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Abstract

For large-scale face recognition applications using im-

age sets, the images of the query set typically lie in compact

regions surrounded by a diffuse sea of images of the gallery

set. In this study, we propose a fast and accurate method

to approximate the distances from gallery images to the re-

gion spanned by the query set for large-scale applications.

To this end, we propose a new polyhedral conic classifier

that will enable us to compute those distances efficiently by

using simple dot products. We also introduce one-class for-

mulation of the proposed classifier that can use query set

examples only. This makes the method ideal for real-time

applications since testing time approximately becomes the

independent of the size of the gallery set. One-class for-

mulation is very important for large-scale face recognition

problems in the sense that it can be used in a cascade system

with more complex and time-consuming methods to return

the most promising candidate gallery sets in the first stage

of the cascade so that more complex methods can be run on

those a few candidate sets. As a result, we strongly believe

that the proposed method will impact future methods and

it will enable to introduce face recognition methods work-

ing in real-time even for large-scale set based recognition

problems. Experimental results on both small and mod-

erate sized face recognition datasets support these claims

and demonstrate the efficacy of the proposed method. More

precisely, the proposed methods achieve the best accura-

cies on all tested datasets and we obtained improvements

around 18% compared to the best performing rival meth-

ods on larger datasets.

1. Introduction

Face recognition using image sets has gained significant

attention in recent years. For set based face recognition, the

user supplies a set of images of the same unknown individ-

ual rather than supplying a single query image. In general,

the gallery also contains a set of images for each known in-

dividual; therefore, the system must recover the individual

whose gallery set is the best match for a given query set.

Methods based on image sets are expected to give better

performance than ones based on single individual images

because they incorporate information about the variability

of the individual’s appearance.

Existing set based classification methods mainly differ in

the ways in which they represent the image sets and com-

pute the distances (or similarity) between them. Based on

the set model representation types, methods can be divided

into two categories: parametric and non-parametric meth-

ods. Parametric methods such as [1, 21] used paramet-

ric probability distributions to model image sets, and the

Kullback-Leibler divergence is used to measure the sim-

ilarity between these distributions. Nonparametric meth-

ods, on the other hand, use different models (e.g., linear

or affine subspaces, Grassmannian manifolds, or some dif-

ferent combinations of these) to approximate image sets.

Based upon the type of representation, different metrics

have been proposed for computing set-to-set distances.

As non-parametric recognition methods, Yamaguchi et

al. [29] used linear subspaces to model image sets, and

canonical angles between subspaces were used to measure

the similarity between the subspaces. Another way of deal-

ing with image set based classification is to consider each

sample as a point in a Grassmannian manifold. Hamm

and Lee [9] used Grassmannian discriminant analysis on

fixed dimensional linear subspaces. Wang and Shi [25]

proposed kernel Grassmannian distances to compare image

sets. Grasmannian manifolds have been used for multi-view

embedding in the context of image classification in [26].

More recently, manifolds of Symmetric Positive Definite

matrices are used to model images sets, and the similari-

ties between these manifolds are computed by using differ-

ent Riemannian metrics such as Affine-Invariant metric or

Log-Euclidean metric [17, 16].

Cevikalp and Triggs [2] introduced affine/convex hull

models to approximate image sets, and geometric distances

between these models are used to measure the similarity.

This methodology offers a number of attractive properties:

affine/convex hull models can better localize the image set
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regions compared to linear subspaces; the model for each

individual can be fitted independently; computing distances

between models is straightforward due to the convexity, and

resistance to outliers can be incorporated by using robust

fitting to estimate convex models. Yalcin et al. [28] in-

troduced a new method to speed-up the face recognition

methods using the kernelized convex hulls. After introduc-

tion of affine/convex hull models, different variants of these

models have been proposed [14, 30]. For example, SANP

(Sparse Approximated Nearest Points) [14] methodology

extended the affine hull method by enforcing the sparsity

of samples used for affine hull combination. In a similar

manner, [30] used regularized affine hull models to repre-

sent image sets where L2-norms of affine hull combination

coefficients are minimized when computing the smallest

distances between affine hulls. More recently, new exten-

sions [27, 31] of these methods used the so-called collab-

orative representations for affine/convex hull models. The

basic difference is that they model all gallery sets as a single

affine/convex hull and then query set is classified by using

the reconstruction residuals computed from only individual

gallery sets. Other methods using sparse models for image

set based recognition can be found in [6, 5, 4]. Most of the

aforementioned methods have kernelized versions that can

be used to estimate nonlinear face models.

More recently, deep neural networks have demonstrated

a great success in visual object classification and feature

learning. So, they have been used for image set based

recognition [12, 10, 19]. Hayat et al. [12, 10] proposed

a deep learning framework to estimate the nonlinear geo-

metric structure of the image sets. They trained an Adap-

tive Deep Network Template for each set to learn the class-

specific models and then the query set is classified based on

the minimum reconstruction error computed by using those

pre-learned class-specific models. Lu et al. [19] also use

deep networks to model nonlinear face manifolds using face

image sets as in [12, 10], and then they apply a learning

algorithm to maximize the margin between different mani-

folds approximated by deep networks.

Our Contributions: In this study, we propose a novel

method that is both very fast and accurate for face recog-

nition using image sets. To this end, we introduce a polyhe-

dral conic classifier that enables us to approximate distances

from gallery face images to convex hulls of the query set

images. The class assignment is made based on the closest

distances from gallery image examples to the convex region

spanned by query set images. The proposed classifier can

also be used as one-class classifier that uses query set sam-

ples only. To improve the speed, we introduced a cascade

where the first stage returns the closest candidate gallery

images by using one-class classifier formulation, and the

second stage returns the closest face image set by using

binary-classifier that is run on the returned candidate classes

and the query set. As a result, the proposed method can be

used in real-life face recognition systems. More precisely,

to the best of our knowledge, the proposed method is cur-

rently the fastest algorithm in the literature after the meth-

ods using linear subspaces [29], linear affine hulls [2], and

linear hypersphere models [28]; and it significantly outper-

forms these methods in terms of the accuracy. Also, it has

the potential to run faster than the subspace and affine hulls

methods for large-scale problems since using one-class for-

mulation makes the testing time of the proposed method in-

dependent of the gallery set size. We strongly believe that

our method will impact future methods working on large-

scale face recognition problems in such a way that it returns

the most promising candidate gallery sets and rejects the

majority of the gallery sets quickly, and more complex al-

gorithms can be run on the returned image sets instead of

using entire gallery sets.

2. METHOD

2.1. Motivation

In the proposed method, we model query face image sets

by using linear convex hull approximations. Convex hulls

are tighter models compared to linear subspaces and affine

hulls, and they provide better localization in large-scale ap-

plications [28]. It should be noted that convex hulls are

largely used to approximate data classes in other classifi-

cation applications, e.g., the linear SVM uses convex hull

modeling and the margin between two classes is equivalent

to the geometric distance between convex hulls of classes.

Once we approximate a query image set with a linear con-

vex hull, we need to compute the distances from gallery im-

ages to the convex hull of the query image set. The distances

can be found by solving a convex quadratic programming

(QP) problem for each gallery image sample. This will be

very slow and impractical for large gallery sets. Therefore,

Cevikalp and Triggs [2] also approximate each gallery set

with a convex hull and find the distances between the con-

vex hulls of test and gallery image sets. This only requires

solving C QP problems where C is the number of classes

in the gallery set, and it is more practical than solving a QP

problem for each image in the gallery.

For large-scale face recognition problems, the images of

the query (test) set will typically lie in specific regions sur-

rounded by a diffuse sea of face images of gallery sets as

shown in Fig. 1. As aforementioned, finding distances from

each gallery image to the region spanned by the query set is

computationally expensive even for the cases when this re-

gion is modeled by using a linear convex hull. Our goal is to

find an efficient and quick way to approximate the distances

from gallery images to the region spanned by the query set.

Hayat et al. [11, 13] use a linear SVM classifier for approx-

imating distances between query and gallery sets. But, it
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query set

Figure 1. In large-scale applications, the query sets will be typi-

cally inside the convex hull formed by combining all image sets in

the gallery. In such cases, joint or collaborative models [27, 31]

and linear SVMs [11, 13] fail. The best strategy would be to ap-

proximate query set with a convex model and then find the dis-

tances from gallery images to this convex model. This can be effi-

ciently done by using polyhedral conic classifiers.

should be noted a linear binary classifier using a hyperplane

separation, e.g., a linear SVM classifier, cannot be used for

this purpose when the query set images are surrounded by

gallery images as visualized in Fig. 1 since the data are not

separable by a hyperplane. Our experiments at the end sup-

port this fact. On the other hand, a nonlinear (kernelized)

one-class or binary classifiers can be used to accomplish

this task. For example, the region spanned by images of

the query set can be approximated by using the kernelized

one-class Support Vector Data Description (SVDD) method

as described in [28]. But, this method is also not practical

for real-time applications since one needs to evaluate kernel

functions against all support vectors returned by the clas-

sifier. So, this will be also slow. Another problem would

be related to training of the method with large-scale data

since kernelized SVDD using SMO (Sequential Minimal

Optimization) algorithm cannot scale well with the training

set size. Our solution to this problem is to use a polyhe-

dral conic classifier (PCC). As opposed to the linear SVMs,

PCC can return polyhedral acceptance regions and finding

distances in this setup can be easily accomplished by using

a single dot product as described below as opposed to the

computationally expensive kernel function evaluations.

2.2. Classification Based on Polyhedral Conic Func
tions

We build our methods based on polyhedral conic func-

tions defined in [8]. [8] introduced polyhedral conic func-

tions which are used to construct a separation function for

the given two arbitrary finite point disjoint sets. These func-

tions are formed as an augmented L1 norm with a linear part

added. A graph of such a function is a polyhedral cone with

a sub-level set including an intersection of at most 2d half

spaces. See Fig. 2 for visualization of different separation

types.

Now, consider a binary classification problem with train-

ing data given in the form {xi, yi}, i = 1, . . . , n, and

xi ∈ IRd, yi ∈ {+1,−1}. We first need following defi-

nition from [8].

Definition 1. A function f(x) : IRd → IR is called polyhe-

dral conic if its graph is a cone and all its level sets

Sα =
{

x ∈ IRd : f(x) ≤ α
}

(1)

for α ∈ IR, are polyhedrons.

We define a Polyhedral Conic function (PCF) f(x)
w,c,γ,b

:

IRd → IR as

f(x) = w
⊤(x− c) + γ||x− c||1 − b, (PCF) (2)

where w, c ∈ IRd, γ, b ∈ IR, and ||u||1 = |u1| + . . . +
|ud| is the l1 norm of the vector u ∈ IRd. The fact that

such a function defines a polyhedral cone follows from the

following Lemma [8].

Lemma 2.1. A graph of the function f(x)
w,c,γ,b

defined in (2)

is a polyhedral cone with a vertex at (c,−b).

Given these definitions, our goal is to find polyhedral

conic functions whose level sets separate the positive sam-

ples from the negatives. To this end, we construct poly-

hedral regions such that each polyhedral region divides the

input space into two parts such that most of the negative

samples remain outside the polyhedral region whereas the

majority of the positive class samples remain inside the re-

gion.

Instead of using Polyhedral Conic functions, we use our

Extended Polyhedral Conic Functions (EPCF) [3] outper-

forming PCF in the form

fw,γ,c,b(x) = w
⊤(x− c) + γ

⊤|x− c| − b (EPCF) (3)

Here x ∈ IRd is a test point, c ∈ IRd is the cone vertex,

w ∈ IRd is a weight vector and b is an offset, and |u| =
(|u1|, ..., |ud|)

⊤ denotes the component-wise modulus and

γ ∈ IRd is a corresponding weight vector.

Our polyhedral conic classifiers use EPCF, with decision

regions f(x)< 0 for positives and f(x)> 0 for negatives.

It should be noted that it is the opposite of popular SVM

decision rule. Similarly, our margin based training meth-

ods enforce f(x) ≤ −1 for positives and f(x) ≥ +1 for

negatives. For both PCF and EPCF, the positive region is

essentially a hyperplane-section through an L1 cone cen-

tered at c, specifically the region x ∈ IRd in which the
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Figure 2. Geometric interpretation of four separation types: linear,

h-polyhedral, polyhedral conic and max-min separation. In this

study, we use polyhedral conic separation.

hyperplane z = w
⊤(x − c) − b lies above the L1 cone

z = γ‖x − c‖1 (PCF) or the diagonally-scaled L1 cone

z = γ
⊤|x− c| = ‖diag(γ) (x− c)‖1 (EPCF).

Note that for EPCF with b > 0, γ > 0, |wi| < γi, i =
1, ..., d, and any τ , the region f(x) < τ is convex and com-

pact, and it contains c. It would be straightforward to en-

force these inequalities during learning, but at present we

simply leave the decision regions free to adapt to the train-

ing data; compact query sets surrounded by many gallery

set images naturally tend to produce compact acceptance

regions in any case.

To define margin-based classifiers over input feature vec-

tors x from this, for EPCF we augment the feature vec-

tor to x̃ ≡
(

x−c

|x−c|

)

∈ IR2d and the weight vector to

w̃ ≡
(

−w

−γ

)

∈ IR2d and let b̃ = b, giving the SVM form

w̃
⊤
x̃+ b̃ > 0 for positives, but now in 2d dimensions. The

above ∓1 margins for EPCF translate to the familiar ±1
SVM margins, allowing us to use standard SVM software

for maximum margin training1. It thus suffices to run the

familiar SVM quadratic program on the augmented feature

vectors:

argmin
w̃,b̃

1

2
w̃

⊤
w̃ + C+

∑

i ξi + C−

∑

j ξj

s.t. w̃
⊤
x̃i + b̃+ ξi ≥ +1, i ∈ I+,

w̃
⊤
x̃j + b̃− ξj ≤ −1, j ∈ I−,

ξi, ξj ≥ 0,

(4)

1This only holds if we agree to ignore the optional compact-convex-

region constraints ‖w‖∞ < γ or |wi| < γi, i = 1, ..., d.

where the I± are indexing sets for the positive and negative

training samples, the ξ’s are slack variables for the samples’

margin constraint violations, and the C± are corresponding

penalty weights.

Inserting the EPCF feature vectors into the above train-

ing procedure gives our Extended Polyhedral Conic Clas-

sifier (EPCC) method [3]. The above procedure does not

attempt to optimize the position c of the cone vertex as that

would lead to a non-convex problem. It would be possible

to optimize for c at least locally, but here we simply set it

to a pre-specified position in the positive training set. The

mean, medoid, or coordinate-wise median of the training

positives can all be used for this with good results. We used

the mean in our experiments. Note that the classifier assigns

its highest positive confidence to the samples near the cone

vertex.

The above quadratic program based formulation has sev-

eral advantages over the linear programming approach of

[8], which forbids margin violation by negative samples –

thus creating a tendency to overfit – and which needs to

form a large (n+ + n−) × (n+ + d + 2) constraint matrix

where n± are the numbers of positive and negative training

samples – thus making large-scale application difficult.

During training we treat query set as positive class and

all gallery images are considered as negative class. For

moderate gallery data set sizes, training can be easily ac-

complished using fast linear SVM solvers, such as Pegasos

[22] or LIBOCAS [7]. However, as the gallery set size in-

creases, the training will be slow which makes the method

impractical for real-time applications. Therefore, we intro-

duce one-class EPCC that can use positive samples (query

set samples) only below. As a result, the training time will

be independent of gallery set size which makes the method

ideal for real-time application problems with large-scale

data.

2.3. OneClass EPCC (OCEPCC)

EPCC usually outperforms both linear SVM and PCC

owing to its flexibility, but its positive acceptance regions

are bounded and convex only when |wi| < γi for all i –

i.e. when the hyperplane section has a shallower slope than

every facet of the L1 cone. This sometimes fails to hold

for feature space dimensions along which the negatives do

not surround the positives on all sides. Even though such

EPCC acceptance regions are typically still much smaller

than the corresponding linear SVM ones, to ensure tighter

bounding we would like to enforce |wi| < γi, i = 1, . . . , d.

Moreover, in EPCC the ∓1 margin is the only thing that

fixes the overall weight scale and hence prevents a degener-

ate solution, and negative data is essential for this. (Moving

every negative sample outwards to infinity causes (w,γ, b)
to progressively shrink to zero, even though the width of the

positive class has not changed). To ensure that EPCC can
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Figure 3. The proposed cascade classification system: One-class EPCC returns w, b parameters used for finding the closest candidate sets

from the gallery. Then, binary EPCC classifier is run on query set and the returned gallery sets. Finally, decision is made based on the

closest images to the query set at the last step.

work with only positive samples, we need to force its accep-

tance regions to stay bounded and compact. The acceptance

region has width O(b/γi) along axis i, so we need to ensure

that the γi can not shrink to zero. The easiest way to achieve

this is to replace the ±1 margin scaling with a b = 1 off-

set scaling and include negative cost penalties on the γi so

that these quantities will tend to increase and hence keep the

acceptance region widths small and the sets well separated.

This leads to the following “One-Class EPCC” formulation:

argmin
w,γ

λ
2
w

⊤
w + 1

n+

∑

i ξi +
1

n
−

∑

j ξj − s
⊤
γ

s.t. w
⊤(xi − c) + γ

⊤|xi − c| − 1 ≤ ξi, i ∈ I+,

w
⊤(xi − c) + γ

⊤|xi − c| − 1 ≥ 1− ξj , j ∈ I−,

ξi, ξj ≥ 0. (OC-EPCC)

(5)

Here λ is a regularization weight for w, s > 0 is a user-

supplied vector of cost penalties for increasing γ. At

present we use simple stochastic gradient (SG) method to

solve this optimization problem, and the algorithm can be

seen in the text given as Supplementary material.

2.4. Decision Function and Cascade EPCC Classi
fication

Once we determine w̃ ≡
(

−w

−γ

)

∈ IR2d and b̃ by train-

ing one-class or binary EPCC classifiers for a particular

query set, we augment each gallery image feature vector

as x̃ ≡
(

x−c

|x−c|

)

∈ IR2d where c is set to the mean of query

set samples. Then, the following function can be used to

approximate similarities for the gallery set samples

s(xi) = w̃
⊤
x̃i + b̃, i = 1, . . . , n, (6)

where n is the number of all images in the gallery. To assign

query set to a class, we choose K samples with the highest

scores (these samples are the ones closest to the polyhedral

region spanned by the query set), and assign the query set

to the most frequent class label among the K samples. In

case of ties, we assign the query set to the class yielding the

highest mean score. The best value of K can be determined

based on cross-validation.

It should be noted that computing distances using (6) is

very fast since it requires a simple dot product. So, the

speed of the classifier system largely depends on the learn-

ing algorithm returning (w̃, b̃). Therefore, using one-class

EPCC formulation yields to very fast recognition since it

does not use gallery set images during training. But, its ac-

curacy is lower since it ignores gallery images. On the other

hand, binary EPCC classifier achieves very high accuracies,

but it is slower since one needs to train the binary classifier

using entire gallery sets. To take the best of both worlds,

we use a cascade classifier for large-scale problems where

the first stage uses the one-class EPCC formulation and re-

turns the closest candidate gallery sets, and the second stage

uses binary EPCC trained with the query set and the closest

gallery sets returned by the first stage. This cascade classi-

fier system is visualized in Fig. 3. The proposed cascade

is much faster compared to the method using binary EPCC

classifier trained with entire gallery sets and the accuracy

will be higher than the method using one-class formulation.

One does not need to use binary EPCC classifier in the sec-

ond stage. More sophisticated and time-consuming meth-

ods that can better estimate the nonlinear structure of query

sets can be used in this stage since we do not need to use all

gallery sets.

1568



3. Experiments

We tested the proposed methods2 on four face recog-

nition datasets: Honda/UCSD [18], YouTube Celebrities,

ESOGU-285 Face Videos [28], and COX videos [15]. We

tested one-class EPCC using the query set samples only,

binary EPCC using the query and all gallery sets, and a

cascade classifier system using one-class EPCC in the first

stage and the binary EPCC in the second stage. The maxi-

mum number of iterations is set to T = 600 in SG algorithm

used for one-class EPCC classifier. To allow comparison

with the literature on various datasets, we followed the sim-

ple protocol of [2, 30, 24, 27]: the detected face images

were histogram equalized, but no further pre-processing

such as alignment or background removal was performed

on them. In experiments, we used gray-level values or lo-

cal binary pattern (LBP) features. For all kernelized meth-

ods, we used the Gaussian kernels and the Gaussian kernel

width is determined based on experiments using randomly

selected subsets of image sets. We compared the proposed

method to the linear/kernelized affine hull method (AHISD)

[2], linear/kernelized convex hull method (CHISD) [2], Mu-

tual Subspace Method (MSM) [29], SANP [14], Regular-

ized Nearest Points (RNP) [30], Collaboratively Regular-

ized Nearest Points(CRNP) [27], Manifold-Manifold Dis-

tance (MMD) [24], Self-Regularized Nonnegative Adaptive

Distance Metric Learning (SRN-ADML) [20], and methods

of Yalcin et al. [28] using reduced kernelized convex hulls

(Kernel RCHISD) and linear/kernelized bounding hyper-

sphere (HS) models for image set classification. As afore-

mentioned, Hayat et al. [11, 13] use a linear SVM classifier

for computing distances between query and gallery set im-

ages and this may not be appropriate for large scale datasets.

To show this, we also compared the proposed classifiers to

linear SVMs in our classification setting. To this end, we

used the same SVM solver software LIBOCAS [7] for both

SVM and EPCC classifiers, and the query set is assigned to

a class based on the nearest returned images as described

earlier for both methods.

3.1. Experiments on Small Sized Data Sets

3.1.1 Experiments on Honda/UCSD Data Set

The Honda/UCSD data set was collected for video-based

face recognition. It consists of 59 video sequences involv-

ing 20 individuals. Each sequence contains approximately

300-500 frames. Twenty sequences were set aside for train-

ing, leaving the remaining 39 for testing. The detected faces

were resized to gray-scale images and histogram equalized,

and the resulting pixel values were used as features. We did

not extract LBP features for this dataset since pixel values

already achieved very high accuracies. We set the number

2The codes are available at http://mlcv.ogu.edu.tr/softwares.html.

of the closest samples K = 10 for both one-class and bi-

nary EPCC classifiers. For the cascade EPCC classifiers,

we trained the binary EPCC classifier with the closest 10

gallery sets returned by the one-class EPCC classifier.

Table 1 shows the accuracies and testing times for all

tested methods. Testing time shows the amount of time

spent to classify a single test set on the average. The pro-

posed binary and cascade EPCC classifiers together with

kernelized convex hull models, RNP, MMD and CRNP

achieve the best accuracy. The linear hypersphere method

is the worst performing method, but it is one of the fastest

methods. Both one-class and binary EPCC classifiers are

quite fast, thus using a cascade system does not bring any

advantage in terms of speed here. Compared to linear SVM,

EPCC achieves a better accuracy and it is much faster de-

spite it uses longer feature vectors (2 times the original in-

put dimension). Linear SVM is the slowest method since

the data are not separable by an hyperlane so the algorithm

takes much longer to return a solution.

Table 1. Classification Rates (%) and Testing Times on the

Honda/UCSD Dataset.
Method Accuracy Testing Time (sec)

One-Class EPCC 94.9 4.2 sec

Binary EPCC 100 6.1 sec

Cascade EPCC 100 7.1 sec

Linear SVM 97.4 152.0 sec

Linear AHISD 97.4 1.6 sec

Linear CHISD 97.4 5.1 sec

Linear HS 59.0 0.6 sec

MSM 97.4 2.2 sec

SANP 97.4 16.7 sec

RNP 100 5.4 sec

CRNP 100 2.6 sec

SRN-ADML 97.4 6.2 sec

MMD 100 7.1 sec

Kernel AHISD 97.4 14.2 sec

Kernel CHISD 100 7.6 sec

Kernel HS 94.9 2.8 sec

Kernel RCHISD 100 3.7 sec

3.1.2 Experiments on YouTube Celebrities Data Set

The YouTube Celebrities data set contains 1910 videos of

47 celebrities that are collected from YouTube. Each se-

quence includes different number of frames that are mostly

low resolution. The data set does not provide the cropped

faces from videos. Therefore, we manually cropped faces

using a semi-automatic annotation tool and resized them to

40×40 gray-scale images and extract LBP features. We

conduct 10 runs of experiments by randomly selecting 9
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videos (3 for training, 6 for testing) for each experiment by

following the same protocol of [31, 23]. We used the same

settings for one-class (binary) EPCC and cascade classifiers

as in Honda/UCSD experiments.

The averages of the classification rates and testing times

are shown in Table 2. The videos in this data set mostly

include frontal views of people; therefore, linear meth-

ods perform well here.The proposed binary EPCC classifier

achieves the best accuracy with a slight edge in front of the

CRNP. One-Class EPCC also achieves a good accuracy and

it outperforms more complex methods such as MSM, Lin-

ear AHISD, SANP, SRN-ADML, etc. The proposed binary

EPCC classifier again outperforms linear SVM classifier as

before, but linear SVM is slightly faster than binary EPCC

on this data set. Using a cascade system slightly improves

the testing time over binary EPCC, but the accuracy drops

to 68.3% from 72.1%.

Table 2. Classification Rates (%) and Testing Times on the

YouTube Celebrities Dataset.
Method Accuracy Testing Time (sec)

One-Class EPCC 64.9± 2.5 3.5 sec

Binary EPCC 72.1± 2.4 5.7 sec

Cascade EPCC 68.3± 2.5 4.9 sec

Linear SVM 69.7± 2.5 4.7 sec

Linear AHISD 62.0± 2.4 39.7 sec

Linear CHISD 65.7± 2.5 23.6 sec

Linear HS 50.9± 2.6 0.8 sec

MSM 63.8± 2.3 2.4 sec

SANP 58.6± 3.8 75.5 sec

RNP 68.4± 2.6 20.6 sec

CRNP 71.2± 2.6 76.6 sec

SRN-ADML 63.6± 2.9 76.1 sec

MMD 65.5± 2.4 34.0 sec

Kernel AHISD 63.2± 2.0 47.1 sec

Kernel CHISD 65.7± 2.4 25.4 sec

Kernel HS 53.9± 2.1 1.2 sec

Kernel RCHISD 64.9± 2.6 4.4 sec

3.2. Experiments on Larger Sized Data Sets

3.2.1 Experiments on ESOGU-285 Face Videos

ESOGU-285 Face Videos includes videos of 285 people

captured in two sessions separated by at least three weeks

[28]. In each session, four short videos were captured

with four different scenarios for each person. The short-

est video includes 100 frames and the average frame num-

ber is around 300. The total number of face image frames

is 764 006; therefore, it is the largest data set in terms of

frame number (the total number of face images) among all

datasets used in this study. We used LBP features extracted

Table 3. Classification Rates (%) and Testing Times on the ES-

OGU Dataset.
Method Accuracy Testing Time (sec)

One-Class EPCC 60.2 9.4 sec

Binary EPCC 86.4 250.5 sec

Cascade EPCC 84.3 55.6 sec

Linear SVM 81.9 325.6 sec

Linear AHISD 66.8 180.0 sec

Linear CHISD 76.6 390.1 sec

Linear HS 39.5 0.8 sec

MSM 69.6 5.1 sec

SANP 79.1 564.6 sec

RNP 51.9 2205.3 sec

CRNP OOM −
SRN-ADML 68.4 380.2 sec

MMD 77.6 150.4 sec

Kernel AHISD 76.1 4369.0 sec

Kernel CHISD 77.6 480.4 sec

Kernel HS 49.4 12.9 sec

Kernel RCHISD 75.4 46.1 sec

from 120×90 gray-scale images. The number of the closest

samples is set to K = 20 for one-class EPCC and K = 50
for binary EPCC classifier. For the cascade EPCC classi-

fiers, we trained the binary EPCC classifier with the closest

50 gallery sets returned by the one-class EPCC.

The image sets captured in the first session were used

as the gallery set whereas the sets captured in the second

session were used for testing as in [28]. The recognition

accuracies and testing times are given in Table 3. We could

not implement CRNP because of memory issues since it re-

quires to operate on matrices with a large size of n × n,

and n is the number of frames in the gallery (OOM indi-

cates the “out of memory” problem in the table). The pro-

posed binary EPCC method significantly outperforms all

other tested methods and yields an accuracy of 86.4%. It

is followed by the proposed cascade classifier and binary

SVM. The fourth best method SANP achieves an accuracy

of 79.1% which is 7.3% lower than the proposed method.

Classification accuracy of one-class EPCC is 60.2% which

is low compared to binary EPCC and cascade classifiers. In

terms of the speed, the proposed one-class EPCC method

is the third fastest method after linear subspaces and hy-

perspheres. Similarly, both of our binary EPCC and cas-

cade classifiers are faster than the majority of the kernelized

methods as well as linear methods including SVM, SANP,

CHISD, RNP, and SRN-ADML. In contrast to the exper-

iments on small datasets, using cascade classifier signifi-

cantly improves the testing time over the binary EPCC.
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3.2.2 Experiments on COX Video to Video Data Set

The COX Faces dataset contains 3000 video sequences of

1000 walking individuals [15]. The videos are captured

with three fixed camcorders when the subjects walk around

the pre-designed S-shape route. The dataset has variations

in illumination, pose and resolution through this S-shape

route. For this database we used LBP features (LBP features

are extracted from 32×40 face images since we do not have

access to original video frames) as visual features. There

are 3 image sets per person. We choose one set from each

person for testing and the remaining two sets were used as

gallery. For the second and the third trials, we have chosen

the test set from the ones that were not used for testing ear-

lier. We set the number of the closest samples to K = 10
for one-class EPCC and K = 110 for binary EPCC classi-

fier. For the cascade EPCC classifiers, we trained the binary

EPCC classifier with the closest 50 gallery sets returned by

the one-class EPCC classifier as before.

Results are given in Table 4. As in ESOGU experiments,

the proposed binary EPCC and cascade methods signifi-

cantly outperform all other tested methods. The closest

methods are linear SVM and kernelized CHISD methods

and kernelized CHISD only achieves 45.6% accuracy which

is 18.4% is lower than accuracy of binary EPCC. Using cas-

cade classifier decreases the accuracy to 62.5%, but it is ap-

proximately 6 times faster than using EPCC. Linear SVM

also works well for this dataset and it is faster than binary

EPCC.

Table 4. Classification Rates (%) and Testing Times on the COX

Dataset.
Method Accuracy Testing Time (sec)

One-Class EPCC 44.0± 8.2 15.7 sec

Binary EPCC 64.0± 11.5 171.7 sec

Cascade EPCC 62.5± 10.8 27.9 sec

Linear SVM 61.9± 12.7 107.4 sec

Linear AHISD 44.3± 9.8 82.9 sec

Linear CHISD 44.8± 11.3 54.3 sec

Linear HS 25.1± 4.9 1.5 sec

MSM 41.6± 5.3 18.6 sec

SANP 43.6± 11.2 978.7 sec

RNP 45.4± 13.7 217.3 sec

CRNP OOM −
SRN-ADML 44.6± 7.9 351.7 sec

MMD 42.7± 10.5 60.3 sec

Kernel AHISD 45.4± 10.3 276.4 sec

Kernel CHISD 45.6± 10.9 250.2 sec

Kernel HS 42.4± 7.6 71.3 sec

Kernel RCHISD 44.3± 11.5 65.2 sec

4. Conclusion

In this study, we proposed fast and accurate polyhedral

conic classifiers for face recognition to be used with im-

age sets. As opposed to the other linear classifiers return-

ing hyperplane separators, the proposed methods can return

polyhedral acceptance regions, which makes them ideal for

data sets in which query set is surrounded by gallery im-

ages. Computing distances from images of the gallery set

to the polyhedral acceptance regions is straightforward in

the sense that it requires simple dot product evaluations.

The proposed classifier can also be used as one-class classi-

fier which uses the query set samples only. Using one-class

formulation of the classifier for face recognition makes the

method extremely fast since the training time of the classi-

fier becomes almost the independent of the gallery set size.

Therefore, the proposed one-class classifier can be used

with other time-consuming methods in a cascade structure

(as given in the paper), where one-class EPCC classifier in

the first stage returns the most promising candidate gallery

sets for more complicated methods.

Experimental results clearly indicate that the proposed

EPCC classifiers achieve both fast and accurate recogni-

tion and they significantly outperform linear SVMs. More

precisely, we obtain the state-of-the-art results on all tested

datasets. Our results on larger sized ESOGU-285 and COX

datasets are particularly promising in the sense that we

achieve accuracies which are at least 7% and 18.6% bet-

ter than SANP and Kernel CHISD which achieve the best

accuracy among other tested rival methods. In addition, the

proposed methods are much faster compared to the majority

of the tested methods during testing.

It is also worth to point out that EPCC learns the query

set region by using both positive and negative classes in

contrast to CHISD and one-class EPCC that learn the con-

vex models independently from the gallery sets. EPCC sig-

nificantly outperforms both methods and this shows a clear

indisputable advantage of negative class-sensitive discrimi-

native learning. For larger datasets, even linear SVMs sig-

nificantly outperform other tested methods that learn each

image set model independent of other models in the gallery.

So, we definitely need algorithms that learn a class-specific

model by taking other classes into consideration. Lastly, we

believe that in order to make real significant contributions in

the image set based recognition, we should work on large-

scale datasets with many classes like the already available

ones for other vision tasks such as Imagenet or classical face

recognition using single face images. We strongly believe

that the advantages of the proposed methods will be more

notable in large-scale settings.
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