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Abstract

Time-efficient acquisition of reflectance behavior to-

gether with surface geometry is a challenging problem. In

this study, we investigate the impact of system parame-

ter uncertainties when incorporating a data-driven BRDF

reconstruction approach into the standard pipeline of a

structured light scanning system. The parameters investi-

gated include geometric detail of scanned objects; vertex

positions and normals; and position and intensity of light

sources. To have full control of uncertainties, experiments

are carried out in a simulated environment, mimicking an

actual structured light scanning setup. Results show that

while uncertainties in vertex positions and normals have

a high impact on the quality of reconstructed BRDFs, ob-

ject geometry and light source properties have very little

influence on the reconstructed BRDFs. With this analysis,

practitioners now have insight in the tolerances required for

accurate BRDF acquisition to work.

1. Introduction

The topic of accurate appearance capture and digitiza-

tion is gaining attention in areas like the movie and gam-

ing industries [9], preservation of cultural heritage [6], and

quality assurance in production [18]. These applications de-

mand automatic and fast systems that can acquire full and

accurate appearance, including both radiometry and geom-

etry. In combination, these two components define appear-

ance, and numerous methods have been proposed for their

acquisition. Capturing high quality geometric models of

real world objects is today a well-addressed problem with

many good solutions. Different technologies exist such as

structured light (SL) scanners, multi-view stereo, or time-

of-flight, each having their own advantages and disadvan-

tages. With respect to radiometric properties, techniques

such as goniometric setups, curved mirror configurations,

and light domes can be used for accurately estimating bidi-

rectional reflectance distribution functions (BRDFs) of sim-

ple, often flat, geometries. However, robust approaches for

jointly estimating radiometry and geometry are few and of-

ten require advanced and expensive setups or produce low

quality results.

In this paper we investigate how a SL scanner, designed

for high quality geometry acquisition, can be modified with

few adjustments to also capture reflectance samples. Thus,

the scanner can also sample the BRDF of a scanned object

and reconstruct it using state of the art BRDF reconstruc-

tion methods. Using this system as an offset, we investigate

the influence on BRDF estimation caused by various sys-

tem uncertainties. The uncertainties investigated include:

geometric complexity of the scanned object, vertex position

and normal, and light source position and intensity. Our aim

is to gain insight into how BRDF reconstruction is affected

by various error sources and uncertainties. As a main re-

sult, we provide a lookup table for system designers, telling

them the system specifications required for correctly esti-

mating BRDFs in a given material/geometry configuration.

In order to ensure full control of all uncertainties, the exper-

iment is designed as a simulation of an SL scanner system.

The simulation is based on real world parameters from an

actual SL scanning system, as well as real measured BRDFs

from the MERL database [17].

Although this study focuses on an SL scanning system,

we believe that the proposed modification, as well as the

insights into the influence of error sources, applies to most

3D scanning systems where an image-forming sensor and a

light source is present. Likewise, while we apply the BRDF

reconstruction framework of Nielsen et al. [20], we expect

other BRDF modeling frameworks with strong priors to be

applicable as well.

2. Related Work

A multitude of techniques exist for acquiring shape and

appearance [30]. Most techniques are time consuming or

require highly specialized equipment. In the following, we

relate our work to instrumental setups that are similar to the

one we propose. Our setup is a structured light 3D scan-

ner setup with two cameras, a projector light source, and a

turntable. An additional LED source is added to our setup.
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An example of early work investigating the acquisition

of shape and reflectance properties using images is that of

Ikeuchi and Sato [11]. They fit the Torrance-Sparrow BRDF

model [28] to samples obtained from a range image and a

brightness image. To investigate the convergence of their

method to true values (robustness), they do a simulation

study based on rendered images with different noise levels

applied. This enables them to draw important conclusions

with respect to the sensitivity and range of applicability of

their method. Unfortunately, it seems that such simulation

studies are very uncommon in subsequent work in this area.

To fill this gap, we present a simulation study of this kind

for our more contemporary acquisition technique.

The idea of a camera, a light source, and a turntable for

joint acquisition of shape and appearance (surface geome-

try and BRDF) was pioneered by Lu and Little [15]. They

use a collimated source and estimate the BRDF for (near)

zero half-angle by finding the points of maximum intensity

and tracking them as the object turns around its axis. After

this, they acquire the surface geometry using a shape from

shading approach. Their approach requires assumption of a

smooth object and a uniform BRDF across the object sur-

face. The instrument we consider is similar in complexity,

but based on a structured light setup with a projector light

source and two cameras (stereo). We also flip the proce-

dure and acquire shape using structured light, and then we

estimate a full isotropic BRDF.

It is interesting to note that Lu and Little [15] try pertur-

bations of depth and rotation axis to investigate robustness

of their technique. In addition, they indicate that experi-

ments on synthetic images to perform a more in-depth in-

vestigation would be appropriate. Nevertheless, we are un-

able to find such an investigation in the work following that

of Lu and Little. Our goal is thus to provide one.

Based on robot arm sample rotation and a structured light

range scanner, Sato and Ikeuchi [24] extend their earlier

(range and brightness image) technique to include scan of

the full geometry of an object and estimation of its spatially

varying reflectance properties. The reflectance properties

are, however, parameters in an analytic BRDF model and no

BRDF ground truth is available for validation. Marschner

et al. [16] propose a similar technique, but based on a hand-

held camera and the Lafortune BRDF model [13]. Employ-

ing a more conventional structured light 3D scanner (or a

computed tomography scanner) to obtain surface geometry,

Lensch et al. [14] extend the technique to acquire Lafortune

model parameters for spatially varying BRDFs.

Krzesłowski et al. [12] present a structured light scan-

ner with added LED sources for integrated acquisition of

BRDF and surface geometry. However, they fit their sam-

pled BRDF data to the Blinn-Phong model [2, 22], which

only provides a good BRDF fit for a limited range of mate-

rials [19]. The structured light scan provides a sparse sam-

pling of the BRDF per sample point in the scanned surface

geometry. The Blinn-Phong model is fitted to this sparse set

of BRDF samples. The acquisition approach we investigate

is similar, but we do a simulation study to identify the im-

pact of different potential error sources. We limit our study

to an object with just one BRDF across the object surface,

and we use the BRDF model of Nielsen et al. [20].

Using a beam splitter to have coaxial camera and pro-

jector light source, Holroyd et al. [10] develop a goniore-

flectometer which can also acquire the surface geometry

using structured light. While this technique delivers high

quality acquisitions, it is not a time-efficient approach like

a structured light setup. Sitnik et al. [27] propose a faster

integrated measurement system with a single image sensor.

Here, a multi-spectral camera is combined with a projec-

tor and a grid of 16 broadband light sources to capture both

the 3D geometry and multi-spectral light intensity informa-

tion. In another complex setup, Tunwattanapong et al. [29]

propose a rotating light arc providing spherical harmonic il-

lumination used together with five cameras to reconstruct

reflectance maps. The geometry is then reconstructed us-

ing multi-view stereo based on the diffuse and specular re-

flectance maps. Finally, Schwartz et al. [25] propose a sys-

tem, based on SL and HDR imaging, for measuring bidirec-

tional texure functions (BTFs) using a light dome composed

of 188 LEDs, four projectors, eleven cameras and a rotation

stage. The complexity of these instrumental setups is sig-

nificantly higher than the SL setup that we propose.

3. Implementation

In this study, the BRDF estimation process revolves

around a structured light scanning system like the one il-

lustrated in figure 1. The system is composed of two

cameras used for triangulation, a projector for projecting

an encoding pattern, a rotation stage for rotating a sam-

ple, and a scene light. The principles behind the approach

should be applicable to any 3D scanning system comprised

of components including an image-forming sensor and a

light source. In the following subsections, the modified SL

capturing pipeline is outlined along with the reconstruction

method. The implementation of the modifications required

for a structured light scanning system to estimate BRDFs

is fairly straightforward in practice, however, to ensure full

control of all variables in the study, as well as avoiding un-

foreseen noise sources, the reflectance acquisition part of

the pipeline is here simulated. Below, the details of this

simulation process will also be covered.

3.1. Capture Pipeline

The principles behind estimating a BRDF in the SL

pipeline are based on the assumption that the BRDF can be

observed under a sufficient number of view/light configura-

tions. We need enough to confidently fit a model to the ob-
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Figure 1: Structured light scanning system consisting of two

cameras used for triangulation, a projector for projecting an

encoded pattern, a rotation stage for rotating the sample,

and a scene light.

servations. Enough configurations are obtained in scenarios

where a scanned object, with a sufficiently varying surface

geometry, consists of a homogeneous material and is rotated

during the capturing process. Any point on the surface will

thus be observed under different view/light configurations,

and with a sufficiently large number of points with unique

surface normals, a sufficiently large number of BRDF sam-

ples can be acquired for reconstruction.

Clearly, the full four-dimensional space spanned by the

BRDF will not be covered by these observations, let alone

due to the fixed baseline between light source (projector)

and observer (cameras), which corresponds to a fixed dif-

ference angle (θd) in the Rusinkiewicz parametrization [23].

Even in a better posed scenario as figure 1, where an addi-

tional scene light is present, the BRDF space is still very

sparsely sampled. Nonetheless, a sufficient number of ob-

servations can in fact be acquired through this process if we

use a strong prior when fitting a BRDF model.

The SL scanning pipeline involves projecting an encod-

ing pattern onto the target object and triangulating the en-

coded pixels seen by the camera(s). This is sometimes fol-

lowed by a rotation of the sample, after which the scanning

is repeated. The modification to the standard SL scanning

pipeline is simple and consists only in capturing a high dy-

namic range (HDR) image of the sample. This is done be-

fore the sample is rotated (or removed) using the triangula-

tion camera(s) and a fully lit projector. If a scene light is

present, as it is here, an additional HDR image is captured

under its illumination. With the captured HDR images, it

is possible in post-processing to reproject the captured ver-

tices onto these and acquire a radiance value. With knowl-

edge of vertex normal, camera position, light source posi-

tion, and light source intensity, this radiance value may be

converted into a BRDF sample, defined by

fr (ωi,ωr) =
dLr (ωr)

dEi (ωi)
, (1)

Figure 2: Geometry and BRDF capture pipeline in a struc-

tured light scanning system.

which is the ratio between the radiance reflected off a sur-

face in a specific direction and the irradiance hitting a sur-

face from another specific direction.

The overall capturing pipeline is depicted in figure 2.

The pipeline consists of:

1. Structured light scanning

2. HDR image capture

3. Mesh reconstruction

4. Mesh projection onto HDR images

5. Per vertex HDR intensity to reflectance conversion

6. BRDF model fitting

In step 1, a traditional 3D scanning is carried out, in this

case using structured light. Before altering anything in the

scene in any way, e.g. by rotating or removing the sample,

an HDR image is captured in step 2 using the multiple expo-

sure approach of Debevec et al. [3]. This ensures a floating

point precision image conforming with the scanned geom-

etry and camera calibration of the SL scanner. The acqui-

sition part is followed by post processing, initialized with a

meshing in step 3 of the acquired point cloud. As will later

become apparent, a mesh is required for filtering purposes.

In step 4, the mesh is projected onto the HDR images, as-

signing every vertex with an HDR intensity. All vertex in-

tensities are in step 5 converted to reflectance values based

on scene geometry, and finally in step 6 a BRDF model is

fitted to the observed BRDF samples.

3.1.1 Structured Light Scanner

In order to provide a thorough description of our method,

we briefly outline our SL scanning strategy. Please note

that this is by no means a complete description. For specific

details, we refer to the work of others [8, 33, 4].

SL scanning is a form of stereo vision. Essentially, stereo

vision is the process of reconstructing the 3D shape of an

object by using a set of cameras as protractors. The pixel

positions, and thereby the incident angles, of a given 3D
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point are found in the camera images. From knowing the

mutual transformations between the cameras, the 3D posi-

tion of the point can be computed based on trigonometry.

The key difficulty is finding corresponding points in the im-

ages. SL based techniques seek to lower the complexity of

this correspondence problem by projecting a known pattern

onto the reconstruction object. There are a plethora of en-

coding strategies available [5], but they all seek to assign

unique ID numbers to pixels based on their distance from

the projector. These ID numbers are then used to determine

pixel correspondences, and from that compute the depth of

the surface under the pixels.

Based on the conclusions made by Eirı́ksson et al. [4],

we have selected a scanner system composed of two cam-

eras and one projector which uses the phase shifting (PS)

encoding strategy [7]. In short, the projector projects a se-

ries of spatially distributed gray-scale sinusoidal patterns

onto the target surface. Each pattern has a given frequency

and phase shift. We use three frequencies with up to 32

phase shifts per frequency for a total of 64 patterns.

3.1.2 Vertex Reflectance Assignment

From the calibration of the SL scanning system, the intrin-

sics and extrinsics have been determined. Commonly these

are described by a pinhole camera model with a projection

matrix P given as:

P = K [R t] , (2)

with R and t being the rotation and translation of the cam-

era respectively, and K being the intrinsic parameters of the

camera [34]. With this, any 3D point in homogeneous co-

ordinates, q, may be projected onto the cameras 2D image

plane by:

q̂ = Pq. (3)

Thus, any vertex from a scanned object may be reprojected

onto its corresponding HDR image and have a specific ra-

diance RGB value assigned to it. By calibration with e.g.

Spectralon, the light intensity at the sample can be prede-

termined, and often this intensity can be assumed constant

over the physical span of the sample. With this prior knowl-

edge, and correcting with the cosine between light and ver-

tex normal, the vertex radiance value may be converted into

a BRDF value:

fr =
HDR(Pvposition)

(ωi · vnormal) I
, (4)

where HDR(q̂) is the HDR radiance value at position q̂, v is

the vertex, ωi is the normalized light direction, and I is the

predetermined light intensity at the position of the scanned

sample.

Note that some vertices may be projected into shadow

regions in the HDR image. In order to avoid this, two

tests are employed. First, all vertices with a normal facing

away from the camera or light are removed, this is the case

when ωr/i · vnormal <= 0. This test filters most invalid

observations away, but in scenarios where self-shadowing

may occur, a shadow map calculation is also applied [31].

This, however, requires that the scanned object has been

converted into a 3D mesh, which in itself may introduce

artifacts if care is not taken.

3.1.3 Data-Driven BRDF Reconstruction

The challenge of fitting a reflectance model to the sparse

number of BRDF samples calls for a model with a strong

prior. In this study, the data-driven BRDF reconstruction

framework of Nielsen et al. [20, 32] is chosen for this pur-

pose, as it is known to work well for problems where only

very few BRDF samples are available. The model is based

on the MERL database [17] of isotropic BRDFs spanning a

wide range of common materials. Using a log-relative map-

ping of reflectance values, projections in principal compo-

nent space allows inferring missing observations from ex-

isting ones. Effectively the model reconstructs a MERL

format BRDF, i.e. a 90 × 90 × 180 bin tabulated isotropic

BRDF, from any number of input observations provided.

The biggest limitation of this approach is that it requires

the measured material to lie within the convex hull spanned

by the MERL database. If this is met, under ideal lighting

conditions, as little as two images are sufficient to faithfully

reproduce a material.

3.2. Simulation of Pipeline

In order to maintain full control of all uncertainties in this

fairly complex acquisition pipeline, a simulated pipeline is

used to produce realistic HDR images, conforming with a

true SL system. We do this by initially picking a ground

truth mesh and ground truth measured BRDF from the

MERL database. Using these, combined with the true SL

system projection matrices, light source positions, and ro-

tation stage positions, an OpenGL renderer is used to pro-

duce a series of HDR renderings of the chosen geometry

and BRDF as it would have been seen by the SL system.

An example of such renderings is shown in figure 3, where

3 different meshes with the ”blue-rubber” BRDF applied

have been rendered as would be seen by the SL scanning

system (although cropped here). With this, the ground truth

appearance behind every HDR image is available, allowing

for a quantitative evaluation of reconstruction.

3.2.1 Dataset Generation

Four different types of materials and three different types of

geometries were chosen to generate the evaluated dataset.

Material-wise, four different levels of specularity were cho-

sen, all in different colors, covering the span of material
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Figure 3: Icospheres with 3 different tessellation levels: 1, 3

and 5. For the highest tesselation level vertex normals have

been smoothed.

behavior that would be expected in the real world. The ma-

terials are ”blue-rubber”, ”green-metallic-paint”, ”purple-

plastic”, and ”specular-black-phenolic”, with the first hav-

ing very soft highlights and the last being highly specu-

lar (renderings are available in the lower left corner of fig-

ures 5–8). As the data-driven BRDF reconstruction model

is also based on the MERL database, these four materials

were excluded in the model-training. Geometry-wise three

different geometries were chosen, spanning the amount of

geometric detail that can be expected from real world ob-

jects. The geometries are based on an icosphere with in-

creasing tesselation levels and are shown in figure 3. This is

motivated by the fact that a sphere naturally covers all pos-

sible surface normals, while a plane only covers a single.

Thus, the closer the geometry is to a sphere, the more ideal

are the BRDF reconstruction conditions from a geometry

point of view. Each of the three meshes has been subdi-

vided to consist of roughly 15000 vertices and are scaled to

have a diameter of 100 mm in the simulator.

We generate a dataset of HDR images using the ma-

terials and geometries described above. Both the scene-

light and projector are used as light sources and both cam-

eras are used for observing, see figure 1. In addition, the

sample is rotated in 10 steps from 0◦ to 180◦. This gives

nconf = nrot×nlights×ncameras = 10× 2× 2 = 40 HDR

images per material/geometry configuration and ntotal =
nconf × nmaterials× = ngeometries = 40 × 4 × 3 = 480
HDR images in total.

3.2.2 Noise Addition

There are a range of elements in the pipeline depicted in

figure 2 that affect the accuracy of the BRDF observations

acquired. Any uncertainties in these will obviously cause

uncertainties in the BRDF model-fitting. To gain insight

into this, four types of uncertainties are investigated:

Vertex position. The precision of the SL system will de-

termine the geometric noise present in a 3D scan. Clearly,

as the vertices are projected onto HDR images, any error in

position will cause a wrong assignment of radiance value.

Vertex normal. Commonly, surface normals are not a di-

rect product of the 3D acquisition procedure but are esti-

mated afterwards, e.g. based on the spatial distribution of

neighboring vertices. This makes the estimation prone to

errors, and any wrong orientation of normals will directly

influence the reflectance estimate.

Light position. While camera positions are very precisely

calibrated, the light position is oftentimes significantly more

difficult to determine. The position affects the light direc-

tion and thus also the reflectance estimate.

Light intensity. Finally, precise knowledge of the light in-

tensity at any given 3D point in the SL system is not easily

obtained. As the light intensity is used to compute the frac-

tion of light reflected off the material surface, it too directly

influences the reflectance estimate.

As the evaluated dataset is simulated, the exact system

parameters are known. This allows for, prior to processing

the data, manually adding a controlled amount of noise to

any of the above components. To apply noise in our exper-

iments, we use a normal distribution (Gaussian noise) with

the given position or normal as mean and σ is standard devi-

ation. For normals, the noise only applies to the polar angle.

To add noise in the case of light intensity, we multiply the

intensity by a normal distribution with unit mean and σ/100
as standard deviation (percentage noise).

3.2.3 Evaluation

Evaluating the quality of an estimated BRDF compared to

the ground truth is not trivial and is indeed a research field

in itself. In these experiments, both qualitative and quanti-

tative measures are presented:

In-plane reflectance profiles. For qualitative evaluation,

45◦ in-plane reflectance profiles of estimated and ground

truth BRDFs are presented. These plots visualize the gen-

eral shape of the specular highlight as well as parts of the

grazing angle behaviour.

Ray-traced sphere renderings. Another qualitative eval-

uation is using a physically based renderer [21]. Here the

BRDFs can be visualized under realistic environment light-

ing conditions, giving the viewer an impression of how the

material would look in the real world. The material exam-

ples shown in figures 5–8 are rendered this way.

Tone mapped color difference. Rendered images, us-

ing the approach above, of the ground truth and recon-

structed BRDFs are compared using the CIEDE2000 color

difference perception measure. The HDR images are first

scaled to the visible range using Reinhard tonemapping, and

gamma correction (γ = 2.2) at F-stop 0 is applied [1]. The

images are then converted to the CIE 1976 L*a*b* color

space, and the CIEDE2000 color difference formula [26]

(with [kL kC kH ] = [1 1 1]) is used to calculate the color

difference ∆E00. The average of all pixel differences is cal-

culated and used as a perceptual similarity measure between
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blue-rubber

green-

metallic-

paint

purple-paint

specular-

black-

phenolic

Icosphere 1 0.77±1.02 2.77±2.93 1.56±1.96 1.07±1.13

Icosphere 3 0.37±0.78 2.60±3.11 0.82±1.01 2.50±3.14

Icosphere 5 0.41±0.67 3.00±3.23 0.55±0.75 1.43±1.92

Icosphere 5*
0.52±0.96 5.19±5.20 1.58±1.55 2.29±1.63

Table 1: Errors for increasing geometric detail (icosphere

tesselation level). Errors are measured as the average ∆E00

color difference between tone mapped renderings of ground

truth BRDF and reconstruction. Icosphere 1,3,5 are recon-

structions using two light sources, while 5* are reconstruc-

tions using only the projector as light source.

images, and the standard deviation represents the certainty

of this number.

4. Results

We report results for BRDF estimation under various

noise influences. This includes an evaluation of BRDF es-

timation performance under three different geometry com-

plexities, followed by an evaluation of performance under

influence of uncertainties with respect to vertex position,

vertex normal, light source position, and light source inten-

sity. Due to page limitations, some comparisons of in-plane

reflectance profiles and renderings have been omitted. A

summary of comparisons are reported in tables 1 and 2.

4.1. Geometry Dependency

In order to evaluate how much geometric complexity af-

fects the quality of an estimated BRDF, estimations were

carried out on the simulated icospheres with tesselation lev-

els 1, 3 and 5, depicted in figure 3. The estimates were

computed under ideal conditions, i.e. no noise added to

any of the system components listed in section 3.2.2. In

figure 4, quantitative comparisons of the material ”purple-

paint” are presented in the form of in-plane reflectance pro-

files and renderings. It may be seen that as geometric detail

increases, the quality of reconstruction improves, however

the improvement is surprisingly small. In table 1, the re-

sults for all four materials are listed, using the ∆E00 color-

difference measure between ground truth rendering and re-

constructed rendering. To the convenience of system de-

signers, errors using icosphere level 5 combined with only

the projector as light source is also presented in the bottom

row of table 1.

To provide as ideal conditions as possible for the noise

simulations, the icosphere level 5 geometry will be used in

the following evaluations. For all evaluations, 30 repetitions

were carried out to estimate mean and standard deviation of

reconstruction. Quantitative comparisons for all materials,

Figure 4: Ideal reconstructions of ”purple-paint” material,

using icosphere tesselation levels {1, 3, 5}, shown as 45◦ in-

plane profiles. Solid lines indicate ground truth BRDF RGB

channels, dashed lines are the reconstructed BRDF RGB

channels. Bottom row shows renderings of reference BRDF

(left) and reconstructions for the respective icosphere levels.

under various error influences are reported in table 2 using

the ∆E00 error measure.

4.2. Influence of Vertex Position Noise

Errors in triangulation during the SL scanning procedure

directly affect the precision of vertex positions. Commonly,

but depending on material, SL scanners have a very high

precision in the order of microns [4]. To investigate the

sensitivity to vertex positions, all vertices are affected by

three relatively large levels of noise prior to projection onto

HDR images. The noise is added as a normally distributed

noise on the xyz-components of each vertex with standard

deviations of σ ∈ {1, 3, 5}mm. In figure 5, the qualitative

evaluations for material ”blue-rubber” are presented. As

is apparent, grazing angle behavior is greatly affected by

vertex uncertainties. This is most likely caused by the fact

that even small uncertainties may at grazing angles project

a vertex onto the black background, rather than the target

sample. Likewise, for very specular materials as ”specular-

black-phenolic”, vertices may miss the very narrow high-

light causing errors in estimating the specular reflection.
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blue-rubber

green-

metallic-

paint

purple-paint

specular-

black-

phenolic

Ideal 0.41±0.67 3.00±3.23 0.55±0.75 1.43±1.92

1mm 0.66±1.15 3.03±3.44 0.91±1.56 2.27±3.37

Vertex 3mm 2.50±2.82 3.11±4.17 2.11±3.16 3.41±5.15

5mm 4.16±4.08 3.24±4.77 3.59±4.32 4.22±5.76

5
◦

0.42±0.63 3.00±3.20 0.68±1.03 3.15±5.66

Normal 10
◦

0.67±0.98 3.08±3.17 0.99±1.70 3.72±6.92

30
◦

1.81±2.11 4.70±5.08 2.27±3.27 5.24±8.31

10mm 0.51±0.72 3.01±3.26 0.62±0.84 2.17±3.32

Light Pos. 25mm 0.73±0.89 2.68±3.03 1.02±1.16 3.05±5.03

50mm 1.77±1.92 3.14±3.51 1.91±2.27 3.74±6.08

5% 0.64±0.79 3.01±3.29 0.66±0.78 1.90±2.80

Light Int. 10% 1.00±1.15 3.05±3.38 0.96±0.99 1.98±2.81

20% 1.75±1.75 3.40±3.74 1.86±2.10 2.27±2.80

Table 2: Errors for different types of noise introduced to

the structured light scanner system. Errors are measured as

the average ∆E00 color difference between tone mapped

renderings of ground truth BRDF and reconstruction.

4.3. Influence of Vertex Normal Noise

As surface normals are often derived from the mesh, they

often suffer from large uncertainty. This directly affects the

frame of reference in which the BRDF is estimated. To sim-

ulate such uncertainties, all normals in the mesh are tilted

in a random direction away from the true normal by a nor-

mally distributed angle. Three different standard deviations

are reported here: σ ∈ {5◦, 10◦, 30◦}. In figure 6, qualita-

tive evaluations are presented for ”purple-paint”. Although

specular highlights are somewhat affected, it is noteworthy

how large an amount of noise we can add to the normals

while still obtaining a decent recovery of the material.

4.4. Influence of Light Source Position Noise

As mentioned in section 3.2.2, it may be difficult to de-

termine the precise position of light sources in the SL sys-

tem. To simulate such uncertainties, normally distributed

noise is added to the xyz-components of the light posi-

tions (projector and scene-light) with standard deviations of

σ ∈ {10, 25, 50} mm. In figure 7, the influence of this error

is shown for the ”green-metallic-paint” material. Surpris-

ingly, even for the relatively large amounts of noise applied

here, reconstructions remain very close to the results under

ideal conditions as well as the ground truth.

4.5. Influence of Light Source Intensity Noise

Finally, noise applied to the intensity of the light sources

(projector and scene light) is applied. Here, the noise is

Figure 5: BRDF reconstructions of ”blue-rubber” material,

for increasing noise added to vertex positions, shown as 45◦

in-plane profiles. We add Gaussian noise with a standard

deviation of {1, 3, 5}mm. BRDF RGB channels are plot-

ted with solid lines as ground truth and dashed lines as the

mean reconstruction. Shaded regions indicate limits for ±2
standard deviations. Bottom row shows renderings of refer-

ence BRDF (left) and mean reconstructions for the respec-

tive noise levels. Statistics are based on 30 evaluations.

modeled as a normally distributed percentage with a mean

of 100%. The standard deviation of the noises applied are

σ ∈ {5, 10, 20}%. Figure 8 shows the results for the mate-

rial ”specular-black-phenolic”. Here, the strong prior of the

BRDF reconstruction model almost fully handles the un-

certainties in intensity although this property is very tightly

coupled to reflectance.

4.6. Summary

Table 2 summarizes the BRDF errors caused by intro-

ducing the noise types listed above using the ∆E00 error

measure. We observe that, not surprisingly, accuracy of

vertex positions has a great impact on the quality of the re-

covered material. Recall that the object size is 100 mm,

only a few percent error are enough to throw the BRDF es-

timate off. On the contrary, variations in surface normals

are less influencing than we would have expected, requiring

especially for soft materials a lot of noise before throwing

the BRDF recovery off. Finally positions and intensities of

light sources are seen to have a surprisingly small impact on

BRDF reconstructions.
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Figure 6: BRDF reconstructions of ”purple-paint” material,

for increasing noise added to vertex normals, shown as 45◦

in-plane profiles. We add Gaussian noise with a standard

deviation of {5◦, 10◦, 30◦}.

Figure 7: BRDF reconstructions of ”green-metallic-paint”

material, for increasing noise added to the two light source

positions, shown as 45◦ in-plane profiles. We add Gaussian

noise with a standard deviation of {10, 25, 50}mm.

5. Discussion and Conclusion

We investigated how a structured light 3D scanning sys-

tem can be modified with minimal effort to also estimate

Figure 8: BRDF reconstructions of ”specular-black-

phenolic” material, for increasing noise added to the

two light source intensities, shown as 45◦ in-plane pro-

files. We add Gaussian noise with a standard deviation of

{5%, 10%, 20%}.

BRDFs. Results indicate that high quality reflectance re-

covery is in fact possible in such a setup. We carried out a

variational study in a simulated environment to investigate

how a range of uncertainties in system parameters affect the

quality of the estimated reflectance properties. The goal of

this study is to provide system designers with a lookup ta-

ble of system parameter uncertainties required to recover

a given material at a given quality-level. This is needed

in the design phase of future systems for full appearance

acquisition. Tables 1 and 2 provide this information and

demonstrate that even under the poor gonioreflectometric

conditions provided by a SL system, very high quality re-

flectance may be recovered. An interesting insight gained

here is that uncertainties in surface normals in fact have a

smaller impact on the quality of estimated BRDFs than one

might have expected. Likewise, uncertainties in illumina-

tion properties, including position and intensity, have little

influence on the recovered reflectance.

Although the experiments carried out here are only simu-

lated, we believe that they reflect well what can be expected

from real world measurements. It has not been the inten-

tion with this paper to cover the physical implementation of

this pipeline as well as the performance of the approach in

real-world scenarios. Nonetheless, the images presented in

figure 2 do in fact originate from an actual implementation

of the system, demonstrating that it also works in practice.

It is our intention to elaborate on these results in the future.
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