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Abstract

The visually impaired are consistently faced with mo-

bility restrictions due to the lack of truly accessible envi-

ronments. Even in structured settings, people with low vi-

sion may still have trouble navigating efficiently and safely

due to hallway and threshold ambiguity. Assistive technolo-

gies that are currently available do not provide door and

door-handle object detections nor do they concretely help

the visually impaired reaching towards the object. In this

paper, we propose an AI-driven wearable assistive technol-

ogy that integrates door handle detection, user’s real-time

hand position in relation to this targeted object, and au-

dio feedback for “joy stick-like command” for acquisition

of the target and subsequent hand-to-handle manipulation.

When fully envisioned, this platform will help end users lo-

cate doors and door handles and reach them with feedback,

enabling them to travel safely and efficiently when navi-

gating through environments with thresholds. Compared to

the usual computer vision models, the one proposed in this

paper requires significantly fewer computational resources,

which allows it to pair with a stereoscopic camera running

on a small graphics processing unit (GPU). This permits us

to take advantage of its convenient portability. We also in-

troduce a dataset containing different types of door handles

and door knobs with bounding-box annotations, which can

be used for training and testing in future research.

∗Equally contributed
†Corresponding author: Yi Fang (yfang@nyu.edu)

1. Introduction

1.1. Background

According the World Health Organization circa 2014,

there were 39 million people suffering from blindness

worldwide with 82% of them at or above the age of 50. Ad-

ditionally, there were 246 million people with low vision.

In just the United States, billions of dollars are spent per

annum towards direct and indirect medical cost for vision-

related illness. In fact, the total economic impact of blind-

ness and visual impairment is estimated to be approximately

3 trillion dollars globally.

Low vision, an impairment of visual information acqui-

sition and/or processing, is well-known to hinder both spa-

tial perception and object detection. This creates a myriad

of functional mobility difficulties, including but not limited

to trips, falls, and head injuries. Even in situations where an

object may be partially visualized or roughly localized, dif-

ficulties abound. On average, human eyes are horizontally

separated by about 65 mm; each eye has a slightly differ-

ent view of the surrounding world. By comparing these two

views, our brain can infer not only depth, but also 3D mo-

tion in space. Thus, people with visual impairment lose this

crucial environmental information not only when both eyes

are affected by pathology but even when one eye is affected,

resulting in an incomplete sense of depth and distance.

Current mobility aids within the assistive technology

space, such as canes and adaptive mobility devices, focus

on improving gross environmental perception to augment

safety and improve efficiency. These macroscopic views do

not afford granular details about environmental constraints

or potential environmental hazards that are “out of reach”

of the device itself and often provide only partial situational

awareness. This is not only limited to outdoor navigation
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but also indoor navigation. One such difficulty at a cat-

egorical level is hallway and threshold ambiguity, where

individuals have problems locating a threshold, the related

door handle or knob, and manipulating this targeted object

for seamless travel. Despite automatic doors and audio-

enabled, spoken-word prompts representing an ideal, there

always seems to be a lack of truly accessible environments

for those with low vision. While the present norm of out-

fitting environments with accessible hardware is certainly

feasible and presently obtainable, the scale of the endeavor

to achieve universal application is near impossible.

Given recent progress in neural networks and deep learn-

ing, many achievements have been made in image detec-

tion and computer vision. Recently, much scientific re-

search has expanded into 3D scenarios, with the additional

step of extracting depth information. 3D cameras, with two

lenses aligned horizontally to capture images simultane-

ously, work biomimetically to human eyes. By calculating

the differences (or disparities) between every pixel in the

left eye image with its corresponding pixel in the right eye

image, “disparity images” or “disparity maps” can be recon-

structed. Given the distance between the center of the two

lenses and the focal length, depth information can be ob-

tained based on the two camera images. Thus, depth sens-

ing and motion tracking become not only possible, but also

computationally affordable and statistically accurate. This

paper is developed based on these two areas: computer vi-

sion / deep learning neural network for object detection, and

depth sensing for expanding such spatial localization from

2D to 3D environment.

1.2. Related Works

With recent improvements in powerful GPUs and algo-

rithms, the processing time for object detection and recog-

nition has been significantly reduced without jeopardizing

accuracy. Deep neural networks (DNN), especially convo-

lutional neural networks (CNN), are so far the most effi-

cient and productive model for such computer vision tasks.

One of the first networks to exploit the DNN construct for

object detection was the R-CNN, a CNN-based classifier

[5]. While surpassing previous models by a large margin,

its computational burden limits its speed. The Spatial pyra-

mid pooling (SPP)-based network [6] alleviated the issue by

computing CNN features once per image. The Fast-RCNN

[4] improved further on the SPPNet with ROI pooling lay-

ers, and its successor, the Faster-RCNN [17], significantly

increased detection speed by making the object-proposal

network differentiable. This body of work has laid a solid

foundation for computer vision tasks, followed by many

productive applications with fast detection [1, 15]. Prelimi-

nary experiments and explorations, mostly based on mobile

platforms, have been conducted in real-time. Projects such

as real-time object detection on a mobile device [2], door

handle detection based on shape detection and color seg-

mentation [9, 10], laser perception [19], and combination

of multiple features [24, 7] have all achieved initial success.

Several researchers have taken the research one step fur-

ther and integrated 3D-image detection models with larger

systems that require more human interaction or provide

similar assistance. Notable projects include Camera Input-

Output system [20], sensor fusion with infrared for obsta-

cle identification [18], RGB-D image based detection [23],

indoor staircase detection [3], and wearable systems for en-

hanced monitoring and mobility [21]. However, there are a

few that focuses on the visually impaired and goals or tasks

that involve character detection [13] or travel aid [12], even

in 3D glasses [11].

1.3. Our solution: Door Knob Detection with Joy
Stick Control

To address the mobility issue mentioned previously, we

have developed a wearable assistive technology that detects

door handles and user’s real-time hand position in relation

to this targeted object. The system also provides audio

feedback for “joy stick-like command prompts” for hand-

to-handle manipulation, allowing the user to conveniently

reach out for the door handle with initial spatial guidance

and improved threshold navigation efficiency.

Figure 1 illustrates the pipeline of this proposed project,

which has three major components. The first component is

the deep learning neural network that can perform two-class

object detection – door/door handles and human hands, and

it will return the corner coordinates of the bounding box

enclosing the object. The second component is the image

flow and depth information extractor (stereo camera). The

third component is a hard-coded program that integrates the

information flow: combining the position of the detected

objects along with the depth information extracted from the

camera to obtain its 3D spatial location. It then transforms

such information into descriptive sentences and outputs it

with synthesized voice to the users, providing joy stick-like

commands to the user, assisting in-hand control with feed-

back assistance.

Figure 2 demonstrates the system of devices in a nut-

shell. The image is captured by our stereo camera (1)

mounted in front of the user’s chest; then the data are pro-

cessed in the portable GPU (2) carried in the bag, finally

the audio output containing localization information will be

sent to the user via a Bluetooth headset (3), helping them

navigate and locate the door knob.

2. Method

To complete the proposed project, the system must inte-

grate image fetching, real-time object detection, and real-

time depth computation into a wearable device to provide
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Figure 1: Pipeline of our proposed project.

real-time feedback. It can inform the user about the rela-

tive position of the door handle, help him or her locate it,

guide the initial reach, and alert them in real-time if they

are deviating from the desired direction with joy stick-like

prompts. When the door handle is within reach, the output

information would indicate the best route to reach towards

the spatial target relative to a common starting point. As

the individual moves their hands in an attempt to reach out,

grasp, and manipulate the door handle, the system will pro-

vide synthetic sensory feedback relative to an idealized tra-

jectory from start to target with the joy stick-like commands

if the user is deviating from the ideal path.

2.1. Hand and Door Knob Detection

This section presents the deep neural networks to de-

tect door/door handle and hand. The model is based on

YOLOv2 [16] because of its relatively high detection speed

and accuracy. Real-time object detection is one of the ma-

jor components for the “joy stick-like command” system

for assisting the visually impaired. Deep learning methods

are state-of-the-art for such a task given that the architec-

ture has proven to be effective in detection among different

object domains. The architecture we choose can detect ob-

jects with high speed because it divides input images into

grids and raises bounding-box proposals, which saves the

GPU time by significantly decreasing the proposal volume.

For every grid, the network will output B bounding boxes as

proposals, and those bounding boxes that have a higher con-

fidence than the threshold will be sent to NMS (Non Maxi-

mum Suppression) to generate the final output.

2.1.1 Architecture

The architecture of the model is a Convolutional Neural

Network containing 22 convolutional layers and no fully

connected layer. The network contains a layer of 32 con-

volutional filters with height and width of 3 and stride of

1. This layer is followed by Leaky ReLU, max pooling of

pixels in a window of height and width of 2 and strides of 2,

one layer of 64 convolutional filters with the same height,

width, and stride as before, same Leaky ReLU, and the same

max-pooling. The max pooling layer is followed by 3 lay-

ers of 128, 64, and 128 convolutional filters with stride of 1

and height and width of 3, 1 and 3, respectively. This layer

is then followed by Leaky ReLU and another max pool-

ing layer with size of 2 and stride of 2. The max pooling

layer is followed by 3 layers of 256, 128, and 256 convo-

lutional filters with the same height, width, and stride as

before. They are all followed by Leaky ReLU and the same

max pooling layer. Then, the max pooling layer is again

followed by 5 convolutional layers of 512, 256, 512, 256,

and 512 filters with size of 3, 1, 3, 1, and 3 and stride of

1. They are all followed by Leaky ReLU activation and a

max-pooling layer like before. After that, there are 7 more

convolutional layers of 1024, 512, 1024, 512, 1024, 1024,
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Figure 2: Major components of the navigation system: 1.

ZEDTM camera for visual data acquisition, 2. Portable GPU

carried in the back bag for data processing, and 3. Bluetooth

headset for audio output.

and 1024 filters with filter size of 3, 1, 3, 1, 3, 3, and 3 and

stride of 1. These layers are followed by the same Leaky

ReLU but not the max-pooling layer. Finally, there are two

convolutional layers for proposal outputs which can either

have 1024, 35 (door knob and hand), or 30 (only door knob

or only hand) filters with size of 3 and 1, and stride of 1.

These two layers are followed by Leaky ReLU and a linear

activation function. The number of filters in the last layer is

based on the equation: (#classes + #coords + 1) ∗ (B).
In this model, we let B = 5, and the coordinates are x, y,

w, h, which represents the center coordinates of the object

and the height and width of the bounding box. So if there

is only one class, the filter number is 30; if there are both

hand and door handle to detect, the filter number is 35. After

the neural network outputs the tensors, proposals with high

enough confidence will be sent to NMS to generate the final

results. Also, the network uses anchoring to help with the

accuracy. Our anchor boxes are generated from clustering

VOC detection dataset by k-means of k = 5 [15].

2.1.2 Implementation

The idea behind this high processing speed is that the model

applies a single neural network to the whole image and the

whole network consists of only convolutional layers and no

fully connected layer. It divides the image into S × S grid

cells and chooses the box with argmax(IOU)(Intersection

Over Union). Every grid gives out B bounding boxes,

each containing 5 pieces of information: (x, y, w, h, prb)
where x, y are coordinates of the box center, w and h rep-

resents the width and height of the box, and prb represents

the probability that an object is inside this box P (Object).
Prior detection systems usually repurpose classifiers and lo-

calizers by applying them at multiple locations and scales.

Each region of the application would yield a score cor-

responding to the probability of target object and regions

with high scores are considered to be detections. Every

grid outputs P (Class|Object) for C classes. And since

P (Class) = P (Class|Object) × P (Object), threshold can

be applied to filter recognition results. Then, classes and

small bounding boxes from the grids will be integrated into

real bounding boxes and labels. The network is trained on

a GPU-based deep learning framework called Darknet [14].

Since it is implemented in C and CUDA, the speed of train-

ing or inference is relatively high, which meets the need of

the real-time detection task.

2.2. Depth extraction and “joy sticklike command”
control

Following image acquisition, two slightly different pic-

tures are captured by the two lenses positioned horizontally

relative to each other. By performing a matching process

for every pixel in the left eye image and its counterpart in

the right eye image, we would end up with an map or image

where every pixel contains the disparity (distance) value.

Then, the depth information can be extracted from this re-

constructed image [8].

Assuming the target object appears in the camera im-

ages, “Joy stick-like command” utilizes a combination of

the aforementioned detection results to give the user feed-

back of the spatial location of their hand relative to the tar-

geted door handle by guiding them to reach out for and ma-

nipulate the handle. The general framework is presented in

Algorithm 1 and elaborated below. Figure 3 illustrates how

such “joy stick-like command” is performed. In essence, it

contains three steps (given that both hand and door handle

are detected):

• Step 1. While performing object detection, the model
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will obtain the coordinates for both objects. Then,

it will dynamically compare the depth information to

determine whether the door handle is within reach

(whether the door handle’s “z coordinate output” is

close to the hand’s “z coordinate output”, i.e. less than

a preset threshold, say approximately 24-30 inches)

• Step 2. If the comparison yields “False”, it will prompt

the user to move towards the door handle by output

the position information without the vertical difference

(e.g. “door knob is 3 feet in front of you and 1.2 feet

to your left”). Many door handles are relatively stan-

dardized in verticality as well.

• Step 3. If the comparison yields “True”, it will help

the user to reach towards the knob by only focusing on

the x and y differences and ignore the depth informa-

tion (i.e. only report horizontal and vertical distance

between the hand and the door knob).

Data: Images fetched from camera

Result: Give navigation information to user

initialization of stereo camera, detection model, and

TTS(Text to Speech Synthesizer) engine;

while getting image from the camera do
send image to model, detect hand and door handle

in the image;

if nothing is detected or only hand is detected then

continue;

else if only door handle is detected then
compute door handle coordinates using

bounding box location;

tell user where the door handle is in camera

coordinate system;

else both hand and door handle are detected
compare the location/depth of hand and door

handle;

tell user how to move his or her hand towards

the door handle;

end

end

Algorithm 1: “Joy stick-like command” Feedback Sys-

tem

3. Experiments and Testing

3.1. Data collection and annotation

3.1.1 Door handles

Our dataset contains two major components. The first and

most important one is the door handle dataset. Since no

dataset is perfectly tailored to our goal, we decided to build

our own dataset by collecting images organically instead of

Figure 3: Demonstration of joy stick control.

searching and downloading them from Amazon or Home

Depot. We had team members taking photos of all kinds of

door handles in different locations and scenes and at vary-

ing vantage points. The camera was always held in a posi-

tion that approximates the position the stereo camera when

mounted and integrated into the wearable system. Starting

from the buildings and properties of New York University,

the team gradually expanded their reach to the city streets

for more images. The image library includes door handles,

knobs, levers, latches, and many other types. In this paper

we will be focusing on the knob category given its charac-

teristic shape features and distinctive properties; it is also

very standard and common around the world.

Next, all photos were manually annotated with bounding

boxes as the ground truth label. For better processing speed

and consistency, all photos are also downsized to a standard

resolution of 1200 by 900 and stored in JPEG format. This

preprocessing standardizes the coordinates of the bounding

boxes, where x and y now range from 0 to 1200 and 0 to

900, respectively.

After several weeks of work, our team had collected ap-

proximately 4000 photos for training and testing; among

them, 1000 images contain door knobs. Some examples of

the door knob pictures with bounding boxes are shown in

Figure 4.
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(a) (b)

Figure 4: Examples of door knob photo.

3.1.2 Hand images data

In order to perform “joy stick-like command” control

and inform hand orientation, the user’s hand also has to

be detected in real-time. For this purpose, the popular

benchmark dataset for the Vision for Intelligent Vehi-

cles Applications (VIVA) Hand Detection Challenge

(http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-

detection/) was used for training the hand classifier. This

dataset consists of large scale hands data (from 54 videos

collected in naturalistic driving settings) with 2D bounding

boxes around, covering illumination variation, hand move-

ments, and common occlusion. These photos were taken

from 7 possible viewpoints, including first person view,

which is the most common viewpoint in our model (similar

to Figure 5) since the camera is mounted in front of our

user’s chest.

Figure 5: Example of the hand pictures with annota-

tion. Figures collected from the VIVA challenge website

(http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-

detection/)

3.2. Training classifiers

As mentioned before, there are 175 door knob pictures

in total, 160 of them were used for training and the rest for

testing. A neural network (called model 1 in this case) was

created to only focus on the door knob. It was first pre-

trained on ImageNet, then fine-tuned with the door knob

dataset.

The object detection network will return bounding boxes

with corresponding ”confidence”, i.e. the probability that

it contains our target object, door knob. For example, if

the model returns a box with a confidence value of 0.8, it is

”80% sure” that there is a door knob inside this box. Hence,

we can set up a proper threshold such as 0.6 to filter out all

the uncertain cases and reduce false positives. Some suc-

cess and failed/inaccurate cases of the Model 1 predictions

are shown below. The model successfully detected almost

all door knobs appearing in the pictures (14 out of 15 testing

samples) with any reasonable confidence threshold between

0 and 0.6, although lower thresholds tend to let our model

return more false alarms. Moreover, among those success-

ful cases, the model accurately and decisively highlights the

localization of door knobs with high confidence. When a

confidence threshold of 0.6 is set, the model prediction acts

as if it is the ground truth data, where the bounding boxes

look almost like human annotations – no false positive or

false negative among the 14 selected testing samples (Fig-

ure 6).

For experimentation purposes, different thresholds have

been tested in order to observe its impact as well as to search

for the optimal value. When the threshold drops to 0.2, only

one picture starts with a false positive; when it drops even

lower to 0.005, about one third (5 out of 15) of the tests

resulted in failed/inaccurate predictions. Aside from some

clean detections, there are some samples that give multi-

ple bounding boxes with low threshold settings (0.005) and

they are listed in Figure 7.

In Figure 7a, despite the fact that both the shape and fea-

tures of such a blurry door knob are barely recognizable

by human eye, our model still detected it with confidence.

It was also accompanied by another larger blue box, pre-

sumably because the blurriness obscured the boundaries.

Nonetheless, the general position (the centroid) is not sig-

nificantly affected.

Secondly, in Figure 7b, the model gives two boxes, but

this time the centroid coordinates are distinctively different.

Although it correctly covers all parts of the knob, the blue

box is severely skewed and it includes too much marginal

space. The cause behind this skewness is somewhat unclear,

but the dark color can be a possible factor.

Next, in the last example (Figure 7c), the model shows a

lack of confidence in its own prediction by labeling multi-

ple objects/areas as the target object; the majority of them

do not even make sense to human judgment. Such unrea-
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(a) (b)

Figure 6: Successful cases.

(a) (b)

(c)

Figure 7: Inaccurate cases.

sonable prediction is expected to emerge only under the cir-

cumstances of extremely low confidence threshold such as

0.005; they are mostly likely to be suppressed in practice

with a regular threshold level.

The second classifier (called Model 2), which targets

human hands, was trained using the VIVA hand detection

dataset mentioned above. 5000 hand pictures were ran-

domly chosen from the dataset for training and the remain-

ing 500, along with 50 hand photos that we manually col-

lected, were used for testing. The training session used al-

most the same parameter settings in terms of learning rate

and batch operation. Since the VIVA dataset extracts hand

images from videos collected from a driving environment,

our initial concern was generalizability. Our test results

confirmed our suspicion: when we test Model 2 with the

photos from the VIVA dataset, it performs well; however, if

we apply it to the indoor photos that we have taken, the net-

work often fails – it either can not detect the hand or gives

multiple candidates, many of which are just false alarms.

3.3. Wearable Assistive System

As shown before in Figure 2, an end user wears a pro-

totype of our wearable assistive technology for the visu-

ally impaired with door knob detection and real-time joy

stick-like command for hand-to-handle manipulation, the

detailed information about the major components are listed

below.

• ZEDTM Stereo Camera from Stereo Labs can capture

high resolution images (up to 2200) with a detectable

depth range of 0.3 to 20 meters and a field of view of

110-degrees. The detection accuracy can be as precise

as 1 millimeter, or 0.1 degree in terms of visual an-

gle. It provides a detailed API for image rendering and

it will serve as the “eyes” of our assistive technology.

In practice, the camera will be slightly lower than the

user’s eye height, but is close to the height of human

hands and particularly good for wide and central view

of the core body, including mid-body, in addition to

high-body and low-body; this can be ideal for a wide

range of navigation needs.

• Next, the system needs a “brain” to process all the vi-

sual signals for final output. We use the Jetson TX1

/ TX2 from NVIDIATM for the convenient portabil-

ity and power/computation profile the hardware af-

fords. To run this with a stereoscopic system such as

the ZEDTM camera, Darknet was first compiled with

CUDA and OpenCV, then the model will display the

predicted classes (in our case, either hand or door

knob) as well as the bounding boxes drawn on top of

it. In addition, we integrated the depth information

into audio output for user feedback, so he/she can ac-

complish the door knob manipulation required for door

opening in a more efficient manner.

• As a control system, this wearable device can pro-

vide constant voice feedback to the user by detect-

ing relative position of the hand and door knob when

“in view” on the stereo camera. By comparing the

depth/distance, the system will tell users whether they

need to keep moving, stretch their arm farther (along
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the z-axis), or just maintain depth and modify 2D

placement of hand on the door in a handle-centric di-

rection (along the pertinent x- and y- axes). This is

a task ideal for the Bluetooth bone conduction-based

headset given its ability to maintain intact air conduc-

tion for hearing, low power needs [22], wireless con-

nection, and ease of wearing. All detected/computed

information will be extracted and structured into a

meaningful and high-impact English phrase or sen-

tence and then synthesized as a person’s voice for au-

dio output. A Text To Speech (TTS) Engine is de-

ployed for this task. Presently, we have implemented a

robotic voice as more natural voice generation requires

more complex neural networks and more computation

resources, which will inevitably affect energy cost and

overall performance.

The whole system works in the following manner: First,

when the user is approaching the threshold, the door knob

will most likely be the only initial object detected by the

Neural Network. One of the user’s hands is likely to be on

the handle of a white cane, ideally positioned at mid-line

and perhaps just out of view of the camera and the other

will be on the side of the body instead of the front (mid-

line). The system will then tell the user the position of the

door knob with depth by outputting a sentence like “Door

knob is 5 feet ahead of you”, letting the user know how far

away he/she is. At this point, no information regarding the

hand will be presented at all. Once the user is near enough

(e.g. depth of approximately 2.5-3 feet, a typical range for

canes), the system will remind the user, permitting time to

pause or switch hands for the cane to free up the dominant

hand for reaching to the door knob. It is at this point the sys-

tem will issue an initial spatial target command to be used as

a guide for the reach in hand-to-handle manipulation, mon-

itoring both door knob and human hand. Now it will re-

turn their respective positions and the system can automati-

cally compute the spatial difference in all three dimensions,

based on the centroid of the corresponding bounding boxes

along an idealized trajectory from start to finish, updated

over the course of the movement and ultimately to goal. See

Figure 3, for an example, the coordinates of the hand (red

box) is x1, y1, z1, while the coordinates of the door knob is

x2, y2, z2, which can all be obtained with ZEDTM camera.

Then the program with TTS integrated will first compute

three differences x = |x1−x2|, y = |y1−y2|, z = |z1−z2|,
where x, y, z denote horizontal, vertical, and depth distance,

respectively. Next, TTS program will output a sentence

like “Please move your hand x feet to your left/right, y

feet up/down.” via the Bluetooth headset to our users and

help them with the orientation (of course x, y will be re-

placed with real values). The z value here usually serves

as a threshold to control the structure of the sentence: if z

is relatively large, the main objective is to grossly approach

the door handle; if it becomes small, then the system will

focus on the “joy stick-like command” part, meaning it will

mainly output x and y. This final process is repeated every 2

seconds to provide real-time instruction, so even if the user

missed the door knob on the first try, our system will help

to adjust with feedback towards more refined strategies on

subsequent attempts.

3.4. Future Work

Presently, the main issue is the stability of hand detec-

tion performance. Sometimes when it successfully detects

both the door knob and human hand, the system works as

intended; however, other times when hand is ignored by

the camera, we will have an unfortunate domino effect: no

hand position will be obtained, no spacial difference can be

computed, no x, y, z values for audio feedbacks, and con-

sequently, no navigation. We will further fine-tune the net-

work parameters and improve its performance on the hand

dataset to resolve such issues.

In addition, we plan to add more photos to our database

and extend the door knob detection function to more gen-

eral door handle types, such as door latches, levers, pull-

handles, etc. so that this system can be used in as many dif-

ferent environments as possible, enabling our users to walk

more efficiently and safely through thresholds both indoors

and outdoors.

4. Summary

In this paper, we have presented a wearable assistive

technology for the visually impaired that can detect door

knobs and the human hand in real-time, yielding pertinent

spatial information with audio-based guidance and feed-

back with regards to “joy stick-like control” for hand-to-

handle manipulation. We believe such system will enable

users to navigate more safely and efficiently as threshold

and hallway ambiguity is clarified and knobs and handles

are more easily manipulated. We have also introduced a

door handle dataset that can be used for model training in

the future. While our results reveal that there are instances

where the performance appears to be modest, our prelimi-

nary performance is promising and we will continue to im-

prove the model and extend its functionalities for general-

ized door/door handle detection, universal hand detection,

and extended wearable assistive technology functionality.
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