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Abstract

Recent works have demonstrated that Convolutional

Neural Networks (CNNs) achieve state-of-the-art results

in several computer vision tasks. CNNs have also shown

their ability to provide effective descriptors for image re-

trieval. In this paper, we focus on CNN feature extraction

for instance-level image search. We started by studying in

depth several methods proposed to improve the Regional

Maximal Activation (RMAC) approach. Then, we selected

some of these advances and introduced a new approach

that combines multi-scale and multi-layer feature extrac-

tion with feature selection. We also propose an approach

for local RMAC descriptor extraction based on class acti-

vation maps. Our parameter-free approach provides short

descriptors and achieves state-of-the-art performance with-

out the need of CNN finetuning or additional data in any

way . In order to demonstrate the effectiveness of our ap-

proach, we conducted extensive experiments on four well

known instance-level image retrieval benchmarks (the IN-

RIA Holidays dataset, the University of Kentucky Bench-

mark, Oxford5k and Paris6k).

1. Introduction

Over the past decades, available image and video col-

lections have seen consistent growth through the easily ac-

cessible devices that we now use on a daily basis. These

huge multimedia collections motivated researchers to look

for efficient approaches for Content-Based Image Retrieval

(CBIR). Especially, instance-level image search (where an

image is used as query to retrieve images of the same ob-

ject) has received a lot of attention and became one of the

most active topics in the field of computer vision. Many of

the available image retrieval systems are based on basic de-

scriptors (i.e. color histogram, shape, etc.) which provides

results that does not match the query image at an instance

level. Therefore, it is crucial to improve the existing search

methods and use more powerful image descriptors to de-

velop efficient instance level image retrieval solutions.

Conventional search systems were based on aggregation of

local and global features achieved via image descriptors

such as SIFT [22] or GIST [36] by methods such as Bag

of Words (BoW) [37]. These methods have shown good re-

sults in nearest neighbors search because of considering the

local characteristics of the images and being invariant to lo-

cal transformations and illumination [37] [42].

Recently, there was numerous advances in the field of in-

formation retrieval especially by employing deep learning

approaches. Particularly, Convolutional Neural Networks

(CNN) [19] showed a significant improvement in search re-

sults quality. Most of the CNN-based methods, use internal

activations of an ImageNet pre-trained CNN as image rep-

resentations and a k-nearest neighbor (kNN) approach to

build an image search system. To this moment, the major-

ity of these methods discard the fully connected (FC) layers

and use the last convolutional layer for feature extraction.

Indeed, FC layers provide higher-level semantic features

which disregard the local characteristics of the objects, and

thus show poor results for instance level search [24]. By us-

ing non-FC features we aim to distinguish different objects

even though they share the same label or semantic class.

Our work is principally based on the RMAC descriptor [40]

(and its extensions MS-RMAC [21] and the work of Gordo

et al. [10]), which takes into account the feature vector

achieved by sum-aggregation of several image regions. The

extensions of the RMAC approach make it more robust to

scaling and translation variance and have shown improve-

ments in accuracy of retrieved results for instance search.

Our proposed approach combines different advances of the

RMAC extensions together with other techniques to achieve

state-of-the-art results (without using finetuning approaches

that need additional annotated data). We start by replacing

approximate max-pooling used in the original RMAC ap-

proach with a maxpooling layer. Then, we select a more

efficient network architecture [12] for feature extraction,

which results in less computational cost while attaining sim-

ilar results. In addition to that, we use a multi-resolution

approach, where features are extracted from three differ-

ent resolutions of the input. Then, the output feature maps
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are rescaled and summed into one 3D feature tensor that

encode activations at different scales. The RMAC fea-

tures in our approach are extracted from the last two con-

volutional layers of the network and concatenated to pro-

duce more representative feature vectors. Unfortunately,

this concatenation increases the dimensionality of the de-

scriptor and add redundancy. In order to deal with these

limitations, we use a feature selection approach to reduce

dimensionality and enhance image retrieval performance.

Our approach achieves state-of-the-art results in four stan-

dard benchmarks for instance level image search (INRIA

Holidays [13], UKB [25], Oxford5k [29] and Paris6k [30])

compared to state-of-the-art methods (not using additional

training data).

The rest of the paper is organized as follows: In Section

II, we explore the state-of-the-art image retrieval methods.

Section III covers the background of our proposed method,

explaining the RMAC feature descriptor, the RMAC exten-

sions, MS-RMAC and the work of Gordo et al. [10]. Then,

we present the pipeline of our approach and provide some

technical details. Section IV shows our experimental results

in different datasets and Section V concludes the paper.

2. Related Work

This section takes a deeper look into the existing meth-

ods of image search at instance level. These approaches

can be divided into two main groups: Conventional meth-

ods and CNN based methods.

2.1. Conventional methods

The common conventional similarity search meth-

ods at the instance level, are mostly based on Bag of

Words (BoW) [37] representation of local and global

features. The CBIR systems initially were based on

global features such as color, shape and texture which

represents content of the image [41, 42, 43] and are

invariant to local transformations and robust to geo-

metrical translation [37]. Among the global descrip-

tors,those based on GIST features [36] became popular.

With regard to local descriptors, SIFT[22] became one of

the most used representations for image search systems.

Multiple [14, 16] and soft assignment [30], spatial matching

[29, 3], feature selection[39] and large vocabularies [24]

are of the extensions available to improve accuracy of BoW

based on local features. However, global representation

became popular again later by using local feature aggrega-

tion methods such as VLAD [15] and Fischer vector [28],

as generative methods which create vector representation

for nearest neighbor search task. There are numerous

extensions for these approaches such as spatial VLAD

[2] and triangulation embedding [17]. Furthermore, post

processing techniques are also another way to improve

the accuracy of search result and refine them. Geometric

verification[52, 13, 29], query expansion [20, 7] and

retrieval fusion [45] are amongst the most used approaches.

2.2. CNN Based Methods

In addition to the conventional methods, learning based

approaches emerged in image retrieval following the in-

creased popularity of neural networks. Semantic informa-

tion retrieved from deep neural networks can be efficiently

used for image retrieval to increase the accuracy of the

search. As a recent successful branch of deep learning,

CNN [19] have shown significant improvement in image

similarity search tasks. The idea that deep convolutional

network can extract high level features in the deeper layers,

led the researchers to explore ways to reduce the semantic

gap by this method. The extracted features at both fully con-

nected layers [33] and convolutional layers [49] can be used

as image representations in search algorithms. The fea-

tures obtained at the last fully connected are considered as

effective high dimensional global features descriptors [6].

In addition to extracting features from whole image, CNN

models used tools to to extract features of local image re-

gions [38]. Regional Maximum Activation of Convolutions

(RMAC) [40], is a state-of-the-art approach based on CNN

that encodes several image regions into compact features

and use integral pooling to generate fixed length geometry

aware feature vector. After the success of RMAC [40], a

few extensions have been proposed to further enhance the

descriptor. Moreover, in MS-RMAC [21] the authors pro-

posed a multi-layer approach to increase RMAC robustness

to scale and shape variance. In [10], Gordo et al. combined

RMAC with triplet networks and proposed also an approach

based on region proposal network (RPN) to identify Region

of Interest (RoI) and extract local RMAC descriptors. Ad-

ditionally [9, 6, 4, 34], explored different layers aggregation

with a mapping function (except fully connected layers).

On the other hand, [9, 4, 33] explored possible aggregation

of fully connected and max pooling layers activations via

VLAD plus re-ranking schemes which have shown promis-

ing results in image retrieval literature.

3. Background

As mentioned before, our approach is based on the

RMAC approach [40] and some improvements made by

[10, 21]. In this section we discuss these approaches and

point the different contributions and how it impacts the re-

trieval accuracy.

3.1. RMAC

In [40] Tolias et al. reported for the first time a CNN

approach competing with traditional methods on challeng-

ing retrieval benchmarks. In order to extract features, they

discarded the fully connected layers of a pre-trained CNN
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(VGG16) and used the resulting fully convolutional CNN

for feature extraction. Let’s assume we have an input im-

age I of size (WI × HI), the output feature maps will

form a 3D tensor in the form C × W × H (where C is

the number of channels, (W,H) the width and height of

FMs). If we represent this 3D tensor as a set of 2D feature

maps X = {Xc}, c = 1...C, we can compute the MAC

(Maximum Activations of Convolutions) using the follow-

ing equation:

f = [f1...fc...fC ], withfc = max
x∈Xc

x (1)

In order to compute the RMAC (Regional Maximum Acti-

vation of Convolutions) descriptor, Tolias et al. proposed a

simple approach to sample R = {Ri} a set of square re-

gions within X . The proposed sampling is done at L = 3
different scales, at each scale a square kernel is used in a

sliding window fashion to compute the approximate inte-

gral max-pooling, where the width of the kernel is kw =
2 × min(W,H)/(l + 1), l = 1...L and the stride is equal

to 60% × kw. Once the regions are selected, the RMAC

descriptor for a region Ri can be computed using the fol-

lowing equation:

fRi
= [fRi,1...fRi,c...fRi,C ] (2)

with fRi,c = (
∑

x∈Ri,c

xα)
1

α ≈ maxx∈Ri,c x and α = 10.

Then for each region they normalize (l2 normalization) the

resulting vector, do PCA-whitening, normalize again before

combining all these vectors and finally normalize to obtain

the final RMAC descriptor.

The RMAC approach has several advantages, starting with

the use of fully convolutional CNNs, which enables us to

keep the aspect ratio of the inputs without using techniques

like zero padding (which may harm the retrieval perfor-

mance). In addition to that, the RMAC descriptor encodes

efficiently spatial information while keeping the size of the

descriptor not dependent on the resolution of the input but

on the number of channels of the selected layer for feature

extraction.

3.2. Multi­Scale RMAC (MS­RMAC)

Li et al. [21] point out that the RMAC approach could

present some limitations related to the use of single con-

volutional layer for feature extraction. They believe that

the resulting descriptor may not be robust enough for image

deformation like scale variation and occlusion. In order to

overcome these possible limitations, They proposed the ex-

traction of RMAC descriptors from multiple layers (differ-

ent depths) and concatenate them into one MS-RMAC vec-

tor (they end up with descriptor with 1472 dimensions com-

pared to 512 for the RMAC). Then, they use an iterative ap-

proach to attribute a weight to each RMAC descriptor (one

RMAC descriptor per layer). These weights, represent the

importance of the features extracted by each layer and how

they affect the result of descriptors comparison and simi-

larity measure. The MS-RMAC approach (with weighting)

shows slight improvements compared to the original RMAC

method.

Note: the term “multi-scale” used by the authors of [21]

means that the feature maps have different scales while they

use only one single scale for the input image.

3.3. End­to­end Learning of Deep Visual Represen­
tations for Image Retrieval

In [10], Gordo et al. proposed two simple modifications

to bring significant improvements to the RMAC representa-

tion:

• ResNet: in the original RMAC approach [40], the

authors tried two CNN architectures (AlexNet and

VGG16) for feature extraction. In [10], Gordo et al.

used the ResNet101, a more recent and more powerful

architecture.

• Multi-resolution: unlike MS-RMAC, Gordo et al.

proposed an approach where three resolutions of

the input image are feeded to the network. The

RMAC descriptors are computed separately and

l2−normalized. Then the three vectors are summed

and l2−normalized.

On top of that, Gordo et al. proposed a region proposal

network (RPN) pooling to replace the RMAC rigid re-

gion pooling mechanism (in order to reduce the impact

of background on RMAC representations), but their expe-

riences showed that the use of RPN was not able to im-

prove retrieval performance compared to the basic multi-

scale ResNet101 RMAC descriptor.

In order to further improve the ResNet101 representa-

tions, Gordo et al. [10] used the landmarks dataset (intro-

duced by Babenko et al. [6]) to finetune the ResNet101

using two strategies:

• Classification finetuning: they added a classifier

above the ResNet101 feature extractor and did the fine-

tuning in a standard fashion on the landmarks dataset

using a cross-entropy loss.

• Triplet networks: they trained a triplet network with

a ranking loss to enhance the RMAC representation.

Both strategies demonstrated their ability to improve re-

trieval performance. In the first case (classification finetun-

ing), the improvement is related to the fact that the train-

ing data is closer to the evaluation data (compared to Ima-

geNet) and to the higher resolution of the inputs (compared

to standard resolution used for ImageNet-based models, i.e.
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224× 224). In the second case, the ranking training is usu-

ally used to learn better embeddings, which explains the sig-

nificant improvements noticed especially for Oxford 5k and

Paris 6k benchmarks since the training data and test data are

similar. At the end, the authors combined these two strate-

gies to provide their best performing approach.

The experiments conducted by Gordo et al. [10] bring

simple and interesting solutions to improve image retrieval

performance. The use of ResNet101 and Multi-resolution is

straightforward and brings significant improvements with-

out increasing the length of the descriptor (unlike the MS-

RMAC, the sum of multi-resolution vectors instead of con-

catenating them). But the finetuning solution implies using

additional annotated data, which comes at a high cost.

3.4. Our approach

As mentioned in the previous section, in this paper,

we propose a new approach (Fig. 1) on top of the

RMAC method and the improvements proposed in [10, 21].

Amongst the techniques not using instance labeled training

data, our approach achieves beyond state-of-the-art results

with shorter descriptors, and comes close to the method

using instance labeled training data [10] Compared to the

original RMAC, we use a ResNet architecture as in [10].

We found that ResNet50 gives the same performances as

ResNet101 while reducing the computing cost. We did

also replace the approximate max-pooling of the RMAC

approach with the classic max-pooling layer. We keep us-

ing the same approach for the kernel size selection, but we

increase the possible overlap between regions to 60% and

replace the sum-pooling with square sum-pooling (RMAC-

modified). Additionally, we made the following modifica-

tions:

• Multi-resolution (feature map fusion): we use multi-

ple resolutions as proposed in [10], but instead of com-

puting the RMAC descriptor separately for each reso-

lution and then sum the resulting vectors, we rescale

the output feature maps of the three resolutions to the

same resolution (the highest resolution), we sum them

and then we compute the modified RMAC descriptor.

The motivation behind this modification is to produce

one 3D tensor (i.e. Fig. 2) that encodes all the spa-

tial activations (even if they belong to different reso-

lutions) before computing the image descriptor. This

approach can be seen as an “early fusion” compared to

the one proposed in [10] (“late fusion”). We believe

that this less aggressive fusion (early fusion) provides

more stable representation since it acts more locally in

space and gives a preprocessed 3D feature tensor that

eases the task of encoding efficiently the whole infor-

mation using the RMAC descriptor.

• Multi-layer: in addition to the use of multi-resolution,

we found that using a multi-layer can still bring some

improvements. But unlike the MS-RMAC, instead

of concatenating the RMAC descriptors computed for

each convolutional layer, we use only the last two con-

volutional layers since the first layers are too sensitive

to local deformation.

• Feature selection: compared to the original RMAC

and the MS-RMAC, we did not use PCA-whitening or

layer weighting, we have opted for a different strategy,

feature selection using the Principal Feature Analysis

method [23]. We will show that this enhances instance

level image retrieval performance and reduce the di-

mensionality at the same time. The entire feature se-

lection work-flow can be summarized as follows:

– We use the extracted RMAC descriptors as sam-

ples and compute the covariance matrix.

– We compute the principal components and eigen-

values of the covariance matrix.

– We construct the transformation matrix Aq

formed by the principal axes in feature space (the

directions of maximum variance).

– Let’s assume that V = {Vi} are the rows of the

matrixAq , we use K-Means to cluster the vectors

Vi (the number of cluster is equal to the number

of principal features, i.e. 768).

– Finally, we find the closest vector Vi to each clus-

ter center and select the corresponding feature as

principal feature.

• Localization (optional) : in [10], Gordo et al. trained

an RPN and tried to improve the retrieval performance

by replacing the rigid grid of RMAC. Here, in order to

explore this idea while continuing in our current direc-

tion (enhancing instance-level search without finetun-

ing our model using additional data), we propose to use

the class activation maps (CAM) introduced in [51].

Let assume that we have a classification CNN (some

convolutional layers followed by a pooling layer and a

fully-connected layer), using this method enables us to

compute a heatmap indicating how each region of the

input image contributes to the activation of a specific

category. The approach is straightforward, first we se-

lect one neuron from the fully-connected (FC) layer (e.

g. the neuron corresponding to the category giving the

highest activation) and we multiply its weight vector

with feature maps before the last pooling layer, then we

sum all the resulting feature maps. In order to preserve

the aspect ratio of the inputs when using this approach,

we transform our CNN to a fully-convolutional CNN

(by transforming the FC layers into convolutional lay-

ers) and we add an adaptive average pooling layer (to
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Figure 1. Our approach.

Figure 2. An example showing the heatmap obtained by the sum

fusion of three rescaled feature maps.

produce FMs with a spatial resolution of 1 × 1) fol-

lowed by a maxpooling to identify the highest score.

Then, we use CAM to compute the heatmap and a

threshold of 0.9 × average(heatmap) to generate a

spatial binary mask that we multiply later with feature

maps before computing RMAC in order to extract lo-

cal RMAC descriptors. In Fig. 3 we show how the

CAM approach can be used to generate masks and the

kind of results to be expected.

Figure 3. An example of segmentation using the CAM approach.

The complete pipeline of our approach is detailed in Al-

gorithm 1.

1250



4. Experiments

In this section, we first introduce the standard bench-

marks used to evaluate our approach. Then, we present the

results of our approach and provide a comparison with the

state-of-the-art methods.

Note: In order to extract CNN features, we use the

ResNet50 [12] and the publicly available Torch toolbox

[8]. For the multi-resolution based approach, we use three

different input resolutions for each image, where S is the

largest side of the input and S ∈ [550, 800, 1050].

4.1. INRIA Holidays

Figure 4. INRIA Holidays Benchmark.

INRIA Holidays consists of 1491 personal holiday im-

ages of 500 image groups (each group represent an object

or a scene). During the evaluation, the first image of each

group is used as query (by the end, 500 images are used as

queries and the other 991 are used to retrieve images simi-

lar to the query). An example of the Holidays collection is

shown in Fig. 4. In table 1, we show our intermediates and

final results for the evaluation conducted on the Holidays

benchmark. In this table, we used the following annotation:

• Baseline (S = 800): we used the ResNet50 to extract

features and followed the modified RMAC approach to

compute the final feature vectors.

• M-R: we used the ResNet50 and the multi-resolution

approach of Gordo et al. [10] (M-R is used for multi-

resolution).

• M-R lj : as explained in the previous section, the ap-

proach of Gordo et al. [10] computes RMAC vectors

for each resolution before doing the fusion, while in

our approach we resize the feature maps and combine

them, then we compute RMAC descriptors (lj indi-

cates that we are using features extracted from the last

convolutional layer).

• M-R lj−1: same as the previous one, but we use the

penultimate convolutional layer for feature extraction .

Method Dimensionality mAP

Baseline (S = 800) 2048 90.57

M-R 2048 91.47

M-R lj 2048 92.16

M-R lj−1 1024 85.04

M-R lj&j−1 2048+1024 91.10

M-R lj&j−1 + FS 768 93.98

M-R lj&j−1+FS+CAM 768 93.97

Table 1. Our intermediate results on the Holidays benchmark

• M-R lj&j−1: same as the previous one, but we con-

catenate features extracted by both convolutional lay-

ers.

• M-R lj&j−1 + FS: same as the previous one, but we

use feature selection (FS for feature selection).

• M-R lj&j−1 + FS + CAM: same as the previous one,

but we also compute local RMAC descriptors.

When evaluating, we compute the Manhattan distance

between the queries and the 991 other images for both

local and global descriptors, then we keep only the

minimal distance (global or local) and use it to find

the closest images to the query.

In table 2, we compare our approach with state-of-the-

art methods on the Holidays benchmark. As we can see, the

only method that achieves better results than our approach

is the one proposed by Gordo et al. in [10]. But as explained

before, our approach provides shorter descriptors and needs

no additional data to finetune the feature extractor.

4.2. University of Kentucky Benchmark (UKB)

Figure 5. University of Kentucky Benchmark (UKB)

The University of Kentucky retrieval benchmark is a

dataset introduced in [25] which consist of 2550 classes,

each class with 4 images with JPEG format. The pictures

are from diverse categories such as animals, plants, house-

hold objects, etc. An example of the dataset images are
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Method Dimensionality mAP

Triplet Network[10] 2048 94.8

Ours 768 94.0

RMAC (ResNet101)[10] 2048 91.3

Arandjelovic et al [1] 4096 87.5

RMAC [10] 512 86.9

MS-RMAC [21] 1472 86.7

Kalantidis et al [18] 512 84.9

Perronnin and Larlus [27] 4000 84.7

Ng et al [44] 128 83.6

Radenovic et al [32] 512 82.5

Gong et al[9] 2048 80.8

Babenko and Lempitsky [5] 256 80.2

Paulin et al [26] 256K 79.3

Gordoa et al [11] 512 79.0

Babenko et al [6] 128 78.9

Jegou and Zisserman [17] 1024 72.0

Jegou and Zisserman [17] 128 61.7

Table 2. Accuracy comparison with state-of-the-art methods on the

Holidays benchmark

illustrated in Fig. 5. To evaluate our approach, we fol-

lowed the standard evaluation protocol, for each group we

select one image as the query and use kNN to retrieve the

four nearest images to the query from the whole collection.

Then, we compute the recall at four. Our results and a com-

parison with state-of-the-art approaches are reported in ta-

ble 3.

Method UKbench

Our (M-R lj&j−1 + FS + CAM) 3.91

Our (M-R lj&j−1 + FS) 3.91

Zheng et al.[48] 3.85

Gordo et al[10] 3.84

Zheng et al.[49] 3.84

Zheng et al.[47] 3.81

Qin et al.[31] 3.67

Zheng et al.[50] 3.62

Zhang et al.[46] 3.60

Jegou et al.[17] 3.53

Shen et al.[35] 3.52

Wengert et al.[43] 3.42

Table 3. Recall@4 comparison with state-of-the-art methods on

UKbench.

4.3. Oxford 5k & Paris 6k

We also evaluate our approach on two additional bench-

marks, the Oxford Buildings dataset (Oxford 5k contains

5062 images) and the Paris landmarks dataset (Paris 6k con-

Method Dimensionality Oxford 5k

M-R lj 2048 67.77

M-R lj−1 1024 54.05

M-R lj&j−1 2048+1024 66.82

M-R lj&j−1 + FS 320 72.27

M-R lj&j−1+FS+CAM 320 70.54

Method Dimensionality Paris 6k

M-R lj 2048 82

M-R lj−1 1024 69.48

M-R lj&j−1 2048+1024 81.88

M-R lj&j−1 + FS 384 87.10

M-R lj&j−1+FS+CAM 384 82.55

Table 4. Our intermediate results on Oxford 5k and Paris 6k

tains 6412 images). For both benchmarks, images were col-

lected from Flickr by searching for particular landmarks.

There are 55 manually annotated queries corresponding to

11 landmarks for each benchmark. The mean average pre-

cision (mAP) is used to measure retrieval performance over

the 55 queries. In table 4, we report our intermediate results

for these two benchmarks.

Our best results for both Oxford 5k and Paris 6k and a

comparison with state-of-the-art approaches are reported in

table 5. The only method that achieves significantly better

results than ours is the one proposed by Gordo et al. in [10],

where a large-scale landmarks benchmark was used to fine-

tune the feature extractor. These training images are similar

to the evaluation images (both Oxford 5k and Paris 6k con-

tain landmarks images), which enables the finetuned CNN

to extract more specific features and significantly improve

the performances on Oxford 5k and Paris 6k compared to

the enhancement noticed for the Holidays dataset and the

UKbench.

5. Conclusion

The popularity of CNN in many of computer vision tasks

increased in recent years. Image retrieval systems, are not

exempted of this advances. But instance level image re-

trieval is not thoroughly explored yet in this domain.

In this paper we tackle the problem of instance image re-

trieval by modifying the recently introduced RMAC de-

scriptor, along with MS-RMAC and multi-resolution exten-

sions. Our approach achieves state-of-the-art results on four

well known image retrieval benchmarks without using addi-

tional annotated data, finetuning or very high-dimensional

descriptors. To this end, we followed the main ideas pro-

posed on some works based on RMAC to improve the ef-

fectiveness of this descriptor. But we replaced several com-

ponents of these proposed pipelines with others, achieving

better or close results without the requirement of finetuning
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Method Dim O5k P6k

Triplet Network[10] 2048 86.1 94.5

Ours 384 72.3 87.1

Radenovic et al [32] 512 79.7 83.8

Arandjelovic et al [1] 4096 71.6 79.7

RMAC [40] 512 66.9 83

MS-RMAC [21] 1472 68.9 77.6

Kalantidis et al [18] 512 68.2 79.7

Ng et al [44] 128 59.3 59.0

Paulin et al [26] 256K 56.5 -

Jegou and Zisserman [17] 1024 56.0 -

Babenko et al [6] 128 55.7 -

Babenko and Lempitsky [5] 256 53.1 -

Jegou and Zisserman [17] 128 43.3 -

Table 5. Accuracy comparison with state-of-the-art methods on

Oxford 5k & Paris 6k. The methods in italics indicate that the

approach uses training data to finetune the CNN.

or using additional data in any way. We start with archi-

tecture of the feature extractor, the use of a multi-resolution

method and applying RMAC over the sum-aggregated re-

scaled feature maps, which bring a substantial improvement

in retrieval scores. Additionally, we employed a feature

selection approach to reduce the dimensionality of our de-

scriptors and further enhance the performance of similarity

search. Furthermore, in order to replace the use of RPN

for localizing region of interest, we proposed to use the

CAM approach which provides a way to achieve segmen-

tation without resorting to any additional training. Results

for this last idea however remained inconclusive. In most

of state-of-the-art approaches based on CNN, the models

are pre-trained on ImageNet with small resolutions (typi-

cally 224 × 224), in our future work, we plan to finetune

our feature extractor on a high resolution ImageNet. Our

aim is to make the model filters work better on higher res-

olution inputs in order to enhance the image encoding and

gain better performance. We will also aim to improve our

approach by employing unsupervised techniques (e.g. ap-

plying some transformations to an input image to generate

positive examples needed to train a triplet networks) and

conduct further evaluations on other benchmarks.

Algorithm 1 Our approach

1: procedure preprocess(img)

2: resolutions = [1050, 800, 550]
3: imgs = {}
4: for r ← 1 to 3 do

5: longest side = resolutions[r]
6: imgs[r] = scale(img, longest side)

7: return imgs

8: procedure extFM (img)

9: CNN : forward(img)
10: FMj = CNN{layer[j]}.output ⊲ a 3D tensor

with 2048 channels

11: FMj−1 = CNN{layer[j − 1]}.output ⊲ a 3D
tensor with 1024 channels

12: return FMj , FMj−1

13: procedure OSRMAC(FMs)

14: C = FMs.channels
15: W = FMs.width
16: H = FMs.height
17: vecsum = vector[C].fill(0)
18: for l← 1 to 3 do

19: kw = max(1, ceil(2×min(W,H)/(l + 1)))
20: ks = max(1, f loor(0.4× kw))
21: mp = maxpooling(kw, ks)
22: FMsmp = mp(FMs)
23:

24: FMsmp2
= power2(FMsmp)

25: FMsummp2
= sumpooling(FMsmp2

)
26: FMsummp = power1/2(FMsummp2

)
27: vecsum+ = FMsummp

28: return norm2(vecsum)

29: procedure Main()

30: img = load(src)
31: imgs = preprocess(img)
32:

33: FMall,j , FMall,j−1 = extFM(imgs[1])
34:

35: Sj , Sj−1 = sizeOf(FMall,j), sizeOf(FMall,j−1)
36:

37: for r ← 2 to 3 do ⊲ Scale+ SUM
38: FMr,j , FMr,j−1 = extFM(imgs[r])
39:

40: FMr,j = scale(FMr,j

41: FMall,j+ = FMr,j

42:

43: FMr,j−1 = scale(FMr,j−1

44: FMall,j−1+ = FMr,j−1

45:

46: vecj = OSRMAC(FMall,j)
47: vecj−1 = OSRMAC(FMall,j−1)
48: vecall = concat(vecj , vecj−1)
49:

50: ourdescriptor = featureselection(vecall)
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