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Abstract 

 

Deep learning techniques have demonstrated 

significant capacity in modeling some of the most 

challenging real world problems of high complexity. 

Despite the popularity of deep models, we still strive to 

better understand the underlying mechanism that 

drives their success. Motivated by observations that 

neurons in trained deep nets predict variation 

explaining factors indirectly related to the training 

tasks, we recognize that a deep network learns 

representations more general than the task at hand in 

order to disentangle impacts of multiple confounding 

factors governing the data, isolate the effects of the 

concerning factors, and optimize the given objective. 

Consequently, we propose to augment training of deep 

models with auxiliary information on explanatory 

factors of the data, in an effort to boost this 

disentanglement. Such deep networks, trained to 

comprehend data interactions and distributions more 

accurately, possess improved generalizability and 

compute better feature representations. Since pose is 

one of the most dominant confounding factors for 

object recognition, we adopt this principle to train a 

pose-aware deep convolutional neural network to learn 

both the class and pose of an object, so that it can 

make more informed classification decisions taking 

into account image variations induced by the object 

pose. We demonstrate that auxiliary pose information 

improves the classification accuracy in our 

experiments on Synthetic Aperture Radar (SAR) 

Automatic Target Recognition (ATR) tasks. This 

general principle is readily applicable to improve the 

recognition and classification performance in various 

deep-learning applications. 

1. Introduction 

In recent years, deep learning technologies, in particular 

Deep Convolutional Neural Networks (DCNNs) [33], 

have taken the computer vision field by storm, setting 

drastically improved performance records for many real 

world computer vision challenges including general object 

recognition [9][18][30][45], face recognition [51], scene 

classification [62], object detection and segmentation [15] 

[22], feature encoding [28], metric learning [24], and 3D 

reconstruction [11]. The dominantly superior performance 

by deep learning relative to other machine learning 

approaches has also emerged in numerous other 

application fields – including speech recognition and 

natural language processing – generating unprecedented 

enthusiasm and optimism in artificial intelligence in both 

the research community and the general public.  This 

overwhelming success of deep learning is propelled by 

three indispensable enabling factors: 

1. Groundbreaking algorithm developments in 

exploitation of deep architectures and effective 

optimization of these networks, allowing capable 

representation and modeling of complex problems 

[20][30][33]; 

2. Availability of very large-scale training datasets that 

capture full data variations in real world applications in 

order to train high capacity neural networks [8]; and 

3. Advanced processing capability in graphical 

processing units (GPU) enabling computation in speed 

and scale that was impossible earlier. 

Despite the sweeping success of DCNNs, we still strive 

to understand how and why they work so well in order to 

better utilize and master them. In this paper we 

contemplate what deep networks have actually learned 

once they have been trained to perform a particular task 

and explore how to take advantage of that knowledge.  

Based on observations reported in multiple research 

efforts that neurons in trained deep networks predict 
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attributes that are not directly associated with the training 

tasks, we perceive that deep models learn structures more 

general than what the task at hand involves.  This 

generalizability likely results from performance 

optimization on data populations with multiple 

explanatory factors, which is typical in real world 

applications. As a result, we can assist the unsupervised 

learning of latent factors that naturally occur in the 

training of deep neural networks, by supplying 

supervisory signals on dominant confounding factors 

during training. Information on such data impacting 

factors allows the network to untangle data interactions, 

isolate the impact of the factors of interest, learn more 

accurate characterization of the underlying data 

distributions, and generalize better with new data. 

With this principle, we propose to augment the training 

of DNNs using information on confounding factors in 

order to improve their performance. We describe a general 

framework to boost training of any standard deep 

architecture with auxiliary explanatory factors that 

account for significant data variations. Such information 

has often been overlooked because it is deemed irrelevant 

to the task at hand. Nonetheless, it can help reducing 

ambiguity in the data and aid in classification and 

recognition. We apply the proposed framework to build a 

pose-aware DCNN for object recognition by injecting 

pose information in addition to class labels during training 

to improve the classification accuracy of the neural 

network. 

 In this paper we make the following contributions. 

•  We describe a general framework to augment 

training of DCNNs using available information on 

influential confounding factors of the data population. 

This framework can be applied to any existing deep 

architecture at a very small additional computational 

cost.  

•  To verify this finding we apply the principle to 

augment existing DCNNs and demonstrate 

performance gains using real world data sets. To 

address pose variations in object recognition, we train 

a novel pose-aware DCNN architecture by explicitly 

encoding both pose and object class information during 

training and demonstrate the auxiliary pose 

information indeed increases the classification 

accuracy.  

The remainder of the paper is organized as follows. We 

review related literature in Section 2 and motivate our 

approach in Section 3. Section 4 describes a general 

framework to take advantage of auxiliary explanatory 

factors to improve the performance of DCNNs. We 

describe how to train a pose-aware DCNN for recognition 

tasks and present related experiments in Section 5. We 

draw conclusions in Section 6. 

2. Literature Review  

DCNNs have demonstrated unmatched capability to 

tackle very complex challenges in real world applications. 

Understanding the fundamentals of DNNs helps us to 

better utilize them. We review techniques that improve the 

performances of deep networks. 

The capacity of a DCNN can be increased by either 

expanding its breadth to have more feature maps at each 

layer [54], or by growing the depth of the network [50]. 

As deep models demand an enormous amount of training 

data to offset the risk of over-fitting, data augmentation 

improves the accuracy of the trained deep models [30]. As 

deeper architectures become more difficult to optimize, 

auxiliary classifiers at intermediate layers help to flush 

gradient flow to lower layers during back-propagation and 

improve training performance [50]. DenseNets [25], 

residual networks [19], and highway networks [46] have 

been proposed to effectively optimize extremely deep 

networks. Nonlinearity such as Rectified Linear hidden 

Units (ReLU) is a major factor that enables deep networks 

to encode complex representations [7]. Variants of ReLUs 

have also been proposed [18] [34]. 

Hinton et al. used “drop-out” to prevent over-fitting due 

to co-adaptation of feature detectors by randomly 

dropping a portion of feature detectors during training 

[20]. Dropout training can be considered as a form of 

adaptive regularization to combat over-fitting [53]. A 

“maxout” network was subsequently proposed to improve 

both the optimization and accuracy of networks with 

dropout layers [16]. An alternative regularizer is batch 

normalization [27] that integrates normalization of batch 

data as a part of the model architecture and performs 

normalization for each training mini-batch to counter the 

internal covariate shift during training.  

Multitask learning [3] trains several related tasks in 

parallel with a shared representation where what is 

learned for each task helps in learning other tasks. It is 

argued that extra tasks serve as an inductive bias to 

improve the generalization of the network. [6] used a 

single deep network to perform a full list of similar 

NLP tasks including speech tagging, parsing, name-

entity recognition, language model learning, and 

semantic role labeling. [61] proposed to optimize facial 

landmark detection with related tasks such as categorical 

head pose estimation. Recently, multitask DCNNs have 

been successfully used to simultaneously perform 

multiple tasks including depth/surface normal 

prediction and semantic labeling [11], object detection 

and segmentation [15][17], and object detection, 

localization, and recognition [44]. In [14] and [31], 

multitask learning was used to address the correlations 

in object classes and emulating the hierarchical 

structure in object categorizations. Despite the 

successes of multitask learning, challenges remain to 
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better understand how the mechanism works and to 

determine what kind of tasks help each other [3]. 

Real world applications often involve complex data 

arising from various sources and their interactions. It is 

fundamental to disentangle the factors of variation for 

many AI tasks [2]. There have been emerging efforts to 

discover and separate these factors in unsupervised or 

semi-supervised learning, such as generative models, 

where accurate data modeling and reconstruction 

demand knowledge of data explanatory factors. [35] 

used adversarial training with autoencoders to learn 

complementary hidden factors of variations. A cross-

covariance loss was introduced in a semi-supervised 

autoencoder to learn factors of data variation beyond 

the observed labels [5]. InfoGan was proposed to 

disentangle factors fully unsupervised by maximizing 

mutual information between latent variables and 

observations [4]. Deep Convolution Inverse Graphics 

Network further coupled interpretable data transforms 

and latent variables by clamping images of specific 

transformations to the learning of latent variable 

intended for such transforms [32]. Since object pose is 

a major source of variation, [56] used a recurrent 

convolutional encoder-decoder network to disentangle 

pose and identity and synthesize new views.  

Despite of increasing interests in disentangling factors 

of variation for unsupervised learning, less attention has 

been focused on their importance for supervised learning. 

A discriminative network often relies only on labels for 

the classification task and discards other informational 

sources of variation beneficial to data understanding. 

Our work fills the gap to explore the use of such factors of 

variation to improve DCNN classification performance.  

While multitask deep networks have become more 

popular than ever, the choice of related tasks are usually 

ad hoc. It remains a major open problem to “better 

characterize, either formally or heuristically, what related 

tasks are” for multitask learning [3]. The proposed work, 

which uses auxiliary tasks related to prominent factors of 

data variation, sheds insight on the favorable choice of 

tasks for multitask deep learning and helps to better 

understand the underling mechanism for multitask deep 

networks. For example, it is possible tasks become related 

and beneficial to each other when the data observations 

from different tasks share common explanatory factors. 

Consequently, it is possible to find a set of explanatory 

factors that explains away enough amounts of data 

variations to achieve performance gains obtained from 

more complex auxiliary tasks.  

3. Motivation 

Deep convolutional neural networks distinguish 

themselves from traditional machine learning approaches 

in enabling a hierarchy of concrete to abstract feature 

representations. A study on performance-optimized deep 

hierarchical models trained for object categorization and 

human visual object recognition abilities indicates the 

trained network’s intermediate and top layers are highly 

predictive of neural responses in the visual cortex of a 

human brain [55].  It has been suggested that the strength 

of DCNNs comes from the reuse and sharing of features, 

which results in more compact and efficient feature 

representations that benefit model generalization [1][2]. 

For example, the same convolutional filter bank is learned 

for the entire image domain in a DCNN, as opposed to 

learning location dependent filters. 

An intriguing aspect of DCNNs is their remarkable 

transferability [12] [57]. A deep network trained on one 

dataset is readily applicable on a different dataset. The 

ImageNet model by Zeiler and Fergus [58] generalizes 

very well on the Caltech datasets. In other works, deep 

models trained to perform one task, such as object 

recognition, can be repurposed to significantly different 

tasks, such as scene classification, with little effort [9][21]. 

These natural generic modeling capabilities across tasks 

have also been demonstrated in the success of several 

integrated deep convolutional neural networks proposed to 

simultaneously perform multiple tasks for various 

applications [11][15][17][37][44]. Such facts indicate 

deep networks learn feature representations more pertinent 

about the data population than a specific task requires. 

Furthermore, there has been significant empirical 

evidence emerging in the latest research that the neurons 

in trained DCNNs actually encode information that is not 

directly related to the training objectives or tasks. 

Semantic segregation of neuron activations on attributes 

such as “indoor” and “outdoor” has occurred in deep 

convolutional networks trained for object recognition, 

which has prompted application of these “DeCAF” [9] 

features to novel generic tasks such as scene recognition 

and domain adaptation with success. On the other hand, 

Zhou et al. [62] noticed that their DCNN trained for scene 

classification automatically discovered object categories 

relevant to the scene categories, even though only scene 

labels were used in training. Khorrami et al. [29] observed 

that deep neural networks that are trained for face 

recognition actually learn facial actions in some of its 

hidden neurons. The DeepID [48][49] network trained for 

face identification predicts gender information even 

though only identity labels are used in training. These 

observations suggest that deep models learn not only 

compact and reusable feature representations for the tasks 

that they are trained on, but also information more general 

and fundamental in order to optimize performance.  

Data populations in real applications encompass wide 

ranges of variations. Some are due to the factors of 

concern, while others are not. It is usually impossible to 

address one factor in isolation without taking into 
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consideration some of the other confounding factors. It is 

therefore necessary to either develop invariant features or 

explicitly model the effects of the confounding factors that 

significantly impact the data.  For example, for face 

recognition applications, a face image depends on not only 

the identity, but also various other nuisance factors such as 

pose, lighting, facial expression, age, etc. An accurate face 

identification system needs to factor out the effects of 

these confounding factors. 

When a DCNN is trained using a large data population 

to perform one specific task, it may naturally organize the 

network to capture the intrinsic data distribution governed 

by multiple influential explanatory factors. That is, as a 

result of the objective optimization, it needs to explain 

away the effects of the confounding factors. This explains 

the phenomenon in which neurons that predict auxiliary 

attributes arise in DCNNs trained for unrelated tasks.  

If unsupervised learning of latent factors naturally 

occurs during the training of a DCNN for a specific task, 

boosting the training with information on influential 

auxiliary variables is then expected to help reduce error 

and better capture the underlying data distribution for 

increased generalization power. This motivates us to 

investigate deep architectures that take advantage of 

available information on explanatory factors for improved 

prediction performance.  

In the following sections we describe augmented 

training of DCNNs using dominant confounding factors. 

We then instantiate a pose-aware deep network for general 

object recognition using this principle, and evaluate its 

performance on a SAR automatic target recognition task.  

4. Augmented Training Using Confounding 

Factors 

Knowledge of auxiliary explanatory factors can be 

easily incorporated into the deep learning framework as 

separate output constraints or losses in addition to the 

original outputs, in a manner similar to multiple outputs in 

multi-task deep networks [3][6].  A deep network trained 

this way is more comprehensive and knowledgeable. 

These additional constraints during training limit the 

solution space of the network. The constraints introduced 

by a dominant confounding factor likely shape the 

solution space in a principled way to reflect the impact of 

this factor on the underlying data distribution. In another 

perspective, this training augmentation of factors of 

variation can be considered as a form of regularization, in 

the sense that “the basic idea of all regularization methods 

is to restrict the space of possible solutions” [40].  This 

regularization influences the network to more accurately 

capture the structure due to multiple explanatory factors 

and their interactions, and consequently improves the 

network’s generalizability and performance. 

Figure 1 illustrates the general framework to augment 

training of deep convolutional neural networks. We start 

with a conventional architecture, consisting of 

convolutional layers at the bottom, then full-connected 

layers, and one or more prediction blocks at the top. 

Although the shown baseline architecture takes the 

simplest linear form, it can potentially be any of the 

existing deep architectures.  

We then introduce additional objective blocks that take 

input from the existing top or intermediate hidden layers 

to predict one or more auxiliary confounding variables. 

During training, the network optimizes a weighted sum of 

primary objectives for the original task, and secondary 

objectives reflecting additional knowledge pertinent to the 

data distribution. The secondary objectives can be custom 

designed for each factor, and their weights reflect the 

importance and variation of these factors, which can be 

application dependent. The circuits to optimize the 

secondary objectives are fairly small compared to the 
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Figure 1. General framework to augment training of deep 

convolutional neural networks. On the left is a standard 

(baseline) deep convolutional neural network (shown in 

blue) with one or more objectives. We augment the 

training using influential auxiliary data explanatory 

variables as secondary prediction blocks (shown in green). 

Knowledge of these confounding variables shapes the 

weights of the network via gradient back-propagation 

originating from these secondary prediction blocks. 
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remaining network. Information of confounding factors 

for the training data is infused to shape the network via 

these secondary prediction blocks during training, so that a 

DCNN learns and encodes both primary variables and 

secondary confounding factors of the input data, with a 

negligible cost in memory and computation time.  

Once the network has been trained, the auxiliary circuits 

for secondary factors can be removed to obtain a model 

with exactly the same architecture as the baseline, in terms 

of number of layers and number of neurons at each layer. 

However, the parameter values learned with the auxiliary 

information make this DCNN more comprehensive and 

discerning to perform accurate classification during testing 

at no additional computational cost. 

Note that this general framework fully observes the 

principle of compact and reusable feature representation, a 

major strength of deep convolutional neural networks 

[1][2]: a single network is employed to model various 

factors and interactions in the input data; feature 

representations are shared to fulfill various objectives. We 

simply supply the network with relevant information 

regarding the data and let the DCNN optimize for the best 

performance. 

In the following section we apply the general 

framework to introduce a pose-aware DCNN to perform 

enhanced object recognition robust to pose variations.  

5. Pose-Aware Deep Convolutional Neural 

Networks for Object Recognition 

Pose is one of the most dominant confounding factors 

for recognition tasks. The same object can have drastically 

different appearances when the viewpoint varies. It is 

essential for a high performing object recognition system 

to address such variations [47][59].  

Since variations introduced by pose are systematic, 

knowing the pose helps to explain away the induced 

variation for more accurate recognition. We investigate 

boosting DCNN classification performance using auxiliary 

pose information. For this purpose, our baseline 

architecture has a single prediction block at the top for 

classification. We introduce a secondary prediction block 

that takes input from the top hidden layer to regress on the 

pose variables. The secondary circuit introduced contains 

only (� � + 1)×�!  parameters, where � �  is the 

number of outputs from the top hidden layer, and �! is the 

dimension of the pose variable.  

We train the pose-aware DCNN using both class labels 

and pose information to optimize a weighted sum of two 

objectives: one on the predicted class error of the inputs 

(Eq 1), and the other on the pose alignment error (Eq 3). 

We use the popular softmax log-loss function for the 

classification task to minimize the class prediction error: 

Eq 1:   �������� ���,� = − (���� − ��� �
���)�

�!��∈� , 

where net stands for parameters of the network, X 

represents the training data, ℑ is the training set, C is the 

number of classes, �!"  is the response of the i-th input for 

the j-th class, and �!"! is the response of the i-th input for 

its truth class �!. 

Unlike class labels, pose variables are usually 

continuous. We perform regression using outputs from the 

top hidden layer to predict object pose. We only consider 

rotation here, as translation can be bypassed by either 

centering the image at object center, or by augmenting 

training data using randomly translated training images to 

achieve invariance to translation. In the case that the 

translation needs to be explicitly modeled, it is 

straightforward to add it into the formulation as well. 

We represent 3D rotations using quaternions [23] for 

their desirable properties when compared to Euler angles 

or rotation matrices. We compute the distance between 

two rotations �!  and �!  
as follows, which is both 

boundedly equivalent to the geodesic distance between the 

two rotation quaternions on the unit sphere, and 

converging fast as it approaches zero [26]: 

Eq 2:  ���� ��,�� = ������ ( �� ∙ �� ) 

where the range is [0,
!

!
]. This distance function is pseudo-

metric on the unit quaternion but is a metric function on 

the special orthogonal group ��(3) of orthogonal matrices 

with determinant 1. The loss function for pose regression 

is the sum of the distance between the rotation predicted 

for each training image and its truth rotation: 

Eq 3:  ������� ���,� = ����(�!�∈� ,�!),
 where �! and �! are the quaternions for the predicted pose 

and the truth pose of the i-th training input respectively.  

During training, the following combined objective 

function is minimized to learn the parameters of a deep 

network that simultaneously minimizes errors in predicted 

class labels and object poses of an input: 

 

Eq 4:  �������� ���,� = 

�������� ���,� + � ∙ ������� ���,�  

Even though the ultimate goal of the network is to perform 

classification, the auxiliary pose information helps the 

network to disentangle confounding factors that influence 

the input data and better characterize the categorical traits. 

We have applied our pose-aware DCNN architecture to 

improve automatic target recognition accuracy on SAR 

chips [13][41][42], an area where deep learning has 

recently demonstrated significant performance gains. 

Morgan first used a basic deep convolutional neural 

network [36] for SAR ATR. Later, “A-ConvNets” [54] 

was proposed to address the issue of over-fitting by 

replacing the fully connected layers in conventional deep 

neural networks with convolutional layers of local support 

1081



 

6 

to scale back the number of parameters for the deep 

network. Both approaches used only the target class labels 

in training the networks. 

We have used the publicly available MSTAR dataset 

[42], the standard benchmark for SAR ATR. This dataset 

contains SAR chips for ten target classes, with sample 

images and SAR chips of the targets shown in Figure 2. 

Note that the azimuth angle of the target drastically affects 

the appearance, since different radar scattering structures 

are illuminated as the target rotates relative to the sensor.  

We have followed the common convention to partition the 

training/testing sets using depression angles [42], 

producing a total of 6,073 training images and 5,378 test 

images. Noticing the symmetry w.r.t the range axis in 

most of the targets, as shown in Figure 2, we have applied 

horizontal flip augmentation to double the size of the 

training dataset. To train the pose-aware DCNN, we also 

associate each flipped image with a pose. Since the 

azimuth angle is 0 when a target is head on, we negate the 

azimuth angle of the original image and assign it to its 

flipped image. For this dataset of moderate size, we have 

used three convolutional layers followed by one fully 

connected layer, as shown in Figure 3.
 

Since all targets are on the ground plane, the 3D pose of 

a target degenerates to the azimuth angle of the target w.r.t 

the sensor.  For this special case, Eq 2 of the distance 

between two poses becomes 

Eq 5: dist(q
1
,q

2
) = arccos( cos((θ

1

azimuth
−θ

2

azimuth
) / 2) )

 

which has a range of [0,
!

!
].

 
We follow common practices [30][52] to train the 

network once the objective function is defined.  The 

weights and parameters of the network are randomly 

initialized with zero mean Gaussian distributions with 

� = 0.01 . Stochastic Gradient Descent is used in 

conjunction with momentum and weight decay with a 

mini-batch size of 100. The other parameter values used in 

training are shown in Table 1. 

                    

 
Figure 2. Targets in the public MSTAR SAR dataset of ten target classes, from top to bottom, bmp2, btr70, t72, 

btr60, 2S1, brdm2, d7, t62, zil131, and zsu23-4. Each row shows an example picture of the target class, followed 

by SAR chips for this target class, in the order of increasing azimuth angle, from 0
o
 to 360

o
. It is evident that 

azimuth angle drastically affects the appearance of the SAR chips. For each SAR chip, the vertical axis 

corresponds to range, and the horizontal axis corresponds to cross-range.  

 

1082



 

7 

Table 1. Parameter values used in DCNN training  

Momentum 0.9 

Weight decay 0.0005 

Learning rate 0.001 

Weight � for ������� 1.0 

 

To assess the advantage of the pose-aware DCNN 

architecture, we also evaluate the performance of a 

baseline model, which is identical except that the pose 

constraint is removed during training, so that the 

performance difference between the two trained deep nets 

is solely due to the pose reasoning.  

We show on the left and right side of Figure 4 the 

confusion matrices of the baseline network and the 

proposed pose-aware DCNN respectively, using test set of 

the MSTAR dataset. Even though our baseline 

architecture has performed very well with an accuracy of 

99.03% over all test images, the auxiliary pose 

information in training has sculptured the pose-aware 

DCNN to achieve an overall accuracy of 99.50%, which is 

almost an 50% reduction in relative error. 

Table 2 compares the performances of our proposed 

algorithm and existing approaches on the MSTAR dataset, 

including four top performing traditional ATR algorithms 

and two deep learning approaches. Not surprisingly, the 

top three performances are achieved using DCNNs: our 

baseline model, A-ConvNets [54], and the proposed pose-

aware model.  Note that our baseline model performs 

   
 

Figure 4. Confusion matrix (in percent) for SAR target classification using pose-aware DCNN (right) and baseline DCNN 

without pose information (left) on the public MSTAR dataset. Rows: truth; columns: result. 

 
Figure 3. Architecture of the pose-aware DCNN used for SAR ATR experiments on the public MSTAR dataset. 

1083



 

8 

statistically tied to A-ConvNets, 99.03% versus 99.1% in 

classification accuracy, even though we have used an 

augmented training set that is less than half of that used to 

train A-ConvNets: our augmented set of 12,146 training 

images using flip-augmentation, versus the training set of 

near 27,000 images using position jittering for A-

ConvNets. The proposed pose-aware DCNN improves 

upon the conventional architecture and achieves the best 

overall classification accuracy of 99.50% among currently 

published algorithms for the MSTAR dataset. 

Table 2. SAR ATR performance comparison with 

published algorithms. 

Algorithm Accuracy/St. 

Dev. (%) 

Bayesian Compressive Sensing [60] 92.6/NA 

SRMS [10] 93.6/NA 

Conditionally Gaussian Model [38] 96.9/NA 

Modified Polar Mapping [39]  98.8/NA 

Basic DCNN [36] 92.3/NA 

A-ConvNets [54] 99.1/NA 

Proposed baseline DCNN 99.03/0.13 

Proposed Pose-aware DCNN 99.50/0.10 

6. Conclusions 

To take full advantage of deep neural networks we need 

to better understand how they work to solve highly 

complex real world challenges. Taking clues from 

observations that deep networks capture attributes or 

functionalities that do not directly associate with the tasks 

they are trained on, we perceive that deep networks build 

holistic and general representations in order to optimize an 

objective on a dataset full of variations from many 

different sources. Recognizing that deep nets perform 

unsupervised learning of impacting latent factors during 

the supervised learning of a specific objective, we propose 

to boost training with available information on the 

auxiliary explanatory factors to obtain networks with 

better comprehension of the data population. We describe 

a general framework to incorporate knowledge of 

explanatory factors into the deep model for improved 

performance. We demonstrate the merit of the framework 

in improving performance of standard DCNNs in the 

application of pose-aware object recognition.  

As the world is full of variations and confounding 

factors are omnipresent for practical problems, our 

findings open up new possibilities to improve the 

performances of DCNNs. For example, it is possible to 

improve face identification and verification by 

augmenting the training procedure with information on 

confounding factors such as pose, lighting condition, 

facial expression, age, gender, etc. We will explore 

applying this principle to additional deep learning 

applications with different explanatory factors. 
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