rion. The latter minimizes the differences between the out-

puts of classifiers trained on top of the f and g-networks.

Note that the complexity of the g-networks (measured by

the number of units and depth) is fixed a priori depending on

the expected amount of computation that makes the overall

evaluation cost of the cascade cheap (see also Sections 3, 4).

As the g-networks are naturally rank-deficient (i.e., their er-

ror rates are intrinsically higher than the f -networks), these

g-networks are designed in order to satisfy the conserva-

tion hypothesis: the latter states that all the positive re-

sponses of classifiers built on top of the f -network should

be preserved by classifiers built on top of the g-networks.

We implement this hypothesis using a particular weight-

ing scheme (of the cross-entropy criterion) that favors very

small false negative rates to the detriment of an increase

of false alarms. In spite of this increase of false alarms,

most of these alarms (dominant patterns) are rejected in the

early stages of the cascade and only a small fraction requires

further processing using more expensive and accurate net-

works in the subsequent stages. Note that our coarse-to-fine

processing belongs to the “ǫ-lossy” approaches that have

been successfully applied to popular problems such as face

detection using hierarchies of classifiers [13, 1, 2, 30]. To

the best of our knowledge, none of these solutions tackled

the issue of speeding-up deep kernel networks and most of

the existing solutions were dedicated to support vector ma-

chines [28, 37, 38, 36, 33] and boosting [45, 31].

The remainder of this paper is organized as follows; sec-

tion 2 provides details about deep kernel networks while

section 3 introduces the main contribution; a coarse-to-

fine approach that reduces the computational complexity of

these networks. Section 4 shows the efficiency and the ef-

fectiveness of our method on the challenging problem of

change detection in large and high resolution satellite im-

agery. Finally, section 5 concludes the paper while provid-

ing possible extensions for a future work.

Intermediate kernelsInput kernels

Output kernel

Figure 1. This figure shows an example of a deep kernel network.

2. Deep Kernel Networks

Consider a collection of ℓ labeled training samples L =
{(xi,yi)}

ℓ
i=1, with xi ∈ R

d being a feature vector (for

instance the VGG-net descriptor [40]) and yi its class la-

bel in {−1,+1} and another collection of u test samples

U = {xi}
ℓ+u
i=ℓ+1. Our goal is to jointly learn a deep

multiple kernel and classifier f from the labeled samples;

here f is an SVM-based classifier that predicts the class

yi ← sign[f(xi)] of a given sample xi ∈ U . Usual algo-

rithms, such as shallow multiple kernel learning (MKL) [3],

jointly learn kernels and SVM-based classifiers by maxi-

mizing a margin using an EM-like optimization; as shown

through this work, we consider instead a deep version of

MKL which is highly effective and efficient.

2.1. Deep Multiple Kernels

A kernel (denoted as κ) is a symmetric function that

provides a similarity between any two given samples [10].

When positive semi-definite, κ can be written as an inner

product in a high (possibly infinite) dimensional space, via

a mapping function (denoted as φ). Among the existing

kernels, polynomial and radial basis functions are the most

studied [10]. In this work, we aim to learn an implicit map-

ping function that recursively characterizes a nonlinear and

deep combination of multiple existing kernels.

Fig. 1 shows our deep kernel network with L layers.

For each layer l and its associated unit p, a kernel domain
{

κ
(l)
p (·, ·)

}

is recursively defined as

κ(l)
p (·, ·) = h

(

∑

q

w(l−1)
q,p κ(l−1)

q (·, ·)
)

, (1)
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where h is a nonlinear activation function3. In the above

equation, q ∈ {1, . . . , nl−1}, nl−1 is the number of units

in layer (l− 1) and {w
(l−1)
q,p }q are the (learned) weights as-

sociated to kernel κ
(l)
p . In particular, {κ

(1)
p }p are the input

kernels including Gaussian, etc. When L = 2, the architec-

ture is shallow, and it is equivalent to the nonlinear version

of MKL (see for instance Zhuang et al. [51]). For larger

values of L, the network becomes deep.

For any given pair of samples, a vector containing the

values of different standard (elementary) kernels on this

pair is evaluated and considered as an input to our deep net-

work. These elementary kernel values are then forwarded

to the subsequent intermediate layer resulting into n2

multiple kernels through the nonlinear combination of the

previous layer, etc. The final kernel is a highly nonlinear

combination of elementary kernels.

Note that with this setting, deep kernel network evalua-

tion is inductive, and the computation feasible on any new

pairs of samples. Note also that the deep kernel network in

essence is a multi-layer perceptron (MLP), with nonlinear

activation functions. The difference is that the last layer is

not designed for classification, rather than to deliver a sim-

ilarity value. However, we can use the classical backprop-

agation algorithm specific for MLP to optimize the weights

in the deep kernel network. Let J denotes an objective func-

tion associated to our classification problem. More details,

about choice of J , are discussed in Section 3. We assume

that the computation of gradients of the objective function J

w.r.t the output kernel κ
(L)
1 (i.e. ∂J

∂κ
(L)
1 (.,.)

) is tractable. Ac-

cording to the chain rule, the corresponding gradients w.r.t

coefficients w are computed, and then used to update these

weights using gradient descent.

3. Coarse-to-Fine Deep Kernel Networks

Let f be an SVM classifier trained on top of the deep

kernel κ
(L)
1 ; in what follows, κ

(L)
1 is simply rewritten as

κf . In practice, the depth of this deep kernel network (and

also the number of its units) should be sufficiently large

in order to optimize the generalization performance of f
(see [25, 23, 24]). However, deep kernel networks may af-

fect the computational efficiency of f as the evaluation cost

of the underlying deep kernel κf becomes extremely pro-

hibitive; particularly on limited hardware resources.

Our goal is to make the evaluation cost of these kernel net-

works cheap by reducing their complexity while maintain-

ing their high accuracy. As shown through this paper, this is

achieved using a well optimized cascade of deep networks

(and classifiers) that quickly rejects simple patterns which

3In all this work, we use the Rectified Linear Unit (ReLU); the latter is

defined as h(x) = max(0,x).

belong to the dominant class while reserving intense com-

putation only to the rare targeted class (see Fig. 2).

Network (1) Network (2) Network (T)

No (Reject) No (Reject)No (Reject)

Yes Yes Yes (Final accept)

Figure 2. This figure shows the cascade of T classifiers and g-

(kernel)-networks (as shown in experiments, T is set to 6).

3.1. The f­network vs. the g­networks

In what follows, the f -network refers to the original deep

kernel network while its g-variant corresponds to its simpli-

fied version. Considering a pretrained classifier f (and its

associated f -network), building a single monolithic classi-

fier g (on top of a reduced complexity g-network) – which is

strictly equivalent to f – is clearly out of reach; at least be-

cause the representational power4 of the f -network is higher

than the g-network.

In order reduce the computational complexity of evaluat-

ing f , we proceed differently. We consider a coarse-to-fine

cascade of classifiers {gt}
T
t=1; any given gt is a simplified

instance of f . More precisely, {gt}t are associated to deep

kernel networks with increasing complexities (measured by

the depth and number of units). Test patterns are fed to this

cascade and classified in a coarse-to-fine way; a test pat-

tern x is declared as positive iff all the classifiers {gt}
T
t=1

answer positively, while x is quickly rejected (as negative)

if one of the classifiers {gt}t answers negatively. As the

negative class is dominant, the overall evaluation cost of the

cascade is dominated by the cost to reject the negative pat-

terns. Hence, the high efficiency of the cascade is dependent

on the ability of the classifiers (in the early stages) to re-

ject negative patterns quickly while maintaining the positive

scores of the f -classifier (i.e., classifier at the final stage).

The latter property is written as

∀x, ∀t = 1, . . . , T, f(x) > 0 =⇒ gt(x) > 0

this property is referred to as the conservation hypothesis

which means that all the g-classifiers should be imple-

mented in order to preserve all the positive answers of the

initial f -classifier.

We want {gt}t to be both efficient and with equivalent

error rates compared to f . Again, as the representational

power of a g-network (w.r.t its associated f -network) is lim-

ited, seeking to obtain the same false positive (FP) and false

4The representational power of a deep kernel network is closely related

to the number of its parameters. As the number of parameters increases, the

maximum number of samples that can be accurately shattered (whatever

their labeling) becomes larger.
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negative (FN) rates (w.r.t f ) is clearly out of reach. Hence,

we seek to make the FN rate of the g and f networks as

close as possible (by implementing the conservation hy-

pothesis) to the detriment of an increase of the FP rate of the

g-network. With this setting, patterns classified as positive

in the early stage of the cascade will further be processed

through the subsequent stages and only those belonging (or

resembling) to the targeted class will reach the final stage of

the cascade; hence the overall evaluation cost of the cascade

will be dominated by the cost to reject negative patterns us-

ing very cheap g-networks.

3.2. Learning cheap g­networks

Given a classifier f , we aim to design its surrogate cas-

cade classifiers {gt}t with fixed complexities (again defined

by the depth and number of units; see Section 4). For a fixed

stage t in the cascade, we rewrite its classifier gt simply as

g and the output of its g-network as κg . We propose to find

the parameters of the g-network by minimizing the follow-

ing loss

min
w

β−
ℓ

∑

i=1

1{f(xi)≤0}
1

1 + exp(−γg(xi))

+ β+
ℓ

∑

i=1

1{f(xi)>0}
exp(−γg(xi))

1 + exp(−γg(xi))

(2)

here w are the weights of the g-network (as defined in

Eq. 1), f(x) =
∑

i α
f
i yiκf (x,xi) + bf is assumed

pretrained and g(x) =
∑

i α
g
i f(xi)κg(x,xi) + bg with

({αg
i }i, bg) trained as shown in Section 3.3. In the above

objective function, β+, β− ≥ 0 and γ ≥ 0 is the steepness

of the logistic function (1/(1 + exp(−γg(x))) set in prac-

tice to very large values, so this function acts as a smooth

differentiable variant of the 0-1 loss. When β+ ≫ β−, this

re-balances the FP and FN rates in a way that favors very

small FN of g w.r.t f (i.e., it makes it possible to implement

the conservation hypothesis) to the detriment of an increase

of the FP rate.

Note that this criterion is a variant of the cross-entropy loss;

it seeks to reduce the number of contradictory outputs from

the classifiers f and g. Note also that this criterion does

not require labeled data provided that the classifier f (and

its f -network) are already pretrained5; as shown in Sec-

tion 3.3, the outputs of the classifier f are used as reference

labels, so this optimization framework could benefit from

very large unlabeled sets in order to make the estimate of

the g-classifiers (and their g-networks) more accurate.

5Training the f -classifier and its f -network requires minor updates of

the objective function 2 (and also 3); only the indicator function terms

are set according to the actual labels of data in {x} (i.e., 1{f(x)>0} is

replaced by 1{y=+1} and 1{f(x)≤0} by 1{y=−1}).

3.3. Optimization

The goal is also to learn the SVM parameters ({αg
i }i, bg)

on top of the current estimate of κg . For that purpose,

we use the forward information κg(·, ·) from the learned g-

network in order to build a binary classifier g by minimizing

a global hinge loss and a regularization term

min
g

C
ℓ

∑

i=1

max
(

0, 1− f(xi)g(xi)
)

+
1

2

∥

∥g
∥

∥

2

H
, (3)

here C ≥ 0 controls the tradeoff between regularization and

empirical error. According to the representer theorem [10],

the dual form of Eq. 3 can be rewritten as

max
αg

ℓ
∑

i=1

αg
i −

1

2

ℓ
∑

i,j=1

αg
iα

g
jf(xi)f(xj) κg(xi,xj)

s.t. 0 ≤ αg
i ≤ C,

ℓ
∑

i=1

αg
i f(xi) = 0, (4)

following the KKT conditions [4], bg is a shift that guaran-

tees the equilibrium constraint (in Eq. 4).

The objective functions 2 and 4 are optimized w.r.t two

parameters: respectively weights w of the g-network and

(αg, bg) of classifier g. Alternating optimization strategy

is adopted, i.e., we fix w to optimize (αg, bg), and then

vice-versa. At each iteration, when w is fixed, κg(., .) is

also fixed, and (αg, bg) are optimized using an SVM solver

(LIBSVM in practice [6]). When (αg, bg) are fixed, the gra-

dient of Eq. 2 w.r.t the output kg (of the g-network) is eval-

uated, and a round of backpropagation is achieved and w

is accordingly updated using gradient descent. The iterative

procedure (shown in algorithm 1) continues until conver-

gence or when a maximum number of iterations is reached.

Algorithm 1: Deep Kernel Network Learning

Input: Initial w(l)(l = 1, . . . , L− 1)
Output: Optimal w(l)(l = 1, . . . , L− 1), αg , bg

1 repeat

2 Fix w, compute the output kernel

κg(xi,xj), ∀i, j ∈ 1, . . . ℓ;
3 αg, bg are learned by the LIBSVM solver;

4 Fix αg, bg , compute the gradient of 2 w.r.t

{κg(xi,xj)}ij ;

5 Update w (and hence κg) using backpropagation

and gradient descent;

6 until Convergence;

1134



Figure 3. This figure shows an example of a district hit by a tornado: (left) reference image, (middle) test image and (right) a mask of (a

hand-labeled) change detection ground-truth shown in white (severe house damage).
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Figure 4. This figure shows (left) the evolution of the objective function 2 used to train the f -network w.r.t different iterations of optimiza-

tion, (middle) the EER of the underlying f -classifier on training and validation sets, (right) the evolution of the objective functions 2 (used

to train the g-networks) w.r.t different iterations of optimization.

4. Experiments

Datasets and Task: we evaluate the performance of our

proposed method on the challenging task of satellite image

change detection [35]. The goal is to find instances of

relevant changes into a given scene acquired at instance

t1 with respect to the same scene taken at instant t0 < t1;

these acquisitions (at instants t0, t1) are referred to as

reference and test images respectively. This task is known

to be very challenging due to the difficulty to characterize

relevant changes (appearance or disappearance of objects6)

from irrelevant ones (such as the presence of cars, clouds,

etc.), and it is also very time demanding as the amount

of data to process on large geographic areas is extremely

large. Indeed, with the spread of remote sensors and

unmanned aerial vehicles (UAV), and in the particular

important scenario of damage assessment after natural haz-

ards (such as tornadoes, earth quakes, etc.), it is crucial to

achieve automatic change detection very promptly in order

to organize and prioritize rescue operations; that’s why

one should use very accurate learning and classification

algorithms (such as deep networks) while being able to

process large amount of data efficiently.

Considering this scenario, we use a database L ∪ U

6This can be any object so there is no a priori knowledge about what

object may appear or disappear into a given scene.

of 680928 non-overlapping patch pairs (of 30 × 30
pixels in RGB) taken from six registered (reference and

test) GeoEye-1 satellite images (of 9850 × 10400 pixels

each). These images cover a very large area – of about

20× 20 km2 – around Joplin (Missouri; see an example of

a district from this area in Fig. 3) and show many changes

after tornadoes that happened in may 2011 (building

destruction, etc.) and no-changes (including irrelevant ones

such as car appearance/disappearance, etc.). Each patch

pair (in reference and test images) is encoded with 4096
coefficients corresponding to the difference between the

outputs of the 4096-dimensional-layer (of the pretrained

VGG-net [40]) on the reference and test patches. A given

patch pair, denoted as x (with x ∈ U ), is declared as a

“change” or “no-change” depending on the scores of the

trained SVM classifiers.

Evaluation measures: in order to evaluate the perfor-

mances of our change detection classifiers, we use the fol-

lowing evaluation measures

• False alarm (FA) and detection rate (DR): the former

is the fraction of ground-truth ”no-changes” which are

declared as positive while the latter is the fraction of

ground-truth ”changes” which are correctly classified

as positive. Smaller FA and higher DR imply better
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(stage 1) (stage 2) (stage 3)

(stage 4) (stage 5) (stage 6)

Figure 5. This figure shows the evolution of detections through the different stages of the cascade; as we go through different stages of the

cascade the global number of false alarms decreases (in contrast to the setting of table 2, a classifier, at a given stage, is applied only to the

patterns declared as positive by the preceding stages).

Figure 6. Figure, in the right-hand side, shows the amount of processing (number of stages used in the cascade) in order to reject or accept

different patches in the test image (shown in the left-hand side); darker colors correspond to more intense processing.

performances.

• The equal error rate (EER) : this is defined as the

average between FA and (1-DR). EER is the bal-

anced generalization error that equally weights errors

in “change” and “no-change” classes. Smaller EER

implies better performance.

• The relative (rFA) and the conservation rate (cons):

these two measures are similar to FA and DR respec-

tively with the only difference being the ground-truth

which is taken from the f -classifier instead of the orig-

inal ground-truth.

all these measures are evaluated on the unlabeled data in U .

Pretraining the f -network: this kernel network is fully

connected and has 8 layers with 128 units per layer

excepting the output layer which has a single unit; these

layers consist of convolutional units followed by rectified

linear units (ReLU). The 128 input kernels correspond to

the values of the Gaussian similarity function7 evaluated on

7with a scale factor set to the average distance between the VGG de-
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128 disjoint chunks taken from the 4096 VGG dimensions;

hence, each chunk has 4096/128 = 32 dimensions.

In order to train the parameters of this f -network we con-

sider a random subset L including 3000 patch pairs from

the original set of 680928 patch pairs; 2/3 of L are split

into 10 mini-batches for training (i.e. to minimize the ob-

jective function 2) while the remaining 1/3 is used as a val-

idation set. The test error is reported on all the remaining

(680928−3000) patch pairs. The weights of the f -network,

set initially as flat, are updated using stochastic gradient de-

scent (SGD) and back-propagation as shown in algorithm

(1); the latter is run iteratively for a maximum number of

epochs (set in practice to 10000) in order to obtain conver-

gence (see Fig. 4, left) and this is observed in less than one

hour on a standard PC with a 3Ghz CPU. When training

the f -network, β+, β− are set proportional to 1
|{yi=+1}i|

,
1

|{yi=−1}i|
respectively and the step-size of SGD (denoted

as ν) is set iteratively inversely proportional to the speed

of change of the objective function 2; when this speed in-

creases (resp. decreases), ν decreases as ν ← ν×0.99 (resp.

increases as ν ← ν/0.99). Table 1 and Fig. (4, left/middle)

show the evolution of the objective function as well as the

equal error rates of the f -network w.r.t different iterations

of the optimization process shown in algorithm (1).

% EER (Training) % EER (Validation)

Weights (initialization) 16.18 13.85

Weights (at convergence) 05.14 04.90

Table 1. This table shows the EER of the f -networks at initializa-

tion and at the end of the iterative process.

Training the cascade of the g-networks: in order to build

the g-networks of our cascade, we consider the following

architectures (complexities)

• Stage 1: this kernel network is fully connected and has

4 layers with 2 units per layer; these layers consist of

convolutional units followed by rectified linear units

(ReLU) excepting the output layer which has a single

convolutional unit followed by a ReLU.

• Stage 2: this kernel is similar to the previous one ex-

cept that the number of units per layer is 8.

• Stage 3: the only difference w.r.t stage 2 is the number

of layers which is now set to 6.

• Stage 4: the only difference w.r.t stage 3 is the number

of units per layer which is now set to 32.

• Stage 5: this kernel is similar to the previous one ex-

cept that the number of units per layer is 64.

scriptors of data and their neighbors.

• Stage 6: this is exactly the pretrained f -network.

Similarly to the f -network, we use the same splits of data

(into training, validation and test sets, etc.) in order to learn

the parameters of the g-networks. These parameters, set ini-

tially as flat, are again updated using SGD and back propa-

gation as shown in algorithm (1); in these experiments, the

maximum number of epochs is now set to 5000 as the num-

ber of parameters in the g-networks is smaller compared to

the f -network. With this setting, convergence is observed

in less than 30mins using the same hardware configuration.

In all these experiments, the step-size of SGD is set as de-

scribed earlier while β+, β− are now set proportional to
0.99

|{f(xi)>0}i|
, 0.01
|{f(xi)≤0}i|

in order to implement the conser-

vation hypothesis.

Stage %cons %rFA %DR %FA %ERR time(ms)

1 99.16 41.04 97.55 43.56 23.00 745

2 98.86 37.37 96.88 40.09 21.61 897

3 98.77 35.27 96.70 38.07 20.68 1180

4 98.80 39.78 96.76 42.53 22.89 2721

5 98.70 28.24 96.56 31.46 17.45 4639

6 - - 97.14 04.44 03.65 14230

Table 2. This table shows different evaluation measures of the g-

networks w.r.t stages of the cascade as well as the average pro-

cessing time. All these percentages are evaluated on the test set U

while processing time is the average time to process a given pair of

very large reference and test images (of 9850×10400 pixels); each

reference and test image includes 113488 patches. Note that cons

and rFA are not given for stage 6 as the g-network of this stage

is exactly the f -network so these measures are obviously equal to

100% and 0% respectively. In order to study the behavior of dif-

ferent stages independently, each classifier is evaluated using all

the data in U , so the resulting FAs are not necessarily decreasing.

In these experiments, the significant increase of FAs (from stage

6 to the other stages) is mainly due to the implementation of the

conservation hypothesis that maintains a high detection rate to the

detriment of an increase of false alarms.

Fig. (4, right) and Table (2) show respectively the evolu-

tion of the objective function (2) w.r.t different iterations

of optimization and different evaluation measures of the

underlying g-networks (obtained at convergence) w.r.t dif-

ferent stages of the cascade. We observe from these re-

sults that as we go deep in the cascade, the characteris-

tics of the g-networks resemble more and more the original

f -network; the efficiency decreases and the discrimination

power (EER) remains stable or improves.

Fig. 5 shows examples of change detection results obtained

through different stages of the cascade and Fig. 6 shows the

amount of processing in order to classify different patches

as changes or no-changes. From these results, it is clear

that almost all the areas are rejected at the early stages of

the cascade and only few areas (changes and change-like

structures) require more intense processing. In practice, our

coarse-to-fine cascade is almost 10× faster than the original
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%DR %FA %EER time (ms)

f -network+classifier 97.14 04.44 03.65 14230

cascade 92.16 03.80 05.82 1627 (∼ 10× faster)

Table 3. This table shows the overall performances of the f -

network and the cascade of networks. Again, these percentages

are evaluated on the test set U while processing time is the average

time to process a given pair of very large reference and test images

(of 9850 × 10400 pixels); each reference and test image includes

113488 patches.

f -network while its overall EER (shown in Table 3) remains

relatively stable.

5. Conclusion

We introduced in this paper a novel approach for effi-

cient deep kernel network evaluation. The design principle

of our method is coarse-to-fine; it is based on a cascade of

kernel networks and classifiers with increasing complexity

and discrimination power. Networks in the early stages of

the cascade are cheap and are used to reject many patterns

efficiently while those belonging to the deep stages of the

cascade are more expensive and more discriminating. The

parameters of these networks are obtained by solving sev-

eral cross-entropy minimization problems that reduce the

difference between the original and the reduced cost kernel

networks.

Even though tested on the particular (challenging) problem

of change detection, this method is generic and could be ex-

tended to other imbalanced classification tasks such as ob-

ject and rare event detection in still and video images where

the untargeted classes are dominant. Other possible exten-

sions of this work include transfer learning; indeed one may

reduce the complexity of existing very deep networks (using

our optimization framework) prior to achieve fine-tuning as

this may reduce the computational cost of learning very sig-

nificantly.
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