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Abstract

Person re-identification (re-id) has drawn significant at-

tention in the recent decade. The design of view-invariant

feature descriptors is one of the most crucial problems for

this task. Covariance descriptors have often been used in

person re-id because of their invariance properties. More

recently, a new state-of-the-art performance was achieved

by also including first-order moment and two-level Gaus-

sian descriptors. However, using second-order or lower

moments information might not be enough when the fea-

ture distribution is not Gaussian. In this paper, we address

this limitation, by using the empirical (symmetric positive

definite) moment matrix to incorporate higher order mo-

ments and by applying the on-manifold mean to pool the

features along horizontal strips. The new descriptor, based

on the on-manifold mean of a moment matrix (moM), can be

used to approximate more complex, non-Gaussian, distri-

butions of the pixel features within a mid-sized local patch.

We have evaluated the proposed feature on five widely used

re-id datasets. The experiments show that the moM and hi-

erarchical Gaussian descriptor (GOG) [30] features com-

plement each other and that using a combination of both

features achieves a comparable performance with the state-

of-the-art methods.

1. Introduction

Person re-identification (re-id) is the problem of match-

ing images of a pedestrian across cameras with no overlap-

ping fields of view. It is one of the key tasks in surveil-

lance video processing. Due to the extremely large inter-

class variances across different cameras (e.g., poses, illumi-

nation, viewpoints), the performance of the state-of-the-art

person re-id algorithms is still far from ideal [18, 50]. Most
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Figure 1. Sample images where up to second-order moments are

not enough to distinguish targets. Each column shows one pair

of samples from VIPeR, CUHK01, PRID450s and GRID, respec-

tively. The images on the first row are from the “probe” view and

the second row are from the “gallery” view. The blue rectangle

indicates a 16×16 patch. The third row shows ranking results us-

ing the proposed moM feature and the GOG [30] feature (lower is

better). In these examples, with the help of higher order moments,

moM is more discriminative when the person has fine-detailed ap-

pearance, e.g., the checkered pattern in column 1 and 2, the salient

white collar in column 3 and the flower pattern in column 4.

of the existing re-id literature focuses on two aspects of the

problem: 1) designing viewpoint invariant feature descrip-

tors [3, 12, 14, 21, 27, 28, 29, 30, 44, 48] and/or 2) learning

a supervised classifier to alleviate the effect of the variances

across the cameras [19, 21, 22, 33, 35, 37, 43, 45, 47, 24].

Recently, deep neural networks have been adopted to learn

both the descriptor and classifier simultaneously [1, 6, 20,

40]. For more details, we refer the reader to [11, 18, 42, 50].

in this document are those of the authors and should not be interpreted as

necessarily representing the official policies, either expressed or implied,

of the U.S. Department of Homeland Security.
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This paper focuses on the first aspect. In the past decade,

different types of descriptors have been proposed and tested

on the re-id problem. Two recently proposed techniques led

to a significant improvement in the quality of these descrip-

tors [22, 30].

The first technique replaces the simple computation of

histograms with more advanced feature-encoding methods.

Along this line, covariance matrices are used to encapsu-

late the second-order moment information in a local patch

[3, 14]. By recognizing the importance of also including

the first-order moment in the feature representation, [27, 30]

achieved the state-of-the-art performance using a symmet-

ric positive definite (SPD) embedded Gaussian descriptor.

However, a limitation of this descriptor is the implicit as-

sumption that the underlying distribution is a Gaussian.

When the assumption does not hold, (see Figure 1), up to

second-order moment information is not sufficient to com-

pletely represent relatively complex local regions. Though

Fisher Vector encoding features can mimic a non-Gaussian

distribution with a Gaussian mixture model (GMM) and

achieve decent results on re-id [12, 29], it assumes that

the variables at the pixel-level feature are independent from

each other. Moreover, the GMM needs a training set to learn

its parameters. In contrast, here we propose to take into ac-

count higher (greater than two) order moment information

by using the empirical moment matrix to approximate arbi-

trary non-Gaussian distributions in the local region without

requiring learning parameters.

The second technique applies a strip level pooling step

to further improve cross-view invariance. As identities are

roughly aligned along the vertical direction (Figure 1), dif-

ferent viewpoints would mainly affect the appearance distri-

bution in the horizontal direction. Based on this assumption,

Liao et al. [21] applies maximum pooling along the same

height and Matsukawa et al. [30] uses another Gaussian

model to approximate the distribution of the dense patches

descriptors. In this paper, we also use horizontal mean pool-

ing to improve the feature viewpoint invariance. Further-

more, since moment matrices are on a SPD manifold, we

also propose to use the on-manifold mean and flattening on

its tangent space.

Experiments on five public benchmark datasets illustrate

the benefits of encapsulating higher order moments infor-

mation. The combination of proposed mean of moment

(moM) features with GOG [30] achieves comparable or bet-

ter state-of-the-art performance on all the tested datasets.

2. Related Work

Person re-id specific hand-crafted features mainly focus

on the invariance across different cameras. In [10], based on

the symmetric axis of each body part, a carefully designed

body configuration was modeled. Then, the weighted color

histogram was computed, depending on the distance be-

tween the pixel and the axis. The final representation was

also combined with maximally stable color regions (MSCR)

and recurrent high-structured patches (RHSP). Ma et al.

[28] used the biological inspired feature (BIF) as the raw

feature and compressed it using the similarity between the

covariance matrices of small patches. Since then, following

the development of metric learning methods, researchers

tend to use native but redundant features to feed into the

supervised learned metric. Gary and Tao [13] used 8 color

channels (RGB, HS, and YUV) and 21 texture filters. In

[31], responses of texture filters were substituted by LBP

features. Instead of color histogram, in [15], the local mean

of each patch was adopted. Pedagadi et al. [35] added

the first three moments to the color histogram to repre-

sent a small patch. More recently, Zhao et al. [48] com-

bined the LAB histogram with dense SIFT descriptors on

a densely sampled grid. To obtain a stable representation,

color names have been applied recently. In [44], salience

color name distributions were computed over different color

models to remedy the illumination variance. Zheng et al.

[49] encoded the local color name descriptors through Bag-

of-Words. Liao et al. [21] proposed maximum-pooling the

color and SILTP [23] histogram along the same horizontal

strip to achieve better viewpoint invariance.

Covariance and Gaussian descriptors have been applied

in person re-id, to compress more information than his-

togram and local mean. In [3], pixel level color intensity

and gradient in a local patch are compressed into a covari-

ance matrix. Ma et al. [27] modeled the low level feature

with a Gaussian distribution and compare the Gaussian with

the product on Lie group. In [29], GMM is used to model

the pixel feature by assuming the variants are independent

of each other. Inspired by LOMO [21], a hierarchical Gaus-

sian feature (GOG) was proposed in [30]. Similar to previ-

ous work, pixel features in a small patch are modeled by a

Gaussian distribution, which is embedded in an SPD man-

ifold. Then, the second level models the distribution of the

first level descriptors within a strip around the same height.

Because the covariance matrix lies on a Riemannian

manifold, several on-manifold metric based methods have

been proposed for different computer vision applications.

In [39], the covariance matrix and on-manifold classifica-

tion were applied for pedestrian detection. Huang et al.

[16] proposed on-manifold metric learning for image set

classification. By generalizing VLAD [17] to Riemannian

manifold, Faraki et al. [9] showed the effectiveness of on-

manifold VLAD in different applications. Zhang et al. [46]

compared different on-manifold metrics and applied them

for skeleton activity classification.

Our proposed feature moM generalizes the naive Gaus-

sian distribution model or independent multi-variant GMM

with the empirical moment matrix. Using higher order mo-

ments, it can approximate arbitrary non-Gaussian distribu-
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Figure 2. moM feature extraction: Starting with a pedestrian image, (a) pixel features are computed to extract the color and gradient

information and (b) each patch is modeled with a moment matrix, which lies on a SPD manifold. (c) On-manifold mean is applied to pool

the information along horizontal strips and then the mean matrix is flattened to its tangent space and vectorized to form the final descriptor

of the strip.

tions. Furthermore, an SPD embedded Gaussian matrix is a

special case of the empirical moment matrix when the order

is 1 (please see Sec. 4.2 for the proof).

3. Notation

For ease of reference, in this section we summarize the

notation used in this paper.

R,N set of real numbers, set of nonnegative inte-

gers

x,x,X scalar, a column vector in R
n, a matrix in

R
m×n

x(i) the i-th entry of x

X(i, j) the (i, j)-th entry of X

‖X‖F Frobenius norm of the matrix X ∈ R
m×n

‖X‖F .
=
√

∑m
i=1

∑n
j=1 X(i, j)2

‖x‖2 ℓ2-norm of the vector x ∈ R
n

‖x‖2 .
=
√

∑n
i=1 x(i)

2

‖x‖1 ℓ1-norm of the vector x ∈ R
n

‖x‖1 .
=
∑

i

|xi|

sm,D

(

m+D
m

)

4. Mean of Moment (moM) Feature

Next, we describe the moM features. Figure 2 illustrates

the pipeline to extract them, and the corresponding step-by-

step procedure is summarized in Alg. 1.

4.1. Base pixel features

Following the work [30], we also use the following pixel

level features to represent local appearance information:

xk = [y,A0◦ , A90◦ , A180◦ , A270◦ , Ca, Cb, Cc]
T (1)

where y is the y coordinate of pixel zk,

Aθ∈{0◦ ,90◦ ,180◦ ,270◦} are the magnitudes of gradient

along four directions, and C{a,b,c} are intensity values

in the corresponding color channel. All dimensions are

normalized to the range [0, 1]. In this paper, we will use

RGB, HSV, LAB or normalized RG as the color channel.

4.2. Empirical moment matrix

Given a dataset consisting of N samples X = {xk}Nk=1,

where xk = [xk1, xk2, ...xkm] ∈ R
m, the collection of all

monomials of xk ∈ R
m up to order D is defined as

vk ∈ R
sm,D , with vk(i) = xdi1

k1 x
di2

k2 · · ·xdim

km , ∀sm,D

i=1 (2)

where the tuple di
.
= (di1, di2, . . . , dim) ∈ N

m denotes the

exponents of xk1, xk2, . . . , xkm in the term vk(i), satisfy-

ing 0 ≤ ‖di‖1 ≤ D. The D-th1 order empirical moment

matrix is defined as:

M
.
=E{vvT } ∈ R

sm,D×sm,D , with

M(i, j)
.
=E{v(i)v(j)}

=
1

N

N
∑

k=1

vk(i)vk(j), ∀i, j = 1, . . . , sm,D

(3)

When D = 1, the moment matrix is given by:

[

1 E(x)
E(x)T E{xxT }

]

(4)

1Please note the D-th order M has moments up to order 2D.
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Figure 3. Level sets of (5) with different Ds and T s. (a) D = 1;

(b) D = 2; (c) D = 3; (d) D = 4

which is the same as the transformation from a Gaussian

distribution to the SPD manifold, except for the normaliza-

tion term [25].

In comparison to commonly used properties such as the

mean and covariance, a moment matrix of higher order

(D ≥ 2) contains richer statistical information. Pauwels

and Lasserre [34] noted that the level set of polynomial

vT ×M−1 × v = T (5)

(with large enough D) can be used to represent the shape of

an arbitrary distribution. Figure 3 illustrates the merit of this

representation, where we plot the (red) level sets described

as (5) for different values of T and the moment matrix com-

puted from the (blue) given samples of a cross-shaped dis-

tribution, computed for increasing values of D = 1, . . . , 4.

As observed in the figure, using a moment matrix with

higher D captures the shape of the cloud of samples more

accurately.

In the sequel, within a mid-sized patch p, we will use

the moment matrix Mp defined as (3) to model the local

appearance feature distribution.

4.3. Onmanifold mean pooling

As shown in Figure 1, pedestrians inside the bounding

boxes are roughly aligned along the vertical direction. The

current state-of-the-art re-id features, GOG [30] and LOMO

[21], take advantage of this assumption and apply infor-

mation pooling along horizontal strips. In this work, we

also use mean pooling to represent the patches at the same

height. However, since M is an SPD matrix, all Ms lie on

an SPD manifold. Then, on-manifold distance should be

applied to compute the mean matrix. Here, we adopt the

Log-Euclidean Riemannian Metric (LE) [2] as in (6) to cal-

culate the distances between two SPD matrices:

σLE(Mp1,Mp2) = ‖ log(Mp1)− log(Mp2)‖ (6)

and the associated on-manifold mean for strip s is:

M̄s = exp(
1

Q

Q
∑

p=1

log(Mp)) (7)

where Q is the number of patches in strip s and exp(·) de-

notes the matrix exponential operator.

The benefits of using LE as the on-manifold metric are

two-fold: 1) it has a closed form solution and can be com-

puted very efficiently; 2) to feed the feature to off-shelf met-

ric learning methods, one can transfer the SPD matrices into

Euclidean space by taking the logarithm, which will cancel

the exp(·).
The vectorized moM feature gs for strip s is obtained by

equation (8)

Γs = log(M̄s)

gs =vec(Γs)

=
[

Γ(1, 1),
√
2Γ(1, 2), . . . ,Γ(2, 2),

√
2Γ(2, 3), . . .

]

(8)

where log(·) denotes the matrix logarithm operator and√
2 applies on off-diagonal elements to keep the condition

‖Γs‖F = ‖gs‖2 holding. To reduce numerical problems

caused by the logarithm of small eigenvalues of the moment

matrix, all Mp are normalized to det(Mp) = 1.

Finally, the global feature vector f is defined as the con-

catenation of all gs in all strips. Following the setting in

[30, 36], we also apply mean removal and power normal-

ization. Thus, the moM descriptor is normalized by (9)

fnorm =sign(f − µf )|f − µf |0.5 (9)

where | · | is the absolute value and µf is the mean of all

moM features in the training set.

5. Experiments

5.1. Datasets

We evaluate the proposed moM feature using four widely

used hand labeled re-id benchmark datasets and one large-

scale automatic detected dataset.

VIPeR [13] contains 632 persons. Each person has two

images taken from different viewpoints. All identities are

separated into training and testing sets equally. One view is

fixed as the probe view. This procedure is repeated 10 times

and the average performance is reported.
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Figure 4. Performance analysis on VIPeR dataset.

Table 1. Comparing with different Ds and on-manifold means. The best results in each dataset are marked in red.

Dataset VIPeR CUHK01 PRID450s GRID

Methods r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

moMrgb
Jeff (D=1) 31.4 59.2 71.8 82.7 38.2 57.9 66.5 75.2 38.4 63.9 75.2 84.6 12.2 27.8 35.0 45.8

moMrgb
JBLD (D=1) 33.0 61.0 73.1 82.8 41.8 62.4 70.7 79.2 46.4 71.0 80.2 87.9 15.4 30.0 37.8 48.5

moMrgb
LE (D=1) 33.1 59.4 72.1 82.7 42.9 62.7 70.8 79.3 47.9 70.0 80.3 88.9 15.5 30.0 38.5 48.6

moMrgb
Jeff 40.8 71.0 82.1 90.8 48.6 70.9 78.9 86.4 59.6 82.1 89.2 94.5 17.8 39.4 49.8 62.2

moMrgb
JBLD 39.0 71.1 81.1 89.6 51.7 73.4 81.1 87.8 59.5 82.6 89.4 95.0 20.4 40.1 51.2 62.7

moMrgb
LE 39.9 69.4 80.0 88.4 52.1 73.4 80.9 87.6 62.5 83.7 90.7 96.5 21.4 42.0 51.9 62.6

GOGrgb 41.4 74.7 85.4 92.6 53.7 76.0 83.6 89.8 62.9 84.6 92.0 96.1 20.2 38.7 49.2 59.8

moMrgb
JBLD+GOGrgb 46.0 77.3 86.7 93.8 62.3 83.2 89.3 93.5 67.6 87.6 93.8 97.4 22.2 44.2 55.7 66.1

moMrgb
LE+GOGrgb 46.9 77.4 87.2 93.0 62.4 83.0 88.9 93.3 68.6 89.2 94.8 97.4 23.1 44.5 56.2 66.7

moMf
JBLD 48.0 77.9 86.6 92.2 57.7 78.5 85.3 90.8 66.0 85.9 92.6 97.1 22.6 44.6 54.9 64.8

moMf
LE 48.0 76.8 85.4 92.1 57.3 78.1 85.1 90.7 65.9 87.2 93.1 97.2 23.4 44.6 54.8 65.4

GOGf 48.8 79.6 88.8 94.6 57.3 79.9 87.0 92.5 68.4 88.5 94.2 97.2 21.8 43.3 52.7 63.5

moMf
JBLD+GOGf 52.1 82.1 89.2 94.5 64.3 85.1 90.7 94.9 71.1 91.2 95.4 97.8 23.6 46.3 57.4 67.4

moMf
LE+GOGf 53.3 82.3 89.5 94.8 64.6 84.9 90.6 94.8 71.1 91.3 95.4 97.9 24.5 46.1 56.8 66.9

Algorithm 1 moM feature extraction

Require: Image I , number of horizontal strips S, number

of patches per strip Q, moment matrix order D.

1: Compute pixel features in (1)

2: for strip s = 1 to S do

3: for patch p = 1 to Q do

4: Compute moment matrix Mp based on (3)

5: end for

6: Compute on-manifold mean M̄s based on (7)

7: Compute the feature of gs based on (8)

8: end for

9: Concatenate g1,2,...,S to form the final moM feature f

CUHK01 [51] contains 971 persons from two views and

each person has 2 images per view. One camera is set as

probe with equally separated train and test sets. Average

performance of ten randomly trails is reported.

QMUL underGround Re-IDentification (GRID) [26]

dataset has 250 paired pedestrians and 775 un-paired dis-

tractions captured in a subway station. The large size of the

gallery set and relatively low image quality make it one of

the most challenging re-id datasets. We use the provided

partition configuration.

PRID450s [38] is a subset of PRID2011 [14] with 450

persons and 2 cameras. Each person has one image per cam-

era. Similar to VIPeR dataset, the train and test sets are

equally separated and one camera is fixed as the probe one.

Ten repeated evaluations are performed and the average re-

sult is reported.

Market1501 [49] dataset is a recently proposed large

scale re-id dataset. It contains 1,501 identities from 6 cam-

eras. All bounding boxes are automatically detected with

the DPM [10] algorithm and manually annotated. In to-

tal, it contains 32,668 bounding boxes including 2,793 false

alarms from the person detector. We adopt the provided sin-

gle query train/test partition to evaluate our feature.
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Figure 5. CMC curves for (a)VIPeR, (b)CUHK01, (c)PRID450s and (d)GRID datasets.

5.2. Implementation details

First of all, we reshape all images to the size of 128×48,

and the patch size is set to 16 × 16 with 50% overlap

which will generate 15 horizontal strips. The order D is

set to 2, so the moment matrix size is 45 × 45. There-

fore, the final dimension of the feature with RGB is (45 ×
46/2) × 15 = 15, 525. Following the setting in [30], we

weight the patches according to their position on x axis as

wp = e(−(xp−xc)
2/2σ2), where xc = W/2 and σ = W/4.

xp is the x coordinate of the center point of patch p and W
is the width of the image. We also fuse moM from different

color channels to boost the performance. Results with fused

feature are noted with subscripts “f”. Because of the rela-

tively high dimensionality of the feature space, we adopt

kLFDA with linear kernel [43] as the metric learning algo-

rithm for all experiments.

5.3. Method analysis

Patch size: We investigated the effect of the size of the

patch on the performance. Figure 4(a) shows the results for

different values. For a fair comparison, we keep the adja-

cent patches with 50% overlapping. We note that the perfor-

mance decreases when the patch size is either too small or

too large. On the one hand, there is not enough number of

pixels within small patches to estimate the higher order mo-

ment matrix. Moreover, small patches tend to be less dis-

criminant because they only model local information. As

shown in the results, the rank 1 performance downgrades

6.3% when the patch size shrinks to 5×5. On the other

hand, although large patches provide enough samples to es-

timate complex distributions, they encode specific pose and

lose multi-view invariance. Therefore, for the remainder of

the experiments we use a patch size of 16×16 as a compro-

mise between the discriminating and invariant properties.

Normalization: Figure 4(b) illustrates the effects of ap-

plying different normalizations. By forcing the product of

eigenvalues to be 1, a determinant normalization improves

the result by 4.4%. Because most of the elements of higher

order moments are small numbers, their logarithms are large

negative values, which overwhelm the variance on that di-
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Table 2. Comparing with state-of-the-art methods. The best results in each dataset are marked in red and the second best in blue.
VIPeR CUHK01 PRID450s GRID

Methods Reference r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

moMLE
f +GOGf+kLFDA3 Ours 53.3 82.3 89.5 94.8 64.6 84.9 90.6 94.8 71.1 91.3 95.4 97.9 24.5 46.1 56.8 66.9

HIPHOP + LOMO PAMI17[5] 54.2 82.4 91.5 96.9 78.8 92.6 95.3 97.8 - - - - 26.0 50.6 62.5 73.3

SSDAL + XQDA ECCV16[8] 43.5 71.8 81.5 89.0 - - - - - - - - 22.4 39.2 48.0 58.4

SCSP CVPR16[4] 53.5 82.6 91.5 96.7 - - - - - - - - 24.2 44.6 54.1 65.2

GOGf + XQDA CVPR16[30] 49.7 79.7 88.7 94.5 57.9 79.2 86.2 92.1 68.0 88.7 94.4 97.6 24.8 47.0 58.4 68.9

TCP CVPR16[6] 47.8 74.7 84.8 91.1 53.7 84.3 91.0 96.3 - - - - - - - -

SS-SVM CVPR16[47] 42.7 - 84.3 91.9 - - - - 60.5 - 88.6 93.6 22.4 - 51.3 61.2

MLAPG ICCV15[22] 40.7 - 82.3 92.4 - - - - - - - - 16.6 - 41.2 53.0

Metric Ensumble CVPR15[33] 45.9 77.5 88.9 95.8 53.4 76.4 84.4 90.5 - - - - - - - -

LOMO+XQDA CVPR15[21] 40.0 - 80.5 91.1 49.2 75.5 84.2 90.8 62.6 85.6 92.0 96.6 16.6 - 41.8 52.4

SCNCD ECCV14[44] 37.8 68.5 81.2 90.4 - - - - 41.6 68.9 79.4 87.8 - - - -

Table 3. Comparing with state-of-the-art on Market1501 dataset.

Method Reference r=1 mAP

moMLE
f +GOGf Ours 71.6 43.5

moMLE
f Ours 61.0 30.3

HIPHOP+LOMO PAMI17[5] 71.8 45.5

GOGf CVPR16 [30] 3 66.7 38.5

Gated S-CNN ECCV16[40] 65.9 39.6

S-LST ECCV16[41] 61.6 35.3

SSDAL+XQDA ECCV16[8] 39.4 19.6

SCSP CVPR16[4] 51.9 26.4

DNS CVPR16[45] 55.4 29.9

BoW+KISSME ICCV15[49] 44.4 20.8

mension. The mean removal step centers all dimensions

while keeping the variance at the same time. The power

normalization reduces the “spike” situation further more.

Combining these two steps improves the rank 1 accuracy

by 7.1%, but adding ℓ2 normalization decreases it by 1.3%.

Moment matrix order: In Table 1, the first three

rows show the results for D = 1. Comparing to the re-

sults from the following three rows for D = 2, the av-

erage rank1 performance on different on-manifold means

increases by 7.4%, 9.8%, 16.3% and 5.5% on VIPeR,

CUHK01, PRID450s and GRID, respectively. One can also

observe a distinct margin between blue curves and other

curves in Figure 5. This shows that the higher order mo-

ments are informative to boost the performance of the de-

scriptor.

On-manifold metric: Besides the LE metric, there are

several other metrics for the SPD manifold. Here, we also

compare the performance using Jeffery Divergence (Jeff)

[32] and Jensen-Bregman Log-det Divergence (JBLD) [7]

on four datasets. Experimental results are shown in Table 1

with different superscripts.

M̄
(t+1)
JBLD =





1

Q

Q
∑

p=1

(

Mp + M̄
(t)
JBLD

2

)−1




−1

(10)

M̄Jeff = P−1/2(P1/2QP1/2)1/2P−1/2,with

P =

Q
∑

p=1

M−1
p ,Q =

Q
∑

p=1

Mp.
(11)

When only using RGB as the color channel, although

moM
Jeff
rgb outperforms moMLE

rgb by 0.9% on VIPeR rank1

result, moMLE
rgb beats the others on CUHK01, PRID450s

and GRID datasets. On average, moMLE
rgb achieves 2.3%

and 1.3% higher rank1 performance along the four datasets

compared with moM
Jeff
rgb and moMJBLD

rgb , respectively.

When fusing with other color channels and GOG feature,

moM with LE performs slightly better than JBLD.

5.4. Comparison with GOG descriptor

The results in Table 1 and Figure 5 compare the per-

formances of the moM features, the GOG features and

the combination of both of them. We ran the code pro-

vided by the authors of [30] and set the patch size to

15 × 152 and number of strips to 15. Among all four

datasets, moMrgb
LE obtains slightly worse results in VIPeR

and CUHK01, comparable result in PRID450s and better

result in GRID. When fusing with all different color chan-

nels, moMf
LE performs worse in VIPeR and PRID450s,

comparable in CUHK01 and better in GRID. However, by

simply concatenating moM and GOG, a consistent outper-

formance can be achieved. In Figure 5, one can observe a

clear margin between green and red curves and pink and

black curves. Specifically, with the RGB color channel,

adding moMrgb
LE to GOGrgb improves the rank 1 perfor-

mance by 5.5%, 8.7%, 5.7% and 2.9%, respectively. After

fusing with all different color channels, adding moMrgb
LE to

GOGrgb further improve the rank 1 performance by 4.5%,

7.3%, 2.7% and 2.7%, respectively. The result implies that

moM and GOG features encapsulate complementary ap-

pearance informations.

This observation can be explained by noting that the

GOG feature has up to 2nd order information of the dis-

tribution representing the patches. However, it contains no

information about the higher order (greater than 2) moments

of these patches. On the other hand, the moM feature has

information about the mean value (across patches) of the

higher order moments, but not about their variance. Thus,

one can think of the combination of GOG and moM as a

2The code provided can only accept an odd number as the patch size
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GOG

moM

GOG

moM

Figure 6. Examples for moM and GOG features. The very left image is the probe image and the first row on the right hand side is the result

from GOGrgb and the second row is from moMrgb
LE. The correct match is labeled with a red box. The first example shows the situation

moM feature is preferred while the second one shows the case GOG feature is better. Please see the text for more analysis.

tractable approximation to a “Moments of Moments” fea-

ture, where GOG provides information about the variance

of 1st and 2nd order moments while moM provides infor-

mation about the mean value of all moments (up to 4th or-

der). For x ∈ R
8 this leads to a feature vector with O(103)

elements, as opposed to a true Moment of Moments feature

(D = 2) that would have O(106) elements.

Figure 6 gives two qualitative analysis examples. When

the identity has fine-detailed appearance patterns, moM fea-

ture preserves those patterns better than the GOG feature. In

the first example, moM feature captures the backpack with

rich texture in the probe image and retrieves the gallery im-

ages with similar pattern to top two and finds the correct

matching at rank 1. On the other hand, when the identity

has homogeneous local texture but relatively complex pat-

terns along the strip, GOG feature is preferred. In the sec-

ond example, the strip level second-order moment helps to

preserve the blue/black/skin color pattern along the upper

body part.

5.5. Comparing with stateoftheart methods

In Table 2, we compare the combination of moMf
LE and

GOGf
3 with recently published re-id methods. We achieve

comparable performance on all four datasets and set the new

state-of-the-art in PRID450s dataset. To show the general-

ization of moM on a large scale, automatic detected dataset,

3Please note that the GOG feature we used has a different setting from

[30]

we compare with state-of-the-art works on the Market1501

dataset in Table 3. To be consistent with previous experi-

ments, we report the result of GOGf with the same setting

in Table 1. By combining with our proposed moM feature,

the complementary information brings a 4.9% improvement

on rank 1 performance and increases by 5% on mAP com-

paring with GOGf only.

6. Conclusion

We proposed a novel mean of moment (moM) feature for

the person re-id problem. The proposed feature generalizes

the Gaussian assumption used in previous work, by using

the empirical moment matrix and adopting the on-manifold

mean to alleviate the cross-view variance. Extensive exper-

imental results on five datasets illustrate that the moM and

GOG features complement each other. The combination of

both features achieves comparable or better performance on

five public datasets.

In the future, instead of using an on-manifold mean, we

plan to apply a more sophisticated second level pooling

schema to model the global distribution of the descriptors

of patches.
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