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Abstract

Part-based image classification consists in representing

categories by small sets of discriminative parts upon which

a representation of the images is built. This paper addresses

the question of how to automatically learn such parts from a

set of labeled training images. We propose to cast the train-

ing of parts as a quadratic assignment problem in which

optimal correspondences between image regions and parts

are automatically learned. The paper analyses different as-

signment strategies and thoroughly evaluates them on two

public datasets: Willow actions and MIT 67 scenes.

1. Introduction

The representation of images as set of patches has a long

history in computer vision, especially for object recogni-

tion [2], image classification [9, 36] or object detection [18].

Its biggest advantages are the robustness to spatial transfor-

mations (rotation, scale changes, etc.) and the ability to

focus on the important information of the image while dis-

carding clutter and background.

Part-based classification raises the questions of i) how to

automatically identify what are the parts to be included in

the model and ii) how to use them to classify a query im-

age. The work of [38] selects informative patches using an

entropy based criterion while the decision relies on a Bayes

classifier. Following [38], recent approaches separate the

construction of the model (i.e. the learning of the parts) and

the decision function [14, 8].

Jointly optimizing modeling and classification is how-

ever possible for simple enough part detectors and decision

functions [24]. This work aims at defining the parts directly

related to the final classification function.

While this argument is understandable, the objective

function of this joint optimization is highly non-convex with

no guaranty of convergence. Deciding which alternative is

better – the joint or separate design – is still an open prob-

lem. As an insight, the two stage part-based model of [30]

performs better than the joint learning of [24]. We note

other differences: [24] models both positive and negative

parts while [30] focuses only on the positive ones.

Interestingly, [30, 29] addresses the learning of parts as

an assignment problem. Regions are sampled randomly

from the training images, and a class is modeled as a set

of parts. The assignment region-part is constrained: each

part is assigned to one region in each positive image (be-

longing to the class to be modeled). This yields a bipartite

graph. Solving the learning of part-based models via an as-

signment problem is appealing, yet solution [30] is based

on heuristics leaving room for improvements.

Our contribution is an extensive study of this assign-

ment problem: We present a well-founded formulation of

the problem and propose different solutions in a rigorous

way. We revisit the model of [30] and introduce an alter-

native constraint of one-to-many assignment, where a part

may be assigned to more than one regions in each image.

We cast part learning as a quadratic assignment problem,

and study a number of convex relaxations and optimization

algorithms.These methods are evaluated and compared on

two different public datasets and we demonstrate that our

methodology remains complementary to the powerful vi-

sual representations obtained by state of the art deep learn-

ing approaches.

The paper is organized as follows: Section 2 gives the re-

lated works, Section 3 presents our new formulation. Then,

Section 4 discusses convex relaxations, while Section 5 in-

troduces several optimization algorithms. Finally, Section 6

is devoted to the experimental validation.

2. Previous work

Image classification has received a lot of attention during

the last decades. The literature used to focus on models

based on aggregated features [6, 25] or the Spatial Pyramid

Matching [16]. This was before the Convolutional Network

revolution [15] at the heart of the recent methods [31].

Several authors have investigated part-based models in

which some parts of the image are combined in order to
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determine if a given object is depicted. This is in con-

trast to aggregation approaches where the image regions are

pooled without selecting the discriminative parts. For in-

stance, [32] discovers sets of regions used as mid-level vi-

sual representation; the regions are selected for being repre-

sentative (occurring frequently enough) and discriminative

(different enough from others). This iterative procedure al-

ternates between clustering and training classifiers. Simi-

larly, [14] learns parts incrementally, starting from a single

part occurrence with an Exemplar SVM and collecting more

and more occurrences from the training images. Also, [23]

propose to learn discriminative parts with LSSVM.

In a different way, [8] poses the discovery of visual el-

ements as a discriminative mode seeking problem solved

with the mean-shift algorithm. This method discovers

visually-coherent patch clusters that are maximally discrim-

inative. The work of [21] investigates the problem of parts

discovery when some correspondences between instances

of a category are known. The work of [34] bears several

similarities to our work in the encoding and classification

pipeline. However, parts are assigned to regions using spa-

tial max pooling without any constraint.

The part-based representation of [24] relies on the joint

learning of informative parts (using heuristics that promote

distinctiveness and diversity) and linear classifiers trained

on vectors of part responses. On the other hand, Sicre et al

[30] follow the two stage design, formulating the discovery

of parts as an assignment problem. Recently, Mettes et al

[22] argue that image categories may share parts and they

propose a method taking into account this redundancy.

Finally, this paper uses algorithms finding the assign-

ment maximizing the total weight in a bipartite graph. A

survey on this topic is the work of Burkard et al [3].

3. Discovering and Learning Parts

Our approach comprises three steps: (i) distinctive parts

are discovered and learned, (ii) a global image signature is

computed based on the presence of these parts, and (iii) the

signature is classified by a linear SVM. This paper focuses

on the first step. For each class, we learn a set of P distinc-

tive parts which are representative and discriminative.

This section formalizes the parts learning problem in dif-

ferent ways giving birth to interesting optimization alterna-

tives in Sect. 5. We show that it boils down to a concave

minimization under non convex constraints, which can be

cast as a quadratic assignment problem.

3.1. Notation

Column vector vec(X) contains all elements of matrix

X in column-wise order. Given matrices X,Y of the same

size, 〈X,Y 〉 =
∑

i,j XijYij is their (Frobenius) inner prod-

uct, ‖X‖ and ‖X‖F =
√

〈X,X〉 are the spectral and

Frobenius norms. Vector x⊤
i• (x•j) denotes the i-th row

(resp. j-th column) of matrix X . Vector 1n (matrix 1m×n)

is an n × 1 vector (resp. m × n matrix) of ones. The dot

product between vectors x and y is also denoted by 〈x, y〉.
✶A is the indicator function of set A and ProjA is the Eu-

clidean projector onto A.

Following [30], we denote by I+ the set of n+ images

of the class to be modeled, i.e. positive images, while I−

represents the negative images. The training set is I = I+∪
I− and contains n images. A set of regionsRI is extracted

from each image I ∈ I. The number of regions per image is

fixed and denoted |R|. The total number of regions is thus

R = n|R|. R+ is the set of regions from positive images

whose size is R+ = n+|R|.
Each region r ∈ RI is represented by a descriptor xr ∈

R
d. In this work, this descriptor is obtained by a CNN (see

Sect. 6.2). By X (X+) we denote the d×R (resp. d×R+)

matrix whose columns are the descriptors of the complete

training set (resp. positive images only).

3.2. Problem setting

A class is modeled by a set of parts P ⊂ R
d with |P| =

P . The P × R+ matching matrix M associates regions of

positive images to parts. Element mpr of M corresponds to

region r and part p. Ideally, mpr = 1 if region r is deemed

to represent part p, and 0 otherwise. For a given image I ,

we denote by MI the P ×|R| submatrix of M that contains

columns r ∈ RI .

We remind the requirements of [30]: (i) the P parts are

different from one another, (ii) each part is present in every

positive image, (iii) parts occur more frequently in positive

images than in negative ones. The first two requirements

define the following subset of RP×R+

:

M1 ,
{

M⊤
1P ≤ 1R+ and MI1|R| = 1P , ∀I ∈ I

+
}

.

(1)

We note that the constraint forcing columns to sum to max-

imum one encourage regions to be assigned to at most

one part. Since we wish M to represent a one-to-one as-

signment of regions to parts, the admissible set of M is

A1 , {0, 1}P×R+

∩M1. Note that set A1 is not convex.

The third requirement is enforced by Linear Discrimi-

nant Analysis (LDA): given M , the model wp(M) ∈ R
d of

part p is defined as

wp(M) , Σ−1

(
∑

r∈R+ mprxr
∑

r∈R+ mpr

− µ

)

= Σ−1

(

1

n+
X+mp• − µ

)

, (2)

where µ , 1
n
X1R and Σ , 1

n
(X − µ1⊤

R)(X − µ1⊤
R)

⊤

are the empirical mean and covariance matrix of region de-

scriptors over all training images. The similarity between

region r and a part p is then computed as 〈wp(M), xr〉.

1060



For a given class, we are looking for the optimal match-

ing matrix M⋆ ∈ argmaxM∈A1
J(M) with

J(M) ,
∑

p∈P,r∈R+

mpr〈wp(M), xr〉. (3)

For a given class, we define W (M) as the d × P matrix

whose columns are wp(M) for all parts p ∈ P , and the sim-

ilarity matrix C(M) , W (M)⊤X+. This matrix stores

the P × R+ similarities between parts and regions. In the

end, we can compactly rewrite the objective function as

J(M) = 〈M,C(M)〉.
In this work, we further deviate from the original require-

ment (ii) of [30] by observing that each part may not only

be present once in every positive image, but with more than

one instances allowed. It is expected, for instance, to find

more than one chair in an office scene. The case of overlap-

ping regions with similar descriptors is also common. With

this modification, the first two requirements define the sub-

set of RP×R+

Mκ ,
{

M⊤
1P ≤ 1R+

}

∩
{

1P ≤MI1|R| ≤ κ1P , ∀I ∈ I
+
}

. (4)

Observe thatM1 defined in (1) is a special case for κ = 1,

representing a one-to-one assignment. On the other hand,

for κ > 1, Mκ represents a one-to-many assignment be-

tween parts and regions. This enables assigning a part to

up to κ regions, provided that κ ≤ K ,
|R|
P

. We assume

|R| is a multiple of P . The admissible set of M becomes

Aκ , {0, 1}P×R+

∩Mκ.

3.3. Recasting as a quadratic assignment problem

Paper [30] solves the problem by alternatively resorting

to (2) and (3). Here, we rewrite the objective function J

as a function of M only by injecting an explicit expres-

sion of W (M). This gives birth to a quadratic assignment

problem, which allows a number of alternative algorithms

as detailed in the next section. According to LDA (2),

W (M) = Σ−1
(

1
n+X

+M⊤ − µ1⊤
P

)

, which in turn gives

C(M) = MA−B, (5)

where R+ × R+ matrix A = 1
n+X

+⊤
Σ−1X+ is sym-

metric and positive definite and P × R+ matrix B =
1Pµ

⊤Σ−1X+ has identical rows (rank 1). Our problem

becomes equivalent to finding M⋆ ∈ argminM∈Aκ
J0(M)

J0(M) , 〈M,B −MA〉 (6)

= vec(M)⊤Q vec(M) + vec(B)⊤ vec(M),

for a PR+ × PR+ matrix Q that is only a function of A.

This shows that our task is closely related to the quadratic

assignment problem [3], which is NP-hard. But, the objec-

tive function J0(M) is strictly concave.

This new formalism enables to leverage a classical pro-

cedure in optimization: the convex relaxation.

Figure 1. Illustration of the convex relaxation of our assign-

ment problem in 3D. Black lines are level-sets of the objective

function J0 in the plane of the simplex, which is a triangle in

R
3. Lower values are displayed in cyan, larger in magenta. (Left)

The original problem is the minimization of a concave quadratic

function that lies on the vertices of the simplex. (Middle) A small

quadratic regularization of the objective function together with the

relaxation of the binary constraint preserves the solution. (Right)

A too large regularization yet shifts the minimum inside the sim-

plex, thus giving less sparse solutions.

4. Convex relaxation

It is common to relax the constraint of M being binary:

M⋆ = argminM∈Sκ
J0(M) with the admissible set of M

relaxed to Sκ , [0, 1]P×R+

∩Mκ, with κ = 1 in the one-to-

one case and 1 < κ ≤ K in the one-to-many case. Domain

Sκ is the convex hull of Aκ and we refer to Sκ to as a κ-

simplex. Unless otherwise stated, we assume this convex

relaxation below.

A convex relaxation of the objective function is also

common. We examine two regularization methods in the

following.

4.1. Entropic regularization

Entropy regularization can be used to approximate the

binary constraint by considering the objective function

J ′
β(M) , 〈M,B −MA〉 −

1

β
H(M) (7)

where H(M) = −〈log(M),M〉 is the entropy of matrix

M , and β > 0 is the regularization parameter.

In the simpler case where C(M) is a fixed cost matrix,

the minimization over S1 becomes tractable and is referred

to as soft assignment. This problem has gained a lot atten-

tion because it can be solved efficiently at large scales [33].

However, a major limitation is the loss of sparsity of the so-

lution. We describe in the section 5.2 how the authors of

[30] have circumvented this problem by iterative soft as-

signment (ISA), also without assuming C fixed.

Dedicated methods are also common in the case of fixed

C. The Hungarian algorithm examined in section 5.1 gives

an exact solution to the linear (hard) assignment problem,

without the relaxation of the binary constraint.
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4.2. Quadratic regularization

We consider now the quadratic regularization of the

problem, see Figure 1 for an illustration:

Jρ(M) , 〈M,B −MA〉+ ρ‖M‖2F (8)

= J0(M) + ρP n+, (9)

where (9) holds provided M ∈ A1. In this case, Jρ(M) and

J0(M) differ by a constant. Therefore, the minimizers of Jρ
on Aκ are the minimizers of J0, for any value of ρ. Indeed,

if ρ is sufficiently large (ρ > ‖A‖), Jρ becomes convex (see

Fig. 1). In general however, Jρ(M) 6= J0(M) + ρPn+

when M ∈ Sκ \ Aκ. We may find different solutions as

illustrated in Fig. 1.

Over-relaxing the problem for the sake of convexity is

not interesting as it promotes parts described by many re-

gions instead of a few ones. Indeed, when ρ > ‖A‖, the

minimum of Jρ is achieved for the rank-1 matrix 1
2B(A −

ρIR+)−1, which may lie inside S . Conversely, when ρ is

negative, the regularization term acts as a force towards the

set Aκ, driving the solution to a binary matrix which may

be an interesting way to avoid the aforementioned problem

of over relaxing the constraints.

5. Optimization

The previous section formalizes the part learning task as

an optimization problem. This section now presents two

alternatives to numerically solve them: (i) hard assignment

optimization directly finding M⋆ ∈ Aκ, (ii) soft assignment

optimization (Sect. 4.1 and 4.2) finding M⋆ ∈ Sκ. This lat-

ter strategy is not solving the initial problem. However, as

already observed in [30] and [19] for classification, soft-

assignment may provide good performance. This observa-

tion deserves an experimental investigation in our context.

5.1. Hungarian methods

Hungarian Algorithm (Hun): When the cost matrix

C(M) is fixed and consists of n+ square blocks (i.e. P =
|R|), the minimization of J0(M) onto A1 is a linear pro-

gram which solves a bipartite graph matching. Several ded-

icated methods give an exact solution, including the well-

known Hungarian algorithm with O(P 3) complexity [3].

Starting from an initial guess M0 (see Sect. 6.2), this so-

lution can be seen as computing the orthogonal projection

of matrix C(M0) onto A1

M⋆
hun , ProjA1

(C(M0)) = argmax
M∈A1

〈M,C(M0)〉. (10)

In our setting, M is not square as we consider partial assign-

ments between P rows and |R| > P columns per image. In

the case of one-to-one assignment κ = 1, a simple trick is

to add an extra row which sums to |R| − P and to define a

maximal cost value when affecting columns to it [1].

To achieve one-to-many assignment for 1 < κ ≤ K, we

still add rows but define cost as follows. Since the number

of columns |R| per image is a multiple of the number of

rows P , we define an |R| × R+ cost matrix consisting of

κ blocks equal to C(M0) stacked vertically, while the extra

row that sums to (K − κ)P has a constant maximal cost

value. Observe that this does not solve the problem onto

Aκ. Rather, constraint 1P ≤ MI1|R| ≤ k1P in (1) is

replaced by MI1|R| = κ1P . Hence its solution is sub-

optimal. We refer to this approach as Hunκ.

We use the fast Hungarian algorithm variant of [1]. The

experimental section shows that this method gives surpris-

ingly good results in comparison to more sophisticated

methods.

Integer Projected Fixed Point (IPFP): The IPFP

method [17] can be seen as the iteration of the previous

method, alternating between updates of the similarity ma-

trix C(M) and projections onto the constraints set A1.

More precisely, a first order Taylor approximation of the

objective function is maximized (e.g. by the Hungarian al-

gorithm) and combined with a linesearch (see Algorithm 1).

This approach guarantees the convergence to a local mini-

mizer of J(M) on the set A1.

Algorithm 1 IPFP algorithm

Init: M0, set: k ← 0, M−1 ← Ø
while Mk+1 6= Mk do

k ← k + 1
Gk ← 2MkA−B (gradient ∇J(Mk))
Pk+1 ← ProjA1

(Gk)
(projection using partial Hungarian algorithm [1])

∆k+1 ← Pk+1 −Mk

ck ← 〈Gk,∆k+1〉
dk ← 〈∆k+1A,∆k+1〉
tk = min(− ck

2dk
, 1) if dk < 0 and tk = 1 otherwise

Mk+1 ← tkPk+1 + (1− tk)Mk (linesearch)

end while

Output: Pk

We observed that IPFP converges very fast nevertheless

results are not improving. This is explained by the specific

structure of our problem where the quadratic matrix Q of (6)

is sparse and negative definite.

5.2. Iterative Softassignment (ISA)

The strategy of [30] referred to as Iterative Soft-Assign

(ISA) solves a sequence of approximated linear assignment

problems. It is based on the rationale: if we better detect

regions matching a part, we will better learn that part; if we

better learn a part, we will better detect region matching that

part. Hence, the approach iteratively assigns regions to parts
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by yielding a M for a given C(M) (Sect. 4.1) and learns the

parts by yielding W (M) for a given M thanks to LDA (2).

The assignment resorted to a soft-assign algorithm, see [28]

for instance, which is also an iterative algorithm solving a

sequence of entropic-regularized problems (Sect. 4.1) that

converges to the target one. The general scheme of the al-

gorithm is drawn in Algorithm 2.

Algorithm 2 ISA algorithm

Init: M = M0

while M 6∈ A1 do

β ← β × βr (decreases regularization)

while M has not converged do

update C(M) using definition (5)

update M by solving Soft-Assignment problem (7)

end while

end while

The approach suffers from two major drawbacks: it is

computationally demanding due to the three intricate opti-

mization loops, and it is numerically very difficult to con-

verge to an hard-assignment matrix (due to the entropy reg-

ularization). Yet, as reported in [30], the latter limitation

turns out to be an advantage for this classification task. In-

deed, the authors found out that early stopping the algorithm

actually improves the performance. However, the obtained

matrix M does not satisfy the constraints (neither Aκ nor

Sκ).

5.3. Quadratic soft assignment with Generalized
Forward Backward (GFB)

To address the relaxed and regularized problem which

minimize Jρ over the set Sκ, we split the constraints on the

matching matrix M for rows and columns. Assuming the

matrix M = (mpr)p∈P,r∈R+ has non-negative values, for

each row mp• and each column m•r we have

• mp• ∈ Pκ , {x ∈ R
|R| :

〈

x,1|R|

〉

∈ [1, κ]} is a

vector summing between 1 and κ;

• m•r ∈ P≤1 , {x ∈ R
P
+ : 〈x,1P 〉 ≤ 1} is a vector

that sums at most to 1;

The optimization problem can then be written as

argmin
M=M1=M2=M3 ∈RP×R+

Jρ(M) +

3
∑

i=1

Gi(Mi) (11)

where functions Gi, i = 1..3 respectively encode con-

straints on parts, regions and non-negativity:











G1(M) =
∑

p∈P ✶{mp•∈Pκ}

G2(M) =
∑

I∈I+,r∈R(I) ✶{m•r∈P≤1}

G3(M) =
∑

p∈P,r∈R+ ✶{mp,r≥0}

.

The Generalized Forward Backward (GFB) algorithm [27],

described in Alg. 3, alternates between explicit gradient de-

scent on the primal problem and implicit gradient ascent on

the dual problem. It offers theoretical convergence guar-

anties in the convex case and can benefit from paralleliza-

tion.

Algorithm 3 GFBκ
ρ algorithm for problem (11)

M,M1,M2,M3 ←M0 (initialization)

while not converge do

G← ∇Jρ(M) = 2MAρ +B (gradient)

update M1: ∀ p ∈ P
m1

p• ← m1
p• + τ

(

Proj
Pκ

(

2mp• −m1
p• −

1
L
Gp•

)

−mp•

)

update M2: ∀ r ∈ R+

m2
•r ← m2

•r+τ
(

Proj
P≤1

(

2m•r −m2
•r −

1
L
G•r

)

−m•r

)

update M3: ∀ p ∈ P, r ∈ R+

m3
pr ← m3

pr+τ
(

Proj
R+

(

2mpr −m3
pr −

1
L
Gpr

)

−mpr

)

update M ← 1
3 (M

1 +M2 +M3)
end while

The positive parameters τ and L controls the gradient

descent step. Experimentally, we set τ = 1
4 for κ = 1,

τ = 1
2 for κ = 10, and L = 1

10‖Aρ‖, estimating ‖Aρ‖
using power-iteration. Note that other splitting schemes are

possible and have been tested but this combination was par-

ticularly efficient (faster convergence) due to the simplicity

of the projectors onto P≤1 and Pκ that can be computed in

linear time [5] using the projection onto κ-simplex.

6. Experiments

6.1. Datasets

The Willow actions dataset [7] is a dataset for action clas-

sification, which contains 911 images split into 7 classes

of common human actions, namely interacting with a com-

puter, photographing, playing music, riding cycle, riding

horse, running, walking. There are at least 108 images per

actions, with around 60 images used as training and the rest

as testing images. The dataset also offers bounding boxes,

but we do not use them as we want to detect the relevant

parts of images automatically.

The MIT 67 scenes dataset [26] is an indoor scene classi-

fication dataset, composed of 67 categories. These include

stores (e.g. bakery, toy store), home (e.g. kitchen, bedroom),

public spaces (e.g. library, subway), leisure (e.g. restaurant,

concert hall), and work (e.g. hospital, TV studio). Scenes

may be characterized by their global layout (corridor), or

by the objects they contain (bookshop). Each category has

around 80 images for training and 20 for testing.
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6.2. Description and classification pipeline

We essentially follow the learning and classification

setup of [30]. During part learning, |R| = 1, 000 regions

are extracted from each training image and used to learn the

parts. During encoding, |R| regions are extracted from both

training and test images, and all images are encoded based

on the learned parts. Finally, a linear SVM classifies the

test images. For each stage, we briefly describe the choices

made in [30] and discuss our improvements.

Extraction of image regions Two strategies are investi-

gated:

• Random regions (‘R’). As in [30], |R| regions are ran-

domly sampled over the entire image. The position and

scale of these regions are chosen uniformly at random,

but regions are constrained to be square and have a size

of at least 5% of the image size.

• Region proposals (‘P’). Following [22], up to |R| re-

gions are obtained based on selective search [39]. If

less than |R| regions are found, random regions com-

plete the set.

Region descriptors Again two strategies are investigated:

• Fully connected (‘FC’). As in [30], we use the out-

put of the 7th layer of the CNN of [13] on the rescaled

regions, resulting in 4,096-dimensional vectors. For

the Willow dataset, we use the standard Caffe CNN

architecture [13] trained on ImageNet. For MIT67,

we use the hybrid network [43] trained on ImageNet

and on the Places dataset. The descriptors are square-

rooted and ℓ2-normalized. We note that each region

was cropped and fed to the network in [30].

• Convolutional (‘C’). As an improvement, we use the

last convolutional layer, after ReLU and max pool-

ing, of the very deep VGG-VD19 CNN [31] trained

on ImageNet. To obtain a region descriptor, we em-

ploy average pooling over the region followed by ℓ2-

normalization, resulting in a 512-dimensional vector.

Contrary to ‘FC’, we do not need to rescale every re-

gion. The entire image is fed to the network only once,

as in [11, 10]. Further, following [37], pooling is car-

ried out by an integral histogram. These two options

enable orders of magnitude faster description extrac-

tion compared to ‘FC’. To ensure the feature map is

large enough to sample |R| regions despite loss of res-

olution (by a factor of 32 in the case of VD-19), im-

ages are initially resized such that their maximum di-

mension is 768 pixels. this was shown to be beneficial

in [42].

Initialization The initialization step follows [30]. All

training positive regions are clustered and for each cluster

an LDA classifier is computed over all regions of the clus-

ter. The maximum responses to the classifiers are then se-

lected per image. Two scores are then computed: the aver-

age of the maximum responses over positive and negative

sets. The ratio of these scores is used to select the top P

clusters to build the initial part classifiers. Finally, an ini-

tial matching matrix M is built by softmax on classifier re-

sponses.

Encoding Given an image, bellonging to training or test-

ing set, each learned part classifier is applied to every re-

gion descriptor to generate a global image descriptor. We

use several alternatives:

1. Bag-of-Parts (‘BoP’) [30]: For each part, the maxi-

mum and average classifier scores are computed over

all regions. These data are then concatenated for all

parts.

2. Spatial Bag-of-Parts (‘SBoP’): In this paper, we also

introduce SBoP, which adds weak spatial information

to BoP by using Spatial Pyramids as [8]: Maximum

scores are computed over the four cells of a 2× 2 grid

over the image and appended to the original BoP.

3. CNN-on-Parts (‘CoP’) [30]: The CNN descriptors

corresponding to the maximum scoring region per part

are concatenated to form the global image descriptor.

4. PCA on CNN-on-Parts (‘PCoP’): This paper also in-

vestigates PCoP, where centering and PCA are applied

to CoP.

The global image descriptors will be the input of the final

SVM classifier.

Parameters of the learning algorithms For the Itera-

tive Soft-Assign (ISA) method, we use the same parame-

ters as [30]. Concerning the GFBκ
ρ method solving (11), we

tested different configurations: w/ or w/o regularization (as

controlled by ρ) and one-to-one or one-to-many assignment

(as controlled by κ).

When considering 1-to-1 matching with GFB1
ρ, we per-

form 2k iterations of the projection, except for the MIT67

dataset with convolutional descriptor, where iterations are

limited to 1k. In all experiments performance remains sta-

ble after 1k iterations. We denote by GFB1
0 the case with-

out regularization (ρ = 0). For the GFB1
ρ, we choose

ρ = 10−3‖A‖ after experimental evaluation on the Willow

dataset.

When considering the multiple assignment model GFBκ
ρ

with κ = K = 10, we used ρ = −‖A‖. The motivation
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Table 1. Baseline performance, without part learning.

Method Measure
Willow MIT67

FC C FC C

Full-image
Acc – – 70.8 73.3

mAP 76.3 88.5 72.6 75.7

Figure 2. Top scoring parts for various images of bowling, florists,

gym and wine cellar.

behind this choice is that, because the simplex Sκ is larger

as κ increases, the optimal matrix is more likely to lie inside

the simplex, with values between 0 and 1 (soft assignment).

This effect can be compensated by using a negative value

for ρ, which yields a hard assignment solution in practice in

our experiments.

6.3. Results

In the following, we are showing results for (i) fully con-

nected layer descriptor on random regions (R+FC), which

follows [30], and (ii) convolutional layer descriptor on re-

gion proposals (P+C) that often yields the best performance.

We evaluate different learning algorithms on BoP and CoP

encoding, and then investigate the new encoding strategies

SBoP and PCoP as well as combinations for ISA, Hun, and

GFBκ
ρ algorithms. Methods are evaluated in the context of

action and scene classification in still images. On Willow

we always measure mean Average Precision (mAP) while

on MIT67 we calculate both mAP and classification accu-

racy (Acc).

We start by providing, in Table 1, a baseline correspond-

ing to the description methods ’FC’ and ’C’ applied on the

full image without any part learning. The comparison to

subsequent results with part learning reveals that part-based

methods always provides improvement.

We now focus on the part learning methods. Figure 2

shows some qualitative results of learned parts on MIT67.

Table 2. Performance of ISA and all methods satisfying M1 on

Willow and MIT67.

Method Meas. ISA IPFP Hun GFB1
0 GFB1

ρ

Willow

R+FC BoP 76.6 79.0 78.9 79.7 80.6

P+C BoP mAP 89.2 86.3 88.3 88.2 87.5

P+C CoP 91.6 91.3 91.1 91.8 91.8

MIT 67

R+FC BoP
Acc 76.6 – 75.4 75.7 74.7

mAP 78.8 – 78.0 77.6 76.3

P+C BoP
Acc 75.1 70.7 72.8 70.9 70.9

mAP 76.7 72.6 75.1 73.5 73.1

P+C CoP
Acc 80.0 79.2 79.8 79.2 79.3

mAP 80.2 79.7 79.9 79.5 79.7

Table 3. Performance ISA, when forced to satisfy the constraints

M1 with hard assignment. ISA+H refers to performing one itera-

tion of the Hungarian algorithm on the solution obtained by ISA.

Method Measure ISA ISA+H

Willow R+FC BoP mAP 76.6 76.9

Willow P+C BoP mAP 89.2 88.1

Willow P+C CoP mAP 91.6 89.6

MIT67 R+FC BoP mAP 78.8 77.9

Then, Table 2 shows the performance of ISA against sev-

eral methods satisfying the constraintM1, see Eq (1), i.e. a

part is composed of a single region in every positive image.

These methods include IPFP, Hungarian, GFB1
0, and GFB1

ρ.

On the Willow dataset, for the R+FC descriptor with BoP

encoding, we observe that GFB1
ρ > GFB1

0 > Hungarian and

IPFP > ISA. However, on MIT67 the results are different

and we have ISA > Hungarian and GFB1
0 > GFB1

ρ. Sim-

ilar trends are observed when using the improved P+C de-

scriptor with the BoP encoding. Nevertheless, note that all

methods perform similarly when using the CoP encoding.

After these evaluations, IPFP was not evaluated in further

experiments since it performs on par with the Hungarian or

worst, as explained in Section 5.1.

These results show that overall ISA outperforms other

optimization methods, which satisfyM1. The explanation

of this difference in performance lies in the fact that ISA

is stopped before convergence and does not satisfyM1, as

explained in Section 5.2. This result is further confirmed

by running an iteration of the Hungarian algorithm on the

output of ISA, see Table 3. Such experiment forces the parts

resulting from ISA to satisfyM1 and we observe an overall

drop of performance.

Table 2 also shows that region proposals combined with

convolutional layer descriptions shows a significant perfor-

mance gain, especially on the Willow dataset. Therefore,

the improved region descriptions and encoding are evalu-

ated using ISA, see Table 4. We can see a consistent im-

provement for the SBoP and PCoP encoding. Also PCA

yields more improvement for descriptors based on fully
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Table 4. Results on Willow and MIT67 datasets for the ISA

method, with improved region descriptions P+C and improved en-

coding methods SBoP and PCoP.

Method Meas. BoP SBoP CoP PCoP

Willow R+FC
mAP

76.6 78.7 81.6 82.4

Willow P+C 89.2 90.1 91.6 91.7

MIT67 R+FC
Acc 76.6 76.1 76.8 77.1

mAP 78.8 79.0 77.8 79.5

MIT67 P+C
Acc 75.1 76.1 80.0 80.5

mAP 76.7 76.7 80.2 81.0

Table 5. Performance of ISA and the proposed methods satisfying

the constraint Mκ. κ is set to 10 for Hunκ and GFBκ

ρ .

Method Meas. ISA Hunκ GFBκ
ρ

Willow

P+C BoP 89.2 89.6 89.6

P+C CoP mAP 91.6 91.4 91.3

P+C SBOP+PCoP 91.9 92.1 92.1

MIT 67

P+C BoP
Acc 75.1 77.7 77.3

mAP 76.7 79.2 79.4

P+C CoP
Acc 80.0 80.4 80.5

mAP 80.2 80.6 80.5

P+C SBOP+PCoP
Acc 81.4 81.5 81.5

mAP 81.2 81.7 81.9

connected layers than on convolutional ones.

We further study the problem of part learning following

the constraint Mκ, see Eq. (4). Therefore, a part can be

composed of several regions of the same image. We remind

that each of these regions can be assigned to at most one

part. We compare ISA to GFBκ
ρ and Hunκ, which satisfy

Mκ. In our setup, we have 1 ≤ κ ≤ K = 10. Concerning

Hunκ, κ is set to K. Results given on Table 5 show that

GFBκ
ρ and Hunκ offer better results than ISA, especially

with the BoP encoding. Moreover, there is a large improve-

ment over the same methods satisfying M1 and we note

that GFB adapts to the various types of constraints.

Since the Hungarian algorithm forces parts to be com-

posed of a fixed number of regions κ, we evaluated the im-

pact of this parameter on the classification performance on

MIT 67 dataset, see Table 6. Interestingly, high values of

κ offer the best performance. Therefore, a mixture of parts

combining all regions of images allows a better description.

An explanation for such results can be that parts will be

more diverse and therefore more distinct one to another.

Finally, our methods offer good performance competing

with the state of the art on both datasets: 92.1% mAP on

Willow and 81.5% accuracy on MIT67, see Table 5 and 7.

7. Conclusion

To conclude, we have investigated in this work the prob-

lem of discovering parts for part-based image classifica-

Table 6. Evaluation of the influence the parameter κ on the per-

formance of the Hungarian algorithm on MIT67.

Method Meas. Hunκ

κ 1 2 5 8 10

P+C BoP
Acc 72.8 74.9 74.9 76.9 77.7

mAP 75.1 76.2 78.0 79.0 79.2

Table 7. Performance in terms of accuracy of existing part-based

and non part-based methods on the MIT67 dataset.

Methods Part-based MIT67

Zhou et al [43] No 70.8

Peng et al [35] Yes 74.9

Wang et al [40] Yes 75.3

Mahmood et al [20] No 75.6

Zuo et al [44] Yes 76.2

Parizi et al [24] Yes 77.1

Mettes et al [22] Yes 77.4

Sicre et al [30] Yes 78.1

Zheng et al [42] No 78.4

Wu et al [41] Yes 78.9

Cimpoi et al [4] No 81.0

Herranz et al [12] No 86.0

Ours Yes 81.5

tion. We have shown that this problem can be recast as a

quadratic assignment problem with concave objective func-

tion to be minimized with non-convex constraints. While

being known to be a very difficult problem, several tech-

niques have been proposed in the literature, either trying to

find “hard assignment” in a greedy fashion, or based on op-

timization of the relaxed problem, resulting in “soft assign-

ment”. Several methods have been investigated to address

this task and compared to the previous method of [30]. Of

the proposed algorithms, GFB is the most adaptable and the

Hungarian is the fastest. Both algorithms offer improved

performance on two public datasets.

Our reformulation and investigation of different opti-

mization methods explore the limits of the original problem

defined in [30]. We introduce a number of new algorithms,

which are designed to satisfy the constraint of the problem

definition. We show that the explicit relaxation of the con-

straint on the assignment of regions to parts leads to a better

part model. Such adaptation was not possible in the work

of [30]. We believe this knowledge will help the commu-

nity in the search for more appropriate models, potentially

end-to-end trainable, using better network architectures.

We additionally proposed improvements on several

stages of the classification pipeline, namely region extrac-

tion, region description and image encoding, using a very

deep CNN architecture. Furthermore, the new region de-

scription method is orders of magnitude faster, as this pro-

cess was previously the bottleneck in [30].
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