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Abstract

Coupled Manifold Learning (CpML) is targeted at align-
ing data manifolds across two related modalities to facili-
tate similarity preserving cross-modal retrieval. Local and
global topologies of the data cloud reflect intra-class vari-
ability and overall heterogeneity respectively making it crit-
ical to retain both for meaningful retrieval. Towards this we
propose a learning paradigm which simultaneously aligns
global topology while preserving local manifold structure.
The global topologies are maintained by recovering un-
derlying mapping functions in the joint manifold space by
deploying partially corresponding instances. The inter-
, and intra-modality affinity matrices are then computed
to reinforce original data skeleton using perturbed min-
imum spanning tree (pMST), and maximizing the affinity
among similar cross-modal instances, respectively. The
performance of proposed algorithm is evaluated upon two
benchmark multi-modal image-text datasets (Wikipedia and
PascalVOC2012 - Sentence). We further show versatility
and interdisciplinary application by extending it to cross-
modal retrieval between multi-stain atherosclerosis histol-
ogy medical image dataset. We exhaustively validate and
compare CpML to other joint-manifold learning methods
and demonstrate superior performance across datasets and
tasks.

1. Introduction

Of late, multi-modal datasets such as text, images, videos
etc. are growing widely. They are often descriptive of
same concepts but are heterogeneous in nature, for e.g. web
pages often contain illustrative images and associated tex-
tual information describing the image. Search and retrieval
across these modalities is non-trivial as their metric spaces
are often not comparable, termed as the heterogeneity gap.
Keywords / Content-based retrieval often target similarity
search within modality and do not seamlessly extend to-

*A. Kazi and S. Conjeti contributed equally as First authors.

wards retrieval across them. Towards the same, in this work,
we propose latent modality-invariant embeddings by Cou-
pled Manifold Learning (CpML) that can be leveraged for
similarity search for multi-modal datasets.

A reliable cross-modal image retrieval system is desir-
able as it carries immense potential in aiding decision-
making by enabling access to all information across modal-
ities that share semantic similarity. Specifically, within
the medical imaging community, contrasting with single-
modal image retrieval that has been an active research
topic [19], the cross modal image retrieval has not yet been
fully investigated for medical applications except for few
works [8], [1], [5] that are also mainly adopted for health
care management systems using text+image datasets. In the
cross-modal retrieval task, the ultimate goal is to bridge the
gap between feature spaces by mining their mutual corre-
lations and unveiling similarities within a common latent
space. To this end, several methods have been developed
but the Canonical Correlation Analysis (CCA) [4] and its
variants (ex. [11]) have been widely used for learning such
a space by maximizing the correlation between the two fea-
ture spaces. Alternatively, learning coupled feature spaces
(LCFS) [16] and Procrustes alignment [15] algorithms have
been proposed, where the former focuses on selecting dis-
criminative features while learning the subspace and the
latter removes translational, rotational, and scaling compo-
nents from one space so that the optimal alignment can be
achieved. In general, majority of existing methods only pre-
serve local geometries amongst features and ignore global
geometries. In other words, they only ensure that similar
instances in the original space become neighbors in the la-
tent space but do not prevent dissimilar instances from being
neighbors. Authors in [15] addressed this problem by pro-
jecting instances into latent space through recovered map-
ping functions upon partially corresponding instances and
aligning the manifolds while preserving the global geome-
tries.

The data across multiple modalities are inherently het-
erogeneous due to differences in their representation learn-
ing. Therefore, we need to preserve local structures that
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carry information about population variability and at the
same time preserve the global manifold geometries. This
motivated us to develop the Coupled manifold learning
(CpML) that respects both geometries in the latent space
given partially corrsponding instances, which is accounted
as the main contribution of this paper. This is achieved
by: 1) incorporating perturbed Minimum Spanning Tree
pMST [18] into CpML such that the original data skele-
ton is preserved and partially corresponding instances drive
the alignment, and 2) introducing novel notion of proximity
through inter- and intra-modality affinity matrices for main-
taining local similarities within constructed graph neighbor-
hood.

2. Methodology

In this section, we present the supporting mathemati-
cal formulation for CpML by considering two modalities
X = {le € le}?:ll and Xy = {x§ € RmZ}Zl respec-
tively. As a prerequisite, we collect n number of partially
corresponding data (tuples) from both modalities constitut-
ing L € X; x A,. Depending on £, we reconstitute X;
into two disjoint subsets: A} and A[’¢ (with and with-
out given tuples, respectively) and likewise partition X5.
Typical cross-modal subspace learning algorithms leverage
L ie AXf and XS to mine correlations between the two
modalities and effectively bridge the gap between the het-
erogeneous multi modal feature spaces by mapping them
to a unified feature space. However, in scenarios of limited
correspondence, just preserving neighborhood relationships
amongst matching instances is of limited effect and can of-
ten over-fit thus limiting its generalization ability. CpML
proposes to overcome this by using X and X3¢ together
with £ such that the whole global geometry of the two un-
derlying manifolds couples and aligns in the joint feature
space. For better understanding, we further divide this sec-
tion into two parts as follows:

2.1. Graph Construction:

To facilitate cross-modal retrieval in Z, similar data
points across modalities should map closer and dissim-
ilar points should be well separated. In the proposed
method, preserving intra-modal similarity while projecting
is achieved by discovering neighborhoods within modal-
ity (modeled as intra-modal perturbed minimum spanning
trees (pMSTs)) and preserving them during CpML. Across-
modality neighborhoods are inferred using £ and modeled
as links between the intra-modal pMSTs. During CpML,
these ‘links’ aid in aligning the intra-modal pMSTs such
that matching points across modalities are mapped close to
one another in the unified space. Figure 1 illustrates the
proposed CpML formulation for aligning two intra-modal
pMSTs to learn the unified cross-modal space for retrieval.
Step 1 Perturbed Minimum Spanning Tree (pMST): An

ideal neighborhood graph should be representative of the
underlying data manifold and its local structure. In con-
trast to naive k nearest neighbor (k-NN) graph construction
which is highly sensitive to the choice of k, the minimum
spanning tree (MST) representation of the data manifold
has desirable properties as it effectively represents the un-
derlying skeleton of the manifold, does not introduce gaps
between small random groupings of data points and theo-
retically guarantees connectedness of the graph. However,
MST is too sparse and sensitive to noise. Alternatively, one
can employ a fully-connected graph to represent the data
distribution, but such an approach compromises on local
neighborhoods and may introduce erroneous connections
between traveling outside the underlying manifold.

To overcome the shortcomings of using a single MST,
we employ an ensemble of MSTs generated from per-
turbed versions of the original data distribution, called
perturbed Minimum Spanning Trees (pMST), which re-
sult in a ‘reinforced’ skeleton of the underlying mani-
fold which is more robust to noise and better representa-
tive of the local neighborhood structure. Given the orig-
inal data X = {xi}fil, we generate perturbed copies
X, of X through a locally adaptive noise model i.e.
X, = {xI' | x e N(x,0;); x; € X} where 0; = 1, X
d(xi,x¥);7r, € [0,1] represents the locality of the noise
model as it allows x; to connect to different number of
neighbors with each perturbed dataset. We generate ¢, > 1
perturbed copies of the dataset using the earlier local noise
model and fit an MST graph to each of them (MST(A})).
Edge e}; between two points x; and x/ takes a value of 1
if they are connected in MST(X},) and O otherwise. pMST
is an ensemble average of multiple MSTs generated for
random perturbations of the data, where the edge weight
€ij = i Z;‘;l ej;- For further use in defining the intra-
modal proximity graph, we convert the pMST into a deter-
ministic graph §» with an edge if e;; > 0. For CpML, we
use the above definition of pMST to robustly identify only
the neighborhood connections between amongst the points
of A} and A, thus resulting in pMST models dx, and 0,
for X} and X respectively. The weights along these edges
is determined by the intra-modal distance metric described
later.

Step 2 Intra-modal Affinity: For defining proper affin-
ity and evaluating similarity/dissimilarity between data
points x; and x; in the manifold, we incorporate locally
scaled /o norm into intra-modal distance metric D;; =
|Ix; — xj|\2 /(20x,0x,), where o; and o are local scaling
factors measured by o; = ||x; — xK||2 [17] such that x
is the K™ neighbor of x;. This allows for self-tuning of
point-to-point distances in local neighborhoods around the
points x; and x;. This formulation is used for calculat-
ing the intra-modal distance matrices D1, and Dayy for &)
and X5 respectively. In the particular case of cross-modal
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Figure 1: Schematic of proposed cross-modal search retrieval scheme using Coupled Manifold Learning (CpML). Given modalities (image
and text) and limited co-occurring instances, we model the intra-modal proximity with pMST which creates locally dense connections with
a global spanning tree representing the underlying data manifolds global topology. Next, we leverage correspondences through CpML, we
learn to map to the coupled latent space that is makes the modalities metric-comparable.
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Figure 2: Schematic of comparatively illustrating potential graph
construction paradigms on cloud of points (a). Graphs (b)-(d) are
constructed using k-nearest neighbors. Graph (b) uses a small k
and discovers local geometry well, however is not fully-connected
in nature. Graph (c) uses moderate k, wherein local-geometry
is traded-off gradually. Graph (d) uses a high value of k, how-
ever severely compromises on local geometry for global connect-
edness. Alternatively, using minimum spanning trees (MST) we
obtain a fully-connected graph (e) with weak local support we
propose to construct an ensemble of perturbed versions of MST
(pMST) as shown in Graph (f) which has superior local support
along with global connectedness representing the exoskeleton of
the data manifold.

retrieval, the heterogeneous gap between the two features
spaces warrants that we normalize the distance matrices
D1, and Dayy to make them comparable. Using normalized
distances D11, D12 and neighborhood connections derived
using the respective pMSTs, we define intra-modal affinity
as Wip = exp(—D11). dx, for Xy and likewise for As.

Step 3 Inter-modal Affinity: To align the two manifolds
(modalities ) in the joint feature space, we need to compute
affinities between instances across the modalities. We use
the inferred intra-modal affinities W11, Ws2 and given par-
tial correspondences L to compute these affinitics. We treat
the corresponding instances across modalities as ‘links’ to
align the modalities. For any pair of cross-modal points
(say x} and x? ), the cross-modal affinity is computed as the
maxima of affinities through all possible ‘links’ between the
Wik x W where Wik

modalities, i.e. W13 = max

ke[l,nc]
is the intra-modal affinity between x} and x¥, Wzkg is the
intra-modal affinity between xé and x5 and (x’f, XS) €L
We use the inferred affinity matrices (W71, Wage and Wis)
to construct the final composite distance matrix represent-
Wi W12}

ing the joint geometry as: D = 1 — [ng Was
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2.2. Learning joint latent space:

The CpML casts the retrieval problem into

learning a latent metric ¢-dimensional  space
Z = (ZXl @] ZX2|X1 — ZXl;XQ — ZX2) € R? wherein
X and X, become comparable (¢ < min(mq,ms)).
CpML for retrieval between X7 and X, translates to learn-
ing projection matrices « € 1™ *? and f € R™2*? de-
fined for X; and A% respectively. The learnt projection ma-
trices transform & and X into the g-dimensional unified
subspace Z = (Zx, UZx,|Zx, = X o; Zx, = X]B).
Learning linear projection matrices to align heterogeneous
subspaces is preferred due to their ease of generalization
to new unseen data samples and computational efficiency
owing to direct mapping between feature space and the
joint subspace.
The overall geometry comprising of both intra and inter-
modal global geometries of the aligning manifolds can be
modeled as a (ny + ng) X (n1 + ng) joint distance matrix
D representing the pairwise dissimilarity between any two
instances in {X;, X>}. We use the definition of 7 operator
from [13] to uniquely characterize the joint manifold
geometry, i.e. 7(D) = —HSH/2, where S;; = D}; and
H;; = Tmitn2)x(mtn2) — (1/(ng + ny)) where T is an
identity matrix (The construction of D is discussed later).
Ideally, the learnt latent space should preserve this global
geometry and can be modeled as:

(Z;ﬁ ) Z/*Yg) = argmin ||T (D) - [Z/\ﬁ ) ZXz]T [Z/\ﬁ ) ZXQ]

X1, 22X

ZTZ
€]
The above optimization problem can be re-posed as learning
optimal projection matrices «* and $*, such that:

2
(0" 8) = argmin |7 (D) ~ k [Xi0, 28" (10, o5

a,B
(@)
where k is a rescale factor and («*, 5*) are the optimal pro-
jection matrices. This can be re-stated as:

(a*, %) = argrgin”T(D) — ZTffTZ|H 3)
a,
Xl 0n1><d2 a
where Z7 = Qnaxdi X, and f = 3| In-

trested readers are referred to [15] for a detailed math-
ematical derivation. To ensure that the projection vec-
tors are not correlated and share similar dynamic ranges,
we impose an additional sphering constraint on the opti-
L Xl
mization that [aTXl ﬁTXQ] L\}Tﬁ = 794 The op-
2
timal solution to Eq. 3 encourages preservation of local
intra-modal neighborhoods and matching corresponding in-
stances across modalities upon projection to the new joint

space.

Learning Latent Space Z and Out of Sample Exten-
sion: There exists a optimal solution to the optimiza-
tion problem posed in Eq. 1 using the eigendecomposi-
tion of 7(D) as 7(D) = U'diag(A1, -+ ,Ay)U where
U € R(m+n2)Xa  The latent subspace Z is estimated as
Z = diag (A}/Q, e 7Aém) U [13]. For an unseen data
point x;, we adapt the formulation from [12], which com-
putes locally adaptive tangent spaces for out of sample ex-
tension (OSE). Through OSE, we seek the corresponding
point z; in the joint latent space Z and leverage the lo-
cal neighborhood N (x;) defined in the high-dimensional
space to define a locally linear mapping function M such
that z; = Mx;. M is decomposed into two piecewise ma-
trices A and V (M = AV). V is inferred as the eigen-
vectors corresponding to the top ¢ non-zero eigenvalues
generated through Principal Components Analysis (PCA)
on NV (x;) Ux;. A is the similarity transformation matrix
(translation, scaling and rotation) that is learnt through lo-
cal Procrustes alignment.

Cross-modal Retrieval in Joint Space:Through CpML,
we make the projected spaces Zy, and Zy, metric-
comparable. Therefore, without loss of generality, the task
of cross-modal retrieval for a query (say, x, of modality
M1) will be casted as projecting it appropriately onto the
joint space (z;, = OSE(x,)) and fetching the closest pro-
jected points from target modality (Zx,).

Extension to Feature Level Alignment: So far, the CpML
was elaborated as it searches for and establishes non-
linear mapping of original feature spaces and joint embed-
ding space, which we refer to it as “instance-level” ver-
sion (CpML-I). It can be seamlessly generalized to the
case of linear embedding by replacing Zy, and Zy, in
Eq. 1 with o!X; and BX,, respectively. The solution is
given by the eigenvectors corresponding to the ¢ maximum
non-zero eigenvalues of Z7 (D) VTy = AVVT~ where

ny Xd . .
V= (Onf;dl . 2) where v = [a, 8] [15]. This lin-
ear feature-level variant of CpML is thereafter refered to as

CpML-F.

3. Experiments and Results
3.1. Datasets

To validate the versatility of the proposed method, we
perform comparative analyses on two benchmark cross-
modal retrieval datasets (Wikipedia and PascalVOC - Sen-
tence) and extended CpML into the domain of medical im-
age retrieval by demonstrating on cross-modal retrieval be-
tween multi-stain atherosclerosis histology datasets. We
briefly describe the respective datasets below:

o Wikipedia: This dataset set consists of 2,866 im-
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Algorithm 1: Instance-level Coupled Manifold Learn-
ing (CpML)

Input:

Training Data X1 = {xﬁ e R% }TLll, Xo = {xé € Rd2}
i=

Correspondence Tuples
L=

no
i=1

{(xi,xé} | x] € Xl)x; € Xvai Hxé}?ﬁf

Parameter Set 0 = {pMST : 7, t,; Subspace Dimension : q};

Output: Projection matrices «, 3
Step 1: Learn pMST

age/text tuples curated into 10 semantic categories
(split randomly into two disjoint training and testing
datasets of 2,173 and 693 samples respectively). The
images are represented using a SIFT codebook of 128
codewords and the text are modeled using a 10-topic
Latent Dirchlet Allocation (LDA) model, trained un-
supervised on a large corpus of images and texts re-
spectively [9].

e PASCAL - Sentence: This dataset consists of 1000
images collected from 20 different categories of the
PASCAL 2008 Challenge together with five descrip-
tive sentences annotated using Amazon’s Mechanical
Turk. The images are described with a 2,790 dimen-
sional feature vector which is a concatenated response
of several object descriptors. Further, the correspond-
ing textual annotations are described with a dictionary
with 1,200 frequent and semantically relevant words to
extract the feature vector for associated sentences [10].

e Histology: We followed an acquisition protocol in [6]

S1.1: dxy =
PMST (X1, rp, tp)
S1.2: 6X2 = Step 4: Joi i
p 4: Joint Graph Construction
PMST (X2, 7p, tp) s4.1: D = 1 -
- Wii Wia
Step 2: Within Modality Affinity Wa1  Waa
s2.1: D = S4.2: D =dijk(D)
i N2 . _ 7 1
-] 3650 H=1 gty
) S4.4: Gram Matrix:
DL 7(D)=—-HDH/2
s2.2: Dy} =
. 22 Step 5: Estimating Projection Ma-
7”"2”‘2“ trices
7 J%xi S5.1: Defi Z =
4T yopemne %
52.3: Dijl B = |:0n2><d1 X ]
Normalize(D3)) o
s2.4: DI - §5.2: Lel(j:[ﬁ]
Normalize(Dg}) $5.3: ¢ _
- B _ 2
. _ | emminlir (D) =7 (P20l
exp(—=D). 0%, where Dy ( = Z7¢¢TZ
52.6: Wi — S5.4: Solution to
ex (_,Dij ) 2§ij S5.3 is given by eigen-
L &P 22/ T X vectors  corresponding  to
Step 3: Across Modality Affinity q largeslT eigenvalu%s of
s3.1: W3 = SZ;'(SP)Z Y=X2Z"~y
max \/ Wik x wh a=¢*(1:mi,1:q)
ke[Lng] © B=¢"(m1+1:m1+ma,
s3.2: Wi = L return
(W3 +Wi3)/2
$3.3: Wa1 = Wi,

1

1 q)

and collected 253 HnE and MP pairs of cross-sections
from 16 coronary arteries excised from 6 post-mortem
human hearts, resulting in 16467 regions of interest
(ROIs) with variable sizes (between 640pm x 640um
and 2560pm x 25604m). The stains are performed on
consecutive cross-sections (< 5um apart) and rigidly
registered manually. Eleven Modified AHA [14] la-
bels were used for annotations of underlying tissues in
accordance with interpretations from an expert cardio-
vascular histopathologist. It must be noted that CpML
does not use labels during training and these annota-
tions are used purely for validations. The ROIs were
then fed into a pre-trained deeply learnt Convolutional
Neural Network (CNN) trained for large-scale recog-
nition tasks, to be purely used as a general-purpose
feature extractor. Alternatively, one could train con-
volutional auto-encoder like architectures for repre-
sentation learning. We used outputs arising from the
penultimate fully connected layer of VGG-F [2] and
AlexNet [7] deep CNN networks as 4096-dimensional
features for HnE and MP images, respectively. Two
different networks were chosen on purpose to maintain
the heterogeneous gap between the raw feature spaces,
which would subsequently be bridged through CpML
and comparative methods. Further, to make the fea-
ture spaces discriminative, we reduced dimensionality
using supervised locally linear projections, preserving
90% data variance [3].

3.2. Validation Scheme:

The performance of both CpML-I and CpML-F algo-
rithms are evaluated against comparative methods as listed
in Table 1. We randomly split the data into two disjoint
subsets with a 80:20 ratio corresponding to the training and
test datasets and repeated the splitting 10 times (For the
histology-dataset, the split is generated artery-level). To
evaluate sensitivity of CpML towards the need for cross-
modal correspondences, we quantify the retrieval perfor-
mance varying the degree of given correspondences for two
settings of 20% (sparse) and 80% (dense) correspondences.

3.3. Results

The retrieval performance are measured using classifica-
tion accuracy and for a particular query instance the class
is predicted as the maximum a posteriori class evaluated
from the top k nearest cross-modal neighbors. In Fig. 5, we
demonstrate the classification accuracy through retrieval for
the PASCAL and Wikipedia dataset for two settings text to
image and image to text retrieval over the two datasets for
two variations in the degree of correspondence (20% and
80%). The datasets had pre-determined test and train splits
in a 20:80 ratio and these were maintained in this evalua-
tion.
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Table 1: Comparative methods and their configurational settings

Methods with abbreviations ‘ Type ‘ Graph ‘ Hyperparameters
Cannonical Correlation Analysis (CCA) [4] F X Cross-modal Correlation > 0.1
Manifold alignment preserving global geometry (MA-F and MA-I) [15] | Fand I FC Eigen-value threshold € > 10E — 05; k for OSE = 20
. Regularization parameters Ay = 10E — 01 ,A2 = 10E-03
Learning coupled feature spaces (LCFS) [16] F X Number of iterations = 10
Procrustus Alignment (PA) X X -
Number of perturbations ¢, = 20
Cross-Modal Manifold Learning (CpML) FandI | pMST Locally adaptive noise model 7, = 0.5;k = 5
Eigen-value threshold € > 10E — 05; k for OSE = 20

Table 2: Performance of comparative methods varying degree of correspondence given

Methods 20% 40% 60% 80% 100% Methods 20% 40% 60% 80% 100%
CCA 25.08 +£3.7 3453+43 | 40.75£543 | 4627 +3.1 50.124+ 4.6 CCA 30.57+£3.7 | 41.06 £4.52 | 47.63+£59 51.18+3.8 56.24+39
- % &~ MA-I 13.69 £ 2.1 1393 £ 1.8 14.25 24 14.07 £ 1.8 14.07 £ 1.2 % MA-I 19.39 £ 3.0 20.00 £ 5.2 19.36 £ 4.1 17.71 £ 3.7 16.67 £ 2.5
é" H = | MA-F 3294+33 41.35+£34 45.52£48 4945 £3.1 48.84 £2.0 ? MA-F 46.06 £ 4.2 51.90 £4.4 57.02+£34 58.64 £ 4.8 59.15+£52
8 E“ T LCFS 51.73 £ 3.9 61.18 £2.6 65.89 + 3.4 68.124+29 69.92 + 2.1 a LCFS 66.12 + 3.8 78.93 +£3.2 8294+ 1.7 8393+ 2.1 86.67 & 1.4
é % % PA 37.63 £ 135 | 4474 £ 17.6 | 4841193 | 4951 £ 21.7 | 51.71£247 | 3 PA 4430 £ 145 | 49.04 £ 194 | 5242 £24.0 | 5583 +23.9 | 5559 4+26.2
= = CpML-I 47.80 £2.6 57.05 £2.8 64.94 +3.8 68.46 + 3.5 76.024 2.2 CpML-I 62.17 5.1 76.21 £5.3 85.57 +£43 90.20 + 1.1 9523+ 1.1
CpML-F 62.37 +£2.3 65.60 + 3.0 65.26 + 3.1 65.23 + 1.7 64.55 4+ 1.8 CpML-F 70.98 + 4.6 75.83 £3.7 7543 +£39 76.04 + 1.8 7513425
sistently higher performance against comparative methods,
AR RN SRR At b = -80% substantiating the superiority of preserving joint global and
HnE to MP MP to HnE CCA-80
. i - -|-80% . . .
1) % e L It 3 MAHA0S local geometries. The performances of majority of meth-
by " == ~“MA-F-80% ods are improved as degree of correspondences is increased
> > - 0 . .
g g LCFS-80% from 20% to 80%. In case of CpML, this can be attributed
7 - = =-PA-80% . . .
3 3 Pi-00% to the better approximation of cross-modal affinity through
< < , i 1-80° . . . .
g g” ziinee- e CpML B given corresponding ‘links’ and hence making cross-modal
2 2 ’ PR _E-80°% . . . .
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0 n == == o . . g eqe ~
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= o
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k (Scope) k (Scope) 1-20% covers discriminative common latent space features, which
—. CpML F-20% . . ..
(a) °  make the embedding compact and effective. Additionally,

Figure 3: Performance vs. Scope (k retrieved cross-modal neigh-
bors) curves for the proposed and comparative methods for 20%
and 80% degrees of correspondence.

Fig. 3 depicts the overall performance, varying k through
the accuracy-scope (k) curve for two settings of nearest
neighbor retrieval (HnE — MP and MP — HnE) with
20% and 80% correspondences. Fig. 4 depicts the qual-
itative results of 3 cross-sections and corresponding re-
trived modality-couterpart images. The normal (N: left col-
umn), late fibroatheroma (FA: middle column), and patho-
logical intimal thickening (PIT: right column) plaques have
been successfuly retrived on the top 3 ranking results and
only two are incorrectly fetched (red boxed) as the fourth
neighbors. Such a retrieval tool will significantly improve
histopathologist’s ability to make reliable and fast decision.

Observations: From Fig. 3 and Table 2, we observe that
the two proposed variants of CpML present a trend of con-

despite considering global geometries while generating em-
bedding, the MA-I underperformed, because, the Euclidean
distance dissimilarity metric is not suitable for representing
semantic similarity between instances.

4. Conclusions

We proposed CpML for effective cross-modal retrieval
in which heterogeneous gap between cross-modal feature
spaces is bridged by embedding instances into a metric-
comparable latent space. In CpML, both local and global
geometries are respected simultaneously using limited num-
ber of corresponding instances. The method has been
benchmarked against state of the art methods and we
demonstrate improved embedding, indirectly validated on
standard text vs. image (and vice versa) cross-modal re-
trieval tasks. To the best of our knowledge, this is the first
cross-modal medical image retrieval technique, demonstrat-
ing the versatility of CpML.
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Figure 4: Qualitative results for atherosclerotic histology staging Query (Q) image along with ‘ground truth’ (GT) and top fetched cross-
modal images (green box - similar annotation as Query and red box - dissimilar annotation ).
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Figure 5: Performance of Cross-modal retrieval over public image-text datasets: Wikipedia and PASCAL sentence
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