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Abstract

Tracking human sleeping postures over time provides

critical information to biomedical research including stud-

ies on sleeping behaviors and bedsore prevention. In this

paper, we introduce a vision-based tracking system for per-

vasive yet unobtrusive long-term monitoring of in-bed pos-

tures in different environments. Once trained, our system

generates an in-bed posture tracking history (iPoTH) report

by applying a hierarchical inference model on the top view

videos collected from any regular off-the-shelf camera. Al-

though being based on a supervised learning structure, our

model is person-independent and can be trained off-line and

applied to new users without additional training. Experi-

ments were conducted in both a simulated hospital environ-

ment and a home-like setting. In the hospital setting, pos-

ture detection accuracy using several mannequins was up

to 91.0%, while the test with actual human participants in

a home-like setting showed an accuracy of 93.6%.

1. Introduction

1.1. Motivation
Human sleeping posture’s track record has shown to be

an important medical indicator for many healthcare com-

plications including sleep apnea [16], pressure ulcers [4],

and even carpal tunnel syndrome [22, 23]. Sleeping pos-

ture has also an effect on dream experience [34]. More-

over, patients are usually required to maintain specific pos-

tures after certain surgeries to get a better recovery result

[1]. Among these applications, automatic in-bed posture

tracking to prevent pressure ulcers (bedsores) has received

a lot of attentions lately. Pressure ulcers appear commonly

in hospitals and nursing homes, particularly in patients who

lack the ability of repositioning themselves or those who

cannot feel the pain of being in the same posture for an ex-

tended period of time [4]. In hospital settings, caregivers

need to be attentive to the patients who are more suscepti-

ble to this condition, and take action to relieve pressure by

changing their lying postures every two hours. The United

State healthcare system takes on a serious monetary bur-

den in order to prevent and treat pressure ulcers, putting a

strain on all hospital resources [15]. This is largely due to

the difficulty of treating developed ulcers when the price of

managing a single full-thickness pressure ulcer can be as

high as $70,000 [8, 30]. Furthermore, methods employed

to reduce the incidents of hospital-acquired ulcers requires

already overworked nursing staff to come to patients on a

regular basis and manually reposition them [32]. Some al-

ternative solutions have been previously proposed to assist

in preventing bedsores, the most common of which is au-

tomatic posture tracking of the bed-bound patients and per-

sonalizing the care for patients based on their need for repo-

sitioning [25, 26].

1.2. Related Works
Currently, in-bed posture detection methods mainly rely

on the use of pressure mapping systems. Authors in [28]

extracted binary signatures from pressure images obtained

from a commercial pressure sensing mat and used a bi-

nary pattern matching technique for posture classification.

The same group also introduced a Gaussian mixture model

(GMM)-based clustering approach for concurrent posture

classification and limb identification using pressure data

[24]. Pictorial structure model of the body based on both

appearance and spatial information was employed to local-

ize the body parts within pressure images in [17]. Although

pressure mapping-based methods are effective at localizing

areas of increased pressure and even automatically classi-

fying overall posture [24], the pressure sensor mats are ex-

pensive and require frequent maintenance. These obstacles

have prevented pressure sensing solutions from achieving

large-scale popularity.

By contrast, vision-based methods show great advan-

tages such as low cost and ease of maintenance. Vision-

based human pose tracking for surveillance applications has

been an active area of research during the past few decades

and many generic human detection and posture tracking

methods have already been developed [27]. Bourdev et al.

proposed a new notion, ”poselet” to be used for human de-
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tection and pose estimation as well as localization of body

components [6]. It was defined with a set of examples that

were tightly clustered in the configuration space of the body,

which was parametrized by 3D coordinates of the joints. In

[5], the same group provided a better way to define and use

poselets, which made it applicable to a wider range of ob-

ject categories. Another extension to this model used a de-

formable part model with several poselets, each aligned to

a specific configuration of key points [14].

Vision-based methods have also been employed in sev-

eral healthcare scenarios. Sathyanarayana et al. in [31] gave

a comprehensive review of vision-based technique for fall

detection, action and activity monitoring, sleep monitoring,

etc. For in-bed status monitoring, some groups only focus

on the action detection such as leaving or getting into a bed

[11]. A comprehensive critical care platform is introduced

in [21]. Martinez et al. proposed ”BAM” descriptor based

on depth information collected from a Microsoft Kinect,

which could monitor the sleeping posture and movement

data [20]. His additional work further addressed high level

activities such as removing bed covers [19]. Yu et al. also

successfully employed the depth data to localize the head

and body parts [35].

In spite of the related body of work, 2-dimensional

vision-based in-bed posture analysis has not been explic-

itly addressed in the literature. Though generic vision-

based method exists, they either focus on a street scenario

for pedestrian detection or for the purpose of daily activ-

ity detection and none of them is specifically optimized

and configured for in-bed posture detection. Normally,

generic methods are designed to cope with versatile cases,

which are sophisticated and computationally intensive and

not suitable for realtime applications. Nevertheless, in med-

ical domain, time constraints and strict accuracy require-

ments are both needed in majority of the applications, in-

cluding in-hospital patient monitoring. For a bed-bounded

patient who has lost the repositioning ability, misrecogni-

tion can last for a long time and can lead to serious con-

sequences. As proposed in [31], utilizing the application

context of patient monitoring can be a useful way to de-

velop novel techniques that are accurate and robust and yet

cost-effective.

1.3. Our Contribution
In this paper, we introduce a robust 2-dimensional

vision-based in-bed posture tracking system, which can per-

vasively be employed in different environments using an in-

expensive regular webcam combined with our tracking al-

gorithm. After applying a series of preprocessing steps on

the recorded videos from individuals while being in differ-

ent in-bed positions, each video frame is fed to our pos-

ture recognition module. During posture recognition, his-

togram of oriented gradients (HOG) feature descriptors of

each video frame are extracted as the luminance-invariant

attributes to be used in a pre-trained posture classifier. A

feature space dimensionality reduction using principle com-

ponent analysis (PCA) is also applied to avoid overfitting

issue when training the classifier. A latent parameter is in-

troduced in the context of narrow field of view in our appli-

cation during posture recognition, which improves the clas-

sification accuracy and also acts in the role of occupation

detection. After in-bed postures are recognized and labeled

as supine, left or right side, our system generates a person-

specific in-bed posture tracking history (iPoTH) report for

each user.

2. Methodology

2.1. Problem Statement
Our in-bed posture detection algorithm can be described

as a supervised classification problem such that given an in-

put RGB image frame Ii of size M1⇥N1 at time frame ti, the

inference model predicts the current sleeping posture P(ti)
as one of the K postures in the predefined in-bed posture

set, {P1,P2, ...PK}.

2.2. Posture Categories
Human bodies can be represented by deformable tem-

plates [13, 29]. Limbs and torso can be deemed as articu-

lated together from a kinematic point of view. It is evident

that any two arbitrary sleeping postures can be hardly ex-

actly the same, however, considering a high degree of gran-

ularity in posture categorization may result in a great deal

of aliasing in classification outcome. Therefore, we built the

sleeping posture categories based on the K = 3 major sta-

ble in-bed postures of supine, P1 = S, right side P2 = R, and

left side P3 = L, in which we simply ignore the rare case of

prone posture. For system applicability, we also considered

another category as the unoccupied case, U, where there is

no lying person in the detection window.

2.3. Preprocessing Steps
Before feeding each video frame to our posture detec-

tion algorithm, a series of preprocessing steps needs to be

performed.

2.3.1 Camera self-calibration consideration

First, to make the system work with various RGB video

capturing devices and under different lighting conditions,

the algorithm should be hardware/condition independent.

After capturing several images with a regular webcam un-

der different lighting, it turned out that an automatic self-

calibration process runs in the camera software. This pro-

cess can be corrected by setting fixed exposure and gain,

but in the context of our application, we would rather keep

self-calibration, since the lighting condition differs tremen-

dously between day and night when the system should work

consistently. Regardless of the reason, the histogram ad-

justment may result in adversary effects in the analysis out-
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come, including the accuracy of the background subtrac-

tion.

To deal with different cameras’ self-calibration and light-

ing conditions, the image feature descriptors used for clas-

sification should be luminance-invariant. There are some

feature descriptors which meet this requirement such as

multi-scale oriented patches (MOPS) [7], scale invariant

feature transform (SIFT) [18], and speeded-up robust fea-

tures (SURF) [3]. However, these descriptors are usually

based on the area around interest points. In our application,

it is not practical to establish such universal interest points

for different persons with variable appearances and sleep-

ing poses. Therefore, we chose histogram of oriented gra-

dients (HOG) as our feature descriptor, which is a window-

based descriptor that slides through the image. HOG is sim-

ilar to SIFT, but is computed on a dense grid of uniformly

spaced blocks consisted of cells [9]. Another reason we

chose HOG as our descriptor is that it solely relies on gra-

dient information instead of color. Therefore, it can easily

be extended to infrared imaging version for low light (e.g.

at night) monitoring conditions.

2.3.2 Image downsampling

Sampled on dense grid, HOG method will result in a feature

vector with extra large dimension. To avoid the unnecessary

large dimensionality, the image can be downsampled. HOG

is gradient based and the posture information is only given

by the person’s profile which generally will not be affected

by the downsampling process. Most webcams feedback a

16:9 or 4:3 video stream and for sleeping postures, it is in-

tuitive to observe them from a portrait view. Therefore, we

rotate the input image by 90◦ clockwise with bicubic inter-

polation downsampling process. We choose and fix image

width at N2, so the output image height is determined by

M2 = [N1⇥N2
M1

], where M1 ⇥N1 is the size of the input image

and M2 ⇥N2 is the size of the output image. Note that the

output image is already rotated by 90◦ in our pipeline.

2.4. Feature Extraction
The HOG features are constructed as follows: the down-

sampled M2 ⇥ N2 image frame is first divided into small

evenly distributed rectangular cells. The unsigned gradient

orientations are evenly divided into b orientation bins. The

gradients over the pixels of a cell are accumulated into their

corresponding bins according to their directions, to form a

1-D histogram. Adjacent cells are grouped into larger spa-

tial regions called blocks and the local histogram ”energy”

is calculated to normalize the contrast of the local cells. The

dense gridded overlapped blocks form the HOG descriptors

of the detection window.

HOG features are controlled by several parameters. As-

suming that we employ only square cell and block shape,

then the parameters of the HOG features are as follows:

the cell size of m ⇥ m, the block size of n ⇥ n, the over-

lapped cell of size ol , and the orientation bin’s number of

b. The final feature vector dimension is also determined

by the input image size of M2 ⇥ N2. The length of the

feature vector, F, then is a function of all parameters as

|F|=
j

(M2
m
−n)/(n−ol)+1

k

⇥
j

(N2
m
−n)/(n−ol)+1

k

.

2.5. In-Bed Posture Classification
Compared to a pedestrian detection, lying subjects will

not always show a straight up posture in detection window.

This can be caused by a misaligned hospital bed or subject

self relocation. Therefore, we introduce a latent variable in

classification to handle this issue. To generalize this model,

we employ F(I) to represent the HOG features extracted

from a given image frame I. Since the dimension of an

HOG feature vector is extremely large, we employed the

principle component analysis (PCA) technique to reduce

the dimensionality, which is acting as our mapping kernel

of feature vector as φ(F). Furthermore, we added a latent

variable z to address the uncertainty in target alignment, so

the feature vector will be a function of both image frame and

latent variable, as φ(F(z, I)). To define a practical function,

we observed the following practical considerations and ad-

dressed them by introducing z in the classification problem.

2.5.1 Hospital bed misalignment

In most real-world cases, hospital beds are wheeled and

moved in and out frequently. Also, it is probable that the

bed will be wheeled back in opposite orientation. We as-

sume that the hospital staff will generally re-position the

bed to the original location with either near vertical or in-

verse vertical orientations. Thus, the latent variable is de-

fined as z= (x,y,θ), where x and y represent the shift, and θ
represents the rotation variation. Based on prior knowledge,

the latent variable can be constrained to a narrower domain.

For this study, we have assumed p(z), prior model for latent

variable in both uniform and Gaussian distributions. For ex-

ample, a Gaussian p(z) with zero mean is assumed to have

the rotation prior with standard deviation of 20◦, and two

kernels located at 90◦ and -90◦, and shift prior with stan-

dard deviation of 3 pixels.

2.5.2 Narrow field of view

Sliding window across image plane is the most commonly

strategy for for object detection, which is computationally

intensive [12]. For applications with large field of view,

such as pedestrian detection in a street this seems a required

step. However, for in-bed posture detection, the distance

between the person in bed and the camera is limited by the

room ceiling height (roughly between 8-9 feet for most bed-

rooms) and the bed height. This will result in a narrow

field of view, where the person tightly occupies the view

field. In our design, we take this into consideration and sim-

plify detection process considering only limited variations.

This may reduce the flexibility of the algorithm to handle
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Figure 1: The optimal detection window misaligned with the field of view.

versatile scenarios, however this is sufficient for our spe-

cific application, where a camera can be easily setup only

once during installation to provide overview perspective. In

many computer vision datasets for object detection such as

PASCAL [12], a bounding box is used to indicate the tar-

get, which gives a tight bound around the target area. In our

case, subjects are located in the center of the vision field

and almost fully occupy it. So we can simply employ the

acquired images directly for training purpose. Latent vari-

ables are introduced in some work, where they can employ

the surrounding information of the target object [13]. This

is not the case in our dataset as the surrounding information

sometime is missing as shown in Fig. 1. To tackle this prob-

lem, we adopted a ”symmetric” wrapping method to pad the

missing areas to generate the kernel function φ(F(z, I)) [2].

2.5.3 Introducing a latent variable in posture classifi-

cation problem

Employing a support vector machine (SVM) as the classi-

fier, score of a certain category is represented as:

s(F,z) = P(ti)(w
T φ(F(z, Ii))+b) (1)

where P(ti) is the predicted in-bed posture label at time ti,

and w and b are the coefficients trained for the SVM. Defin-

ing γ = (w,b), the posterior of a positive detection can be

achieved from a sigmoid mapping function:

P(P⇤|F,γ,z) =
1

1+ eαs(F,z)+β
(2)

where P⇤ means a positive detection. The coefficient α and

β will be achieved from fitting of the training dataset. Alter-

natively, we can also employ a simple linear mapping func-

tion to map the score to range (0,1) as a pseudo posterior.

Both models are tested in our experiments and results are

reported in Section 3. The posterior of latent variable z can

be achieved from Bayesian rule by assuming a uniform dis-

tribution of bed occupation:

P(z|P⇤,F,γ) ∝ P(P⇤|F,γ,z)P(z) (3)
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Figure 2: Latent variable optimization: (a) original image, (b) rectified im-

age, (c) posterior response of latent variable with linear mapping method,

(d) posterior response of latent variable with sigmoid function.

The optimal latent variable, zopt is obtained by apply-

ing maximum a posteriori (MAP) probability estimate al-

gorithm on Equation (3). An example of this process is

demonstrated in Fig. 2. An original image of Fig. 2a has

been realigned in Fig. 2b with a slight rotation. It is notice-

able that the bed was not realigned to a perfect vertical po-

sition, but latent variable searching process focuses on the

subject instead of the bed. Note that subject in the rectified

image has been brought back to a centered vertical position

as we anticipated. Fig. 2c and Fig. 2d employ two different

mapping method for posterior, (c) is simple linear mapping

from the classification scores and (d) employs the sigmoid

function.

After we obtain an zopt , data are further classified into

a specific in-bed posture as L,R or S. Three classifiers are

trained based on the error-correcting output codes (ECOC)

[10], assigned as shown in Table 1 . During detection ses-

sion, only the first classifier employs the latent variable af-

ter localizing the target to an optimal position. It is not

necessary to tune the latent variable again in the posture

recognition stage. The benefit of this design is to reduce

the computational cost and improve the system’s realtime

performance.

Table 1: ECOC for posture classification.

Posture SVM1 SVM2 SVM3

P1 1 1 0
P2 -1 0 1
P3 0 -1 -1
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Figure 3: Latent classifier with ECOC mechanism.

2.5.4 Details on classification implementation

Latent variable method is introduced in several computer

vision applications, which aims at specific class detection

[13]. Instead of employing latent variable for single cate-

gory classification, it turned out that the occupied samples

even with different postures of L,R and S are more similar to

each other when compared to the unoccupied ones. There-

fore, we employed latent variable for a combined category

instead of individual ones in order to reduce the computa-

tional intensity of our algorithm. Furthermore, well-aligned

samples with well-centered bed setting are easier to be col-

lected in our case to form the training set and model param-

eters can be trained directly from them. This is an example

of a privilege learning approach using privileged training

information [33]. The detection process algorithm is shown

in Algorithm. 1. To alleviate the computation cost, we only

search the latent variable in a searching space Ssch which

only contains limited points in the latent variable space. The

final structure of latent variable search is shown in Fig. 3.

Algorithm 1: Latent variable optimization and occu-

pation detection.

Data: I

Result: zopt , occupied or not

initialization;

Find zopt to maximize P(z|P⇤,F,γ)
if P(zopt |P

⇤,F,γ)> 0 then

return true;

else

return false;

2.5.5 Filtering transitioning states

During posture changes in bed, transitioning states can in-

troduce misleading classification results to the system. To

Blocked in practical application for 

privacy protection

Figure 4: A snap shot of sleeping tracking system GUI.

avoid unreliable detection during these transition, we em-

ployed a first input first output (FIFO) buffer to accom-

modate recent posture results and perform a sliding me-

dian filter on them. The buffer can be represented as

[P(ti−L),P(ti−L+1), ...,P(ti)], where L stands for median fil-

ter window width. Having i > L holds only backward fil-

ter window, which will result in a bit of delay; however,

it suppresses the jitters during posture transition. We ex-

tended the posture set with unoccupied case to be a state set

{U,S,R,L} to cover all the possible states of the system out-

put. To perform the median filtering, we translated the state

set to its enumeration integer indexes as {0,1,2,3}. The

reason behind choosing median filter is having a discrete

state set. In our system design, this function is optional if

delay has to be avoided.

2.6. In-Bed Posture Tracking History (iPoTH)

For long-term posture monitoring purposes such as

sleeping behavior studies, we implemented a history re-

port generation function in this system. When en-

abled, it will generate a history report for each mon-

itoring interval. The in-bed posture tracking history

(iPoTH) report will be named with exact date and

time of data collection. It follows the format of

’iPoTH month date year hour minute second’. The report

content is a 2-column array of posture record with the time

stamps.

2.7. GUI Design

A graphical user interface (GUI) has been designed as

shown in Fig. 4. The GUI has two major graphic displays,

one for realtime video display and another one for a iPoTH

report visualization. The grey ”Posture identified” panel

gives the very recent recognized posture result alongside

a check box for occupation detection. The moving aver-

age median filter, report generation, and enhanced searching

functions are all optional to the user listed as check boxes

in the GUI, where the enhanced searching will introduce the

latent variable during prediction. This GUI is for demo pur-

pose and in practical application the realtime video could be

blocked to protect the patient’s privacy.
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(a) (b) (c) (d) (e) (f)

Figure 5: Sleeping mannequin images captured at hospital setting.

3. Experimental Results

Currently, there is no public in-bed posture dataset.

Therefore, in order to evaluate our posture tracking per-

formance, we setup our system in two different scenarios,

a simulated hospital environment and a home-like setting.

We collected data and applied our in-bed posture classifica-

tion algorithms on datasets from both scenarios as well as

on realtime videos.

3.1. Mannequin Test at Hospital Setting
First, we setup our system in a healthcare practice simu-

lation lab with real-life clinical settings.

3.1.1 Data recording hardware

Off-the-shelf materials were used to prototype the proposed

system and demonstrate the potential of our system to be

built easily anywhere. In our setup, the system hardware

includes: (1) HP envy x360 laptop, running Windows 10

Home Edition i5 CPU@1.7GHz and memory of 8GB, and

(2) Logitech C525 HD webcam with the maximum frame

rate of 15fps. We attached the camera to the ceiling tile

of the simulation lab over a hospital bed. We chose a 16:9

video format with 1280⇥720 resolution. For the downsam-

pling process, we chose the driven size of N2 = 64.

3.1.2 Dataset design

In our system design, we not only evaluate in-bed postures,

but also detect the occupation state. The two general cat-

egories, are labeled as Ũ for occupied ones and as U for

unoccupied ones. The occupied ones are further classi-

fied into categories from posture set {S,R,L}. To form

the occupied dataset, we employed one male and one fe-

male life-size mannequins to present random postures for

each posture category. We used the hardware described in

Section 3.1.1 and Windows10 built-in camera app for video

acquisition. To form the training dataset, we recorded ap-

proximately 10 frames from each mannequin for each pos-

ture category. Limited by the number of the mannequins,

we dressed the mannequins with different hospital gowns

to account for different subjects and clothing. We noticed

some ambiguous postures during dataset forming, such as

the body sometimes stably stayed in between supine and

side lying posture. To clarify this ambiguity, we established

a rule to determine whether or not a posture belongs to S

class, which mainly depends on the upper body. S refers

(a) (b) (c) (d) (e) (f)

Figure 6: Artificial unoccupied dataset at hospital setting.

to postures, where the angle between the body plane and

the mattress is less than 45 degrees. In several cases, the

mannequins are positioned with a pillow support. In total,

we collected 315 samples for occupied dataset with 102,

102, and 111 samples for L, R, and S categories, respec-

tively. Some sample frames are shown in Fig. 5. To form

the negative dataset with unoccupied bed images, we sim-

ply manipulated the bed, pillows, and blankets on it to form

several unoccupied cases, in which some samples are show

in Fig. 6.

3.1.3 Posture classification performance evaluation

To find the model parameters used for latent variable search-

ing, we employed the unoccupied bed dataset, DU with 113

samples and occupied bed dataset, DŨ with 315 samples.

PCA analysis was applied on the DU

S

DŨ of the training

set and the same PCA coefficients were employed on test

set. An SVM binary classifier was applied and a 10-fold

cross validation technique was conducted to evaluate the

posture recognition accuracy. To choose the optimal num-

ber of principle components and the HOG feature cell size,

we evaluated the occupation detection and also the posture

estimation performance with varying PCA numbers with

step 10 and also varying cell size. From the result shown

in Fig. 7, we can see cell size ranging from 5 to 15 yields a

good result. To choose optimal PCA number, we chose the

one that yields the best performance with cell size ranging

from 5 to 15. In our test, we set PCA number as 110.

To further validate the recognition robustness, we inten-

tionally shifted and rotated the bed in order to extend the

original dataset to contain alternative position and rotation

cases. Based on this, we synthesized the inverse direction
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Figure 7: Bed occupation and posture classification accuracy based on the

number of principle components with different HOG cell size using man-

nequin data: (a) occupation detection performance, (b) posture estimation

performance.
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edition to simulate when hospital bed relocated with an in-

verse orientation. For latent variable search, there was only

very small margins in y direction around the person, which

could be ignored. The variation along x-axis is represented

by searching space Sx = [−8,8] with a step size of 4 and

rotation as Sθ = [−15◦,15◦] with a step size of 5◦.

To present a fair comparison between result with and

without latent variable searching, we first tested only on the

samples with upright orientation. We combined Gaussian

(gau) and uniform (unif) prior with sigmoid (sig) posterior

and linear mapping (lin) posterior separately. The classi-

fication results are shown in Table 2. For Gaussian prior,

considering the synthesized inverse orientation cases, we

used the Gaussian mixtures with two equal weighted ker-

nels located in two opposite direction as orientation prior

model. In our experiment, occupation test and posture clas-

sification test were performed separately. For posture clas-

sification, we assumed all of them are correctly recognized

as occupied ones. Table 2 demonstrates that all the latent

searching methods no matter what exact prior and posterior

model they take, give much better performance in occupa-

tion detection with error rate of 3.6% than the one with-

out latent variable. The posterior mapping method does not

have a significant effect. We believe this is reasonable as

the score and the fitted posterior are positively correlated.

Overall, the uniform prior case showed better performance,

which may caused by the test set distribution. In our case,

misaligned samples have almost the same quantity as well-

aligned ones, so the uniform distribution fits better for our

test set. However, in real world cases, it would be more like

a normal distribution as care givers will be trained to well-

aligned the bed. The confusion matrix with uniform prior

and posterior posterior mapping is shown in Table 3.

3.2. Human Test at Home-like Setting
To test the feasibility of our posture recognition method

in multiple scenarios, we made another setup with an air

mattress and a camera hanging above it to perform our

method on real human participants.

Table 2: Classification results of different prior and posterior mapping

methods with HOG cell size 5 and PCA number 110.

sig+gau sig+unif lin+gau lin+unif no latent

Posture Classifi-
cation

90.3% 91.0% 90.3% 91.0% 60.7%

Occupation
Detection Error

3.6% 3.6% 3.6% 3.6% 70.0%

Table 3: Confusion matrix of uniform + sigmoid latent searching.

Predicted Postures
L R S

L 118 1 0
Actual Postures R 0 57 16

S 6 2 77

3.2.1 Dataset design

To form the occupied dataset, we invited 12 participants

(11 males) to take part in this experiment. The experimen-

tal procedure is as follows. An air mattress was well po-

sitioned in the center of a webcam field of view. Partici-

pants were asked to lie in bed in three general categories of

supine (S), left side (L), and right side (R). Within each pos-

ture category, participants were encouraged to adjust their

poses to feel natural and comfortable. We recorded approx-

imately 10 frames from each participant for each posture

category. We used the same hardware described in Sec-

tion 3.1.1 but this time with Logitech C720 webcam and

Windows10 built-in camera app for video acquisition. In

total, we collected 358 samples for occupied dataset with

115, 120, and 123 samples for L, R, and S categories, re-

spectively.

For negative dataset, it could be any frame without a per-

son in it. Since our system is targeted for different environ-

ments such as hospital or family residence, video frames

would have various backgrounds that we can hardly simu-

late in one fixed lab setup. Unfortunately, there are no pub-

licly available dataset focusing on top view indoor images.

However, since HOG features depend highly on the gradi-

ent information, we were able to use any image without hu-

man in it to provide the random gradient information for

our inference model. Therefore, we collected the unoccu-

pied sample images in two ways. First, we simply generated

several random scenarios without human by our experimen-

tal setup, which shared high similarities in the surrounding

area with our occupied dataset. The other way was using the

public online dataset INRIA. To generate unoccupied sam-

ple images from INRIA, we employed a random window

strategy within the original images and cropped a random

patch from each of them. In total, we generated 1257 unoc-

cupied samples for U set. Several occupied and unoccupied

samples are shown in Fig. 8.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8: Human subjects dataset: (a)-(f) samples with human subjects,

(g)-(l) samples without human in it.
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Figure 9: Bed occupation and posture classification accuracy based on the

number of principle components with different HOG cell size using real

human data: (a) occupation detection performance, (b) posture estimation

performance.

3.2.2 Posture classification performance evaluation

We employed similar test procedure described in Sec-

tion 3.1.3. The prediction performances for both occupa-

tion and poses with different PCA number and cell size are

shown in Fig. 9. We chose cell size equal to 10 and PCA

number to be 110. Even though perfect accuracy could be

achieved with larger component numbers, however it was

unstable when components were added or deduced from

our dataset. As for human dataset design, we did not in-

tentionally build up the samples with mattresses rotated and

shifted. We only synthesized alternative images from one

participant’s original 15 samples, and our latent classifica-

tion method found all these variations, correctly. To simu-

late the application scenario, we trained the model with 11

subjects and left out one person’s data which the model has

never seen as the test set. Since we aim at posture estimation

when subject reaches a stable state instead of transitional

ones, static recorded frames can fairly reflect model accu-

racy instead of all frames from a stream. On our test set, the

model detected all the occupations correctly and achieved

a posture estimation accuracy of 93.6% with confusing ma-

trix shown in Table 4.

3.3. Time Efficiency Test
We also tested the time efficiency of our algorithm. To

rule out the hardware factors, we employed the pre-recorded

videos to conduct the run-time test by excluding the acqui-

sition time. We ran 300 test cases to evaluate the time effi-

ciency with and without PCA. The recognition pipeline with

PCA showed an average run-time of 15.9ms and the recog-

nition without PCA showed an average run-time of 18.3ms,

as shown in Fig. 10(a) and (b), respectively. Therefore, PCA

Table 4: Confusion matrix of uniform + sigmoid latent searching

Predicted Postures
L R S

L 9 0 0
Actual Postures R 0 11 0

S 0 2 9

(a) (b)

Figure 10: Posture tracking pipeline run-time test with 300 cases: (a) time

cost with PCA, (b) time cost with HOG features directly and no PCA.

in our method reduces the time cost approximately by 13%

compared to the results with original HOG features.

When the latent variable is introduced, the time cost

depends on the granularity, dimension, and range of the

searching space. For time performance evaluation of our

enhanced searching, we considered a searching space with

Sx = {−8,−4,0,4,8} and Sθ = {−10◦,−5◦,0◦,5◦,10◦}.

The average time cost was 280ms.

4. Conclusion
In this paper, based on a series of experiments, we

demonstrated that our proposed vision-based posture track-

ing system can successfully detect the person’s in-bed posi-

tion over time and generate a person-specific iPoTH report.

Our system is implemented based on a regular webcam and

a laptop, which makes it easy to be setup in ordinary fam-

ily/nursing homes or hospitals. Its intuitive GUI provides

direct visual feedback to non-expert computer users to op-

erate it. The proposed system not only provides caregivers

with a long-term in-bed posture history of each patient, but

also could be used in sleeping behavior studies applicable

in several psychophysiological domains.

Nonetheless, our current work is still limited under cer-

tain contexts. Its effectiveness with night vision systems in-

stead of visible light cameras remains untested, which will

be explored in future work. Another major challenge for

in-bed posture monitoring is the high probability of subject

being covered by a sheet or blanket. In fact, vision-based

methods would no longer be functional in this case where

other sensing modalities should be explored for information

retrieval. This is an important issue for further exploration.

Larger dataset should also be built up to provide a more

reliable evaluation platform for in-bed posture and pose es-

timation studies.
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