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Abstract

Structural edge detection is the task of finding edges be-

tween significant surfaces in a scene. This can underpin

many computer vision tasks such as sketch recognition and

3D scene understanding, and is important for conveying

scene structure for navigation with assistive vision. Identi-

fying structural edges from a depth image can be challeng-

ing because surface structure that differentiates edges is not

well represented in this format. We derive a depth input en-

coding, the Depth Surface Descriptor (DSD), that captures

the first order properties of surfaces, allowing for improved

classification of surface geometry that corresponds to struc-

tural edges. We apply the DSD feature to salient edge de-

tection on RGB-D images using a fully convolutional neu-

ral network with deep supervision. We evaluate our method

on both a new RGB-D dataset containing prosthetic vision

scenarios, and the SUNRGBD dataset, and show that our

approach produces improved performance compared to ex-

isting methods by 4%.

1. Introduction

Edge and contour extraction are classical problems of

computer vision, that have received much research atten-

tion over a long history [4, 6]. Structural edges are key

to understanding a visual scene. This dates from classical

approaches such as by Lowe [19] that link edge finding to

perceptual organization to understand 3D structure for ob-

ject recognition, but can also support contemporary ideas

of indoor scene understanding (e.g., [24]). Further, finding

such structure is important for personal mobility [16] with

retinal implants, where the bandwidth of image information

that can be represented per frame is quite restricted.

Retinal implants aim to restore visual function that is lost

due to degenerative diseases through the electrical stimula-

tion of surviving retinal cells. These devices normally con-

vey incoming light intensity from a head mounted camera to

the user, but the resulting perception is constrained by the

stimulation process, allowing only low resolution and dy-

namic range images to be conveyed. Existing devices have

(a) Intensity (b) Intensity SPV

(c) Structure (d) Structure SPV

Figure 1. Comparison of scene brightness versus structural cues

rendered using simulated prosthetic vision. (a) Intensity image

with sampling locations marked in red; (b) prosthetic vision ren-

dering of scene brightness; (c) Low level structural edge map with

sampling locations marked in red; (d) prosthetic vision rendering

of structural edges.

a resolution on the order of tens or hundreds of display el-

ements, with less than ten discernable brightness levels for

each display element [12]. These display constraints can

lead to difficulty in interpreting the content of the display,

making it easy to miss details in the environment such as

room boundaries and small or low-contrast trip hazards in

front of the user. Figure 1b shows a simulation of what

a patient might see with a 98 electrode device. This con-

strained perception motivates the application of computer

vision techniques to ensure key information is conveyed to

the user.

In particular, structural edge detection is well suited to

drawing attention to structurally important locations for a

retinal implant user attempting to safely navigate their way

through the environment. Ground-plane detection has pre-

viously been shown to be effective in this scenario [21].

11536



However, structural edge detection methods are more suited

to conveying general scene structure for the user to inter-

pret, which is crucial for performing tasks such as self-

orientation and building a mental map of the environment.

Figure 1d shows a simulated prosthetic vision display with

a visual representation based on structural edge detection.

The boundary between the ground and wall in the sec-

ond row provides a useful cue for self orientation, while

the presence of the chair and the overhanging obstacle are

clearly conveyed. Overhanging objects are known to be dif-

ficult for current visual aids.

While there exist many recent RGB-D edge detection

methods, these methods focus on contour extraction rather

than structural edge detection, identifying objects and sup-

pressing edges within them (e.g.,[30]). The extraction of

closed contours reduces noise from texture compared to low

level methods and improves results on standard datasets,

however, this approach also suppresses structural edges that

are internal to objects. Edges such as the corner between

two walls could be regarded as internal to the wall object,

but are important to indoor scene understanding [24], and

for mobility with assistive devices. Similarly, a large object

with a leading edge may protrude substantially from the ob-

ject, posing a collision risk.

In this paper, we revisit finding structural edges that

are significant for 3D scene understanding and mobility.

These include the silhouette, but also internal ridges and

troughs. These are identified by Banshal et al. [2] as occlu-

sion boundaries and surface normal discontinuities. Further,

we note the effectiveness of 3D scene understanding using

commodity RGB-D sensors (e.g., [26]) and the ability of

RGB-D input to aid in differentiating edges of scene struc-

ture from edges such as shadows that are only related to

appearance. Hence, we investigate improving the recovery

of structural edges using RGB-D input. In particular, we

contribute a depth input encoding that is suited to finding

structural edges in RGB-D images that relate to the impor-

tant aspects of scene structure. We present an end-to-end

fully convolutional CNN approach, incorporating this fea-

ture. Finally, we contribute a dataset of 200 RGB-D im-

ages of real scenes with ground truth structural edges. The

scenarios included cover particularly mobility for prosthetic

vision.

2. Related Work

Finding salient edges in an image has background liter-

ature in edge and contour detection, and methods for visual

saliency. Given the breadth of this research, we focus more

on recent methods for CNN-based contour detection that

yield the strongest relevant results.

(a) RGB (b) DSD (c) HHA [10]

(d) Ground Truth (e) Ours (DSD) (f) HED (HHA) [30]

Figure 2. HED [30] output when trained on our DSD feature com-

pared to the standard HHA [11] depth feature. Note that our fea-

ture provides a better representation of the scene structure, e.g. the

corner between the two walls at the right of the image, and is sig-

nificantly less affected by sensor noise, allowing the CNN to better

model edge structure and thus produce a more accurate edge map.

2.1. Edge and contour detection

Edge detection is well-studied. Early approaches di-

rectly detected local appearance including classical ap-

proaches such as Sobel [13] and the highly successful

Canny detector [4]. Classical work by Lowe [19] linked

concepts of perceptual organization to algorithms for find-

ing lines, in order to understand 3D structure for object

recognition. Extending on this, [28] found ‘structural

saliency’ (objects/regions) based on curvature.

More recent work has found closed contours of objects

using combined edge and region methods. For example,

Levinshtein et al. [17] optimally grouped superpixels to find

enclosing salient contours. Dollar and Zitnick [6] show

strong results for detecting salient edges by learning using a

structured forest and manually designed features. These are

sometimes extended to RGB-D data. Ren and Bo [29] train

sparse code gradients to detect contours. This approach is

extended to RGB-D, and shows a significant performance

boost by detecting contours by adding depth data to RGB.

Similarly, Dollar and Zitnick [6] show a significant boost

incorporating depth data. Raskar et al. and Schäfer et al.

[23] explicitly used depth information to suppress texture

intensity edges by requiring co-occurrence between depth

and intensity edges [22, 23].

CNN approaches The excellent results yielded by CNNs

for high level vision tasks such as object detection have led

to revisiting contour detection. Early CNN contour detec-

tion approaches include Ganin and Lempitsky [8], Kivinen

et al. [14], and Shen et al. [25]. State-of-the-art results have

come from papers that transfer deep learning features from

high-level vision tasks to low-level vision problems, includ-
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Figure 3. An overview of our edge detection system. Our DSD encoding of the depth map is the input to fully convolutional VGG16

network with deep supervision, as in [30]. We add a batch normalization layer after every convolutional layer to speed up convergence.

ing edge detection. Both Bertasius et al. [3] and Xie and

Tu [30] derived contour detection from a base of VGGNet

[27]. Using a pre-trained, trimmed VGGNet, [30] incor-

porate deep supervision to enforce meaningful output from

intermediate layers as well as the final layer of the fully con-

volutional network. This has become the baseline model for

deep edge detection, with many subsequent papers propos-

ing improvements to the architecture. Liu and Lew [18]

propose relaxed deep supervision, using the output of off-

the-shelf edge detectors to guide the learning of interme-

diate layers in a coarse-to-fine-paradigm. Kokkinos [15]

fine tunes the loss function and explicitly incorporates mul-

tiple scales as well as global information. Maninis et al.

[20] include a novel sparse boundary representation for hi-

erarchical segmentation, and show that learning boundary

strength and orientation improves results. Yang et al. [31]

learn to detect contours with a fully convolutional encoder

decoder network, which generalizes well to unseen object

categories. These methods focus on RGB edge detection,

and in particular do not consider alternate encodings of the

depth data to improve detection of structural edges.

Depth Image Encoding for Edge Detection Exploiting

CNN’s for RGB-D depth edges is less common. In the con-

text of detection and scene segmentation, Gupta et al. [11]

propose the HHA geocentric embedding for depth images

to perform RGB-D contour detection. They encode dispar-

ity, height above ground, and angle with gravity into the

edge learning framework of [6] and show that it produces

improved results over naively using depth. The HHA fea-

ture is the current state-of-the-art depth representation for

CNN-based edge detection, with subsequent CNN-based

edge detectors all incorporating this feature when operat-

ing on RGB-D input [30, 3, 25]. While this feature is useful

for object detection, it is less suited to structural edge detec-

tion since it does not incorporate a full model of curvature.

In particular the HHA feature does not directly represent

vertical joins between two surfaces, such as the boundary

between adjacent walls, or the corner on a wardrobe (see

Figure 2). These edges are a common occurrence in indoor

scenes and are usually salient.

3. DSD Feature

In this section we introduce our proposed depth feature,

the Depth Surface Descriptor (DSD), which aims to provide

a minimal encoding of the depth information in the scene

that captures the distinguishing surface geometry of struc-

tural edges, and suppresses sensor noise and other non-edge

structure.

We are interested in depth edges as opposed to appear-
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(a) RGB + GT

Normal

Map 1 [10]

Normal

Map 2 [1]

(b) Ñ (c) Unfiltered (Ñ) (d) σ = (20, 200) (e) σ = (40, 400)

Figure 4. Visualization of of our surface patch mapping function Ñ and aggressive bilateral smoothing of pointwise normals computed

using two different methods [10, 1]. Our method mitigates noise within surface patches while maintaining contrast between regions

bordering structural edges.

ance edges that are treated separately in our architecture.

Intrinsically to a surface, depth edges arise for only two rea-

sons, a depth discontinuity in the surface (i.e. a step edge),

or a first order discontinuity in the surface (i.e. a crease

edge). To develop a structural edge detector, we require that

it can identify these phenomena regardless of the nature of

the appearance or embedding of the surface.

Classically, Gaussian curvature encodes the intrinsic cur-

vature of a surface regardless of embedding [9]. Hence,

two principal curvatures are all that is required to encode

a surface. This information can be represented as a Gauss

map N : X → S2 of surface normals, which maps a point

p ∈ X on an input surface X ⊂ R
3 to the point n ∈ S2

on the unit sphere corresponding to the surface normal at p.

Since we seek a minimal encoding, we use an approxima-

tion function N defined as follows:

N (N(p)) =
(

cos−1 (N(p) · u) , cos−1 (N(p) · v)
)

(1)

where u,v ∈ S2 are fixed and orthogonal. N is injective,

i.e. N (a) = N (b) → a = b, because

cos−1(a·u) = cos−1(b·u) → a·u = b·u → a = b (2)

since u · u = 1, and since we are only interested in the

range [0, π] where cos−1 is bijective. Therefore N does not

reduce the discriminability of the representation.

To find edges, we seek change in the curvature, hence a

spatial operator that finds such change is required over some

local region R.

EN (p) =

∫

p∈R

f (N (N(p))) dp (3)

As we seek a minimal encoding of the surface, then theoret-

ically we could simply take the depth map of the scene. In

this case, f can also compute surface normals as required.

However, in practice, depth sensor readings have a compo-

nent of noise, and care must be taken in the computation

of the surface normals. Hence, both parameters of surface

normals need to be represented directly. Further, if we min-

imally code surface normals with two parameters in 3D, we

lack the original depth data, and will be unable to identify

step edges that do not result in a visible change of surface

normal (e.g., stairs viewed from directly above). Hence we

propose a minimal encoding of depth by incorporating the

disparity map D

EN,D(p) =

∫

p∈R

F (N (N(p)), D(p)) dp (4)

We can hand-craft such an operator directly, however its

construction is not simple. It must account for all surface

shapes, such as two corrugated iron fences that abut at an

angle, or a corner in rippled curtains (see Figure 5). In ad-

dition, sensor noise is complex and scale is problematic, in

short, “mathematics has nothing to say about scale” - O.

Faugeras [7]. A rippling curtain does have changing curva-

ture, but yet it is the joint between the surfaces that would

be considered structurally salient by humans for most tasks

(see Figure 5).

Hence we take the approach of forming a minimum sur-

face encoding and using a deep CNN that takes semantic

information into account to form a spatial operator to de-

tect structurally salient edges. An advantage of deep CNNs

for such problems is that the encoding weighs depth val-

ues from the entire image and so supports a multi-scale

framework. Further, contour processing generally employs

a broader region of support to suppress noise as well as a

local gradient operator to find the edge.

Our minimum encoding consists of absolute depth and

surface normals. Next we present how we compute stable

surface normals.
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(a) RGB (b) DSD (c) HHA [11] (d) Ground Truth (e) Ours (DSD) (f) HED (HHA) [30]

(g) Intensity (h) Ours (DSD) (i) HED (HHA) [30] (j) Intensity SPV (k) DSD SPV (l) HHA SPV

Figure 5. (a-f) Challenging examples from our dataset, with output from our method and HED-HHA. Note the ripples in the curtains that

produce high local surface normal variation, illustrating the importance of scale for structural edge detection. (g-l) Prosthetic vision inputs

and renderings of the scene from intensity, our method, and HED-HHA, with sampling locations shown in red. SPV denotes simulated

prosthetic vision renderings. The errors due to surface normal noise in HED-HHA (l) can make it difficult for a prosthetic vision user to

interpret the scene when performing navigation. Our method (k) reduces noise, providing a clearer depiction of scene structure.

3.1. RegionBased Normal Computation

Sensor noise has an adverse effect on the learning pro-

cess, slowing convergence and reducing accuracy with a

limited set of training examples. The effects of sensor noise

are magnified in surface normal estimations from depth sen-

sors, since surface orientation is a first order property of the

sensor output. As shown in Figure 5, a seemingly flat sur-

face can have an wide distribution of surface orientations

due to a small amount of noise in the depth reading. Thus

the noisy discretized normal map Ñ computed from sensor

data is a poor approximation to N and does not accurately

express the surface structure of the scene.

Filtering the image can address this issue to an extent by

smoothing spurious local normal variations, but still leaves

a considerable amount of noise in the input. Furthermore,

over filtering will blur the structural boundaries of the scene,

reducing edge localization accuracy, as shown in Figure 4.

Due to the unknown required scale of surface curvature, fil-

ter size cannot be defined a priori.

We reduce the effect of sensor noise by performing

region-based smoothing of the point-wise normal image.

First, we over-segment the image into surface patches using

the Mean Shift algorithm [5]. Let P (p) ⊆ X map a point p

to its containing surface patch. Then the region-aggregated

normal map is given by:

Ñ (N(p)) =
1

|P (p)|

∫

x∈P (p)

N (Ñ(x))dx (5)

This maps regions with consistent surface orientation to

a single representative normal value, smoothing normals

within a surface while maintaining contrast between sur-

faces that border structural edges.

3.2. Normal Computation Frame of Reference

The ground orientation is a key piece of semantic infor-

mation in many scenes, as it provides an absolute reference

point for object surfaces in the scene. For example, a bound-

ary between the ground and a vertical surface, or between

two walls, may be more likely to be labeled as salient, par-

ticularly for tasks such as mobility. We parameterize N
with respect to the ground plane by fixing the first coordi-

nate axis u to the inferred direction of gravity. To provide a

stable reference frame, set the second axis v to be orthogo-

nal to both the camera axis z and u.

v = u× z (6)
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(a) RGB (b) Depth (c) Ground Truth

Figure 6. Our proposed dataset, containing a range of assistive vision scenarios.

This increases the amount of information encoded in our

minimal representation with no representation cost, provid-

ing a stable reference frame from which further relation-

ships between edges and scene structure can be inferred.

4. Experiments

In this section we detail the implementation of the DSD

CNN, and describe the experiments run to evaluate the ef-

fectiveness of the encoding.

4.1. Implementation

We use VGG-16 as the base system for testing the DSD

encoding. Since the main contribution is the DSD encoding,

the selection of VGG-16 is to provide fair comparison of

our encoding with existing methods. We trim the fully con-

nected layers of VGG and incorporate deep supervision by

adding a side output to the last convolutional layer of each

of the five VGG blocks, as in [30]. The network produces

one fusion output which linearly combines the side outputs

using learned weights. We add a batch normalization layer

immediately after each convolutional layer, to help speed up

convergence.

We merge the output depth edge maps with rgb maps

from the HED architecture [30] in order to assess the con-

tribution of the system as part of an RGB-D edge detector.

When merging depth edge with rgb edge maps, we first take

the product of the fusion output with all the up-sampled side

outputs, since this produces the best results. We observe

that the later side outputs produce more semantically mean-

ingful output with some false positives due to blurry edges

from up-sampling, whereas the earlier side outputs have ex-

cellent edge localization but a high number of false posi-

tives due to incorrect edge detections within non-boundary

regions. Thus taking the product of all layers reduces false

positives while ensuring that the meaningful edges retain a

high response. Multiplying the side outputs in this way in-

creases F-score but decreases average precision. However,

when merging with the rgb saliency map, average precision

is not reduced.

We tune the hyper-parameters of the network using the

method in [30], using deviations of the F-score on the val-

idation set as a measure of convergence. We select the fol-

lowing hyper-parameter values for our experiments: image

size 500 × 500 mini-batch size = 10, learning rate = 1e5,

momentum = 0.9, weight decay = 0.0002, training itera-

tions = 15000, with learning rate divided by 10 every 5000
iterations.

We fix the coordinate system of the surface normal map

N as follows. We set u as the inferred direction of gravity

and v as the intersection between the camera plane and the

plane define by u. This provides a stable reference frame for

surface orientation measurements, allowing the system to

learn extrinsic priors relating to structural edge placement.

4.2. Datasets

We evaluate our method on the SUNRGBD dataset,

which contains 10335 RGB-D image pairs taken with a va-

riety of commodity depth cameras. As in [6], we convert the

segmentation ground truth to edge maps using [10]. Note

that SUNRGBD is a superset of the NYU dataset that exist-

ing methods use for evaluation, and thus provides a better

indication of model performance. We split the SUNRGBD

dataset into 6201 training, 2067 validation and 2067 test

images.

We also introduce a new dataset, which contains 200

RGB-D image pairs with hand-labeled ground truth. The

images were taken with an Asus Xtion Pro depth camera

and represent a wide variety of indoor environments, par-

ticularly those which would be encountered within robotic
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