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Abstract

Face recognition (FR) methods report significant perfor-

mance by adopting the convolutional neural network (CNN)

based learning methods. Although CNNs are mostly trained

by optimizing the softmax loss, the recent trend shows an

improvement of accuracy with different strategies, such as

task-specific CNN learning with different loss functions,

fine-tuning on target dataset, metric learning and concate-

nating features from multiple CNNs. Incorporating these

tasks obviously requires additional efforts. Moreover, it

demotivates the discovery of efficient CNN models for FR

which are trained only with identity labels. We focus on this

fact and propose an easily trainable and single CNN based

FR method. Our CNN model exploits the residual learn-

ing framework. Additionally, it uses normalized features to

compute the loss. Our extensive experiments show excel-

lent generalization on different datasets. We obtain very

competitive and state-of-the-art results on the LFW, IJB-A,

YouTube faces and CACD datasets.

1. Introduction

Face recognition (FR) is one of the most demanding

computer vision tasks, due to its practical use in numerous

applications, such as biometric, surveillance and human-

machine interaction. The state-of-the-art FR methods [34,

29, 31, 24, 20] surpassed human performance (97.53%) and

achieved significant accuracy on the standard labeled faces

in the wild (LFW) [14] benchmark. These remarkable re-

sults are achieved by training the deep convolutional neural

network (CNN) [10] with large databases [11, 24, 44, 2].

The facial image databases mostly provide the identity

labels. These labels allow the CNN models to be easily

trained with the softmax loss. FR methods generally use

the trained CNN model to extract facial features and then

perform verification by computing distance or recognition

with a classifier. However, from our extensive study (see

Sect. 2), we observe that recent methods include different

additional strategies to obtain better performance, such as:

1. train CNN with different loss functions [29, 31]: re-

quires carefully preparing the image pairs/triplets by

maintaining certain constrains [29], because arbitrary

pairs/triplets do not contribute to the training. On-

line triplet generation requires a larger batch size (e.g.,

[29] used 1.8K images in a mini-batch with 40 im-

ages/identity), which is excessive for a limited re-

source machine. On the other hand, using offline

triplets can be critical as many of them will be useless

while training progresses. The joint optimization [31]

with Softmax and Contrastive losses not only requires

specific training data (with identity and pair labels) but

also complicates the training procedure.

2. fine-tune CNN: requires training on each target dataset,

which restricts the ability to generalize.

3. metric learning [28, 9]: requires particular form of

training data (e.g., triplets). Moreover, it does not al-

ways guarantee to enhance performance [37].

4. concatenating features from multiple CNNs [31, 20]:

requires additional training data of different forms and

train CNNs for each form. Besides, it is necessary to

explore the particular modalities that can contribute to

enhance performance.

The use of the above strategies requires significant ef-

forts in terms of data preparation or selection and comput-

ing resources. On the other hand, recent results on the Im-

ageNet challenge [26] indicate that deeper CNNs enhance
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performance of different computer vision tasks. These ob-

servations raise the following question - can we achieve

state-of-the-art results with a single CNN model which is

trained only once with the identity labels? Our research is

motivated by this question and we aim to address it by de-

veloping a simple yet robust single-CNN based FR method.

Moreover, we want that our once-trained single CNN based

FR method generalizes well across different datasets.

In this research, our primary objective is to discover an

efficient CNN architecture. We follow the recent findings,

which suggest that deeper CNNs perform better on a num-

ber of computer vision tasks [13, 10]. We construct a deep

CNN model with 27 convolutional and 1 fully connected

(FC) layers, which incorporates the residual learning frame-

work [13]. Moreover, we aim to find an efficient way to

train our CNN only with the identity labels. Recently, [39]

achieves high FR performance with a CNN trained from the

identity labels. However, they perform joint optimization

using the softmax and center loss [39] (CL). CL improves

the features discrimination among different classes. It fol-

lows the principle that, features learned from a deep CNN

should minimize the intra-class distances. Interestingly, we

observe (see Fig 3) that an equivalent representation can be

achieved by normalizing the CNN features before comput-

ing the loss. Therefore, we train our CNN using the softmax

loss with the normalized features.

With our single CNN model, first we evaluate on the

LFW [14] benchmark and observe that it obtains 99.62%

accuracy. In order to demonstrate its effectiveness, we eval-

uated it on different challenging face verification tasks, such

as face templates matching on the IJB-A [16] dataset, video

faces matching on the YouTube Faces [40] (YTF) dataset

and cross age face matching on the CACD [3] dataset. Our

method achieves 82.4% TAR@FAR=0.001 on IJB-A [16],

96.24% accuracy on YTF [40] and 99.13% accuracy on

CACD [3]. These results indicate that our method achieves

very competitive and state-of-the-art results. Moreover, it

generalizes very well across different datasets.

We summarize our contributions as follows: (a) conduct

extensive study and provide (Sec 2) a review and method-

ological comparison of the state-of-the-art methods; (b)

propose (Sect. 3) an efficient single CNN based FR method;

(c) conduct (Sect. 4) extensive experiments on different

datasets, which demonstrate that our method has excellent

generalization ability; and (d) perform (Sect. 4.3) an in-

depth analysis to identify the influences of different aspects.

In the remaining part of this paper, first we study and an-

alyze the state-of-the-art FR methods in Section 2, describe

our proposed method in Section 3, present experimental re-

sults, perform analysis of our method and discuss them in

Section 4 and finally draw conclusions in Section 5.

2. Related work, state-of-the-art FR methods

Face recognition (FR) in unconstrained environment at-

tracts significant interest from the community. Recent

methods exploited deep CNN models and achieved remark-

able results on the LFW [14] benchmark. Besides, numer-

ous methods have been evaluated on the IJB-A [16] dataset.

We study1 and analyze these methods based on several key

aspects: (a) details of the CNN model; (b) loss functions

used; (c) incorporation of additional learning strategy; (d)

number of CNNs and (e) the training database used.

Recent methods tend to learn CNN based features us-

ing a deep architecture (e.g., 10 or more layers). This is

inspired from the extraordinary success on the ImageNet

[26] challenge by famous CNN architectures [10], such

as AlexNet, VGGNet, GoogleNet, ResNet, etc. The FR

methods commonly use these architectures as their base-

line model (directly or slightly modified). For example,

AlexNet is used by [27, 28, 21, 25, 1, 22, 29], VGGNet

is used by [24, 8, 23, 1, 22, 9, 33] and GoogleNet is used

by [42, 29]. CASIA-Webface [44] proposed a simpler CNN

model, which is used by [37, 5, 9]. Several methods, such

as [32, 34, 35, 39, 31] use a model with lower depth but in-

crease its complexity with locally connected convolutional

layers. Besides, [46] use 4 parallel 10 layers CNNs to learn

features from different facial regions. We follow the ResNet

[13] based deep CNN model.

FR methods often train multiple CNNs and accumulate

features from all of them to construct the final facial de-

scriptors. It provides an additional boost to the perfor-

mance. Different types of inputs are used to train these

multiple CNNs: (a) [32, 31, 33, 37, 9, 20] used image-crops

focused on certain facial regions (eyes, nose, lips, etc.); (b)

[9, 1, 22, 34] used different modality of input images, such

as 2D, 3D, frontalized and synthesized faces at different

poses and (c) [35, 20] used different training databases with

varying number of images. We do not follow this approach

and train only one CNN.

The CNN model parameters are learned by optimizing

loss functions, which are defined based on the given task

(e.g., classification, regression) and the available informa-

tion (e.g., class labels, price). The softmax loss [10] is a

common choice for classification tasks. It is often used

by the FR methods to create good face representation by

training the CNN as an identity classifier. It requires only

the identity labels. The contrastive loss [10, 7] is used by

[32, 34, 33, 31, 42] for face verification and requires face

image pairs and similarity labels. The triplet loss [29] is

used by [29, 24, 8, 20] for face verification and requires the

face triplets. Recently the center loss [39] is proposed to en-

hance feature discrimination, which uses the identity labels.

1We consider only the CNN based methods. For the others, we refer

readers to the recently published survey [17] for LFW and [16] for IJB-A.

1683



We use the softmax loss.

Several methods use multiple loss functions and train

CNN using joint optimization [32, 33, 31, 39, 25]. The other

way is to use them sequentially [34, 24, 8, 20, 42], i.e., first

train with the softmax and then train with the other loss.

We observe that using multiple loss functions complicates

the training data preparation task and the CNN training pro-

cedure. Therefore, we avoid this type of strategies.

Fine-tuning the CNN parameters is a particular form

of transfer learning. It is commonly employed by several

methods [37, 5, 27] on the IJB-A [16] dataset. It refines

the CNN parameters from a previously learned model us-

ing a target specific training dataset. Several methods do

not directly use the raw CNN features but employ an addi-

tional learning strategy. The metric/distance learning strat-

egy based on the Joint Bayesian method [4] is a popular one

and used by [32, 44, 37, 5, 33, 31, 9]. Recently, two differ-

ent strategies [28, 28] have been proposed to learn feature

embedding using face triplets. Another strategy, called tem-

plate adaptation [8], exploits an additional SVM classifier.

Apart from these, principal component analysis (PCA) is

used by several methods [23, 1, 22] to learn a dataset spe-

cific projection matrix. [42] learns an aggregation module

to compute scores among two videos. The above methods

often need training data from the target datasets. Moreover,

they [27, 28] may need to carefully prepare the training data,

e.g., triplets. We do not need any such learning strategies.

The use of a large facial training dataset is impor-

tant to achieve high FR accuracy [29, 46]. [46] provided

an in-depth analysis and demonstrated the effect of the

dataset size and the number of identities for FR. Follow-

ing the high demand of a large FR dataset, several pub-

licly available datasets have been released recently. Among

them, CASIA-WebFace [44] is used by numerous methods

[39, 27, 28, 21, 25, 44, 37, 5, 9, 41, 23, 1, 22]. Several re-

searches [23, 1, 22] enlarge it by synthesizing facial images

with different shapes and poses based on the 3D face mod-

els. Recently, the MSCeleb [11] dataset has been publicly

released. It contains the largest collection of facial images

and identities. We exploit it to develop our FR method.

3. Proposed Method

Our FR method, called DeepVisage, consists in pre-

processing face image, learning CNN based facial fea-

tures and computing similarity. Following the recent trend

[34, 29, 31, 24, 44], we exploit the CNN as the core com-

ponent. Our deep CNN model follows the residual learning

framework [13]. Moreover, it intelligently exploits feature

normalization, which is a crucial step, see Sect. 4.3. Our

pre-processing stage consists in the detection of the face

and facial landmarks, which are used to create a normalized

face image. We compute the cosine similarity among the

features of a pair of faces as the verification score. Below,

we describe these elements.

3.1. Building blocks and deep CNN architecture

Convolutional networks: We begin with the basic ideas

of CNN [18]: (a) local receptive fields with identical

weights via the convolution operation and (b) spatial sub-

sampling via the pooling operation. At a particular layer l,

the convolution of the input fOp,l−1
x,y to obtain the kth output

feature map f
C,l
x,y,k, can be expressed as:

f
C,l
x,y,k = w

l
k

T
fOp,l−1
x,y + blk (1)

where, wl
k and blk are the shared weights and bias. C de-

notes convolution and Op (for l > 1) denotes various tasks,

such as convolution, sub-sampling or activation. For l = 1,

Op represents the input image. Sub-sampling or pooling

performs a simple local operation, such as computing the

average or maximum value in a local spatial neighborhood

followed by reducing spatial resolution. We apply max

pooling for our CNN, which has the following form:

f
P,l
x,y,k = max

(m,n)∈Nx,y

f
Op,l−1
m,n,k (2)

where, Nx,y denotes the local spatial neighborhood of

(x, y) coordinate and P denotes the pooling operation.

In order to ensure non-linearity of the network, the

feature maps are passed through a non-linear activation

function, e.g., the Rectified Linear Unit (ReLU) [10, 12]:

f l
x,y,k = max(f l−1

x,y,k, 0). We apply the Parametric Recti-

fied Linear Unit (PReLU) [12] as the activation function,

which has the following form:

f
A,l
x,y,k = max(fOp,l−1

x,y,k , 0) + λkmin(fOp,l−1
x,y,k , 0) (3)

where, λk is a trainable parameter to control the slope of the

linear function for the negative input values and A denotes

activation operation.

At the basic level, a CNN is constructed by stacking

series of convolution, activation and pooling layers, see

LeNet-5 [18] for an example. Often a layer with full con-

nections is placed at the end of the stacked layers, called

the fully connected (FC) layer. It takes all points (neurons)

from the previous layer as input and connects it to all points

(neurons) of the output layer.

Residual learning framework [13]: A recent trend [10]

on the ImageNet [26] challenge shows that deeper CNNs

achieve better results. However, it increases the model com-

plexity, which makes it harder to optimize the loss of the

CNN model. Besides, they may generate higher training er-

ror than a shallower CNN [13]. The residual learning frame-

work [13] provides a solution to these problems.

For a stack of a few layers, residual learning fits a map-

ping F(f) := H(f) − f instead of fitting the underlying
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mapping H(f). Therefore, the original mapping is formu-

lated as F(f) + f , which means directly adding the in-

put feature map f with the output of the stacked layers

F(f). This idea can be easily implemented with the notion

of shortcut connection. Formally, the output of a residual

block R can be expressed as:

f
R,l
x,y,k = fOp,l−q

x,y + F(fOp,l−q
x,y , {Wk}) (4)

where, fOp,l−q
x,y represents the input feature map, F(.) is the

residual mapping to be learned, Wk is the parameters of the

kth residual block and q is the total number of stacked layers

within the residual block. The flexible form of the residual

function F(.) allows to stack multiple layers with different

types of operations, such as convolution, pooling, activation

etc. All of the residual blocks in our CNN consist of two

convolution layers with different numbers of neurons. Each

convolution is followed by a PReLU activation.

Loss function: Deep CNNs are trained by optimizing loss

function. We use the softmax loss, which is widely used for

classification:

LSoftmax = −
N∑

i=1

log
e
w

T
yi

fi+byi

∑K
j=1 e

w
T
j
fi+bj

(5)

where, fi and yi are the features and true class label of the

ith image. wj and bj denote the weights and bias of the jth

class. N and K denote the number of training samples and

the number of classes.

Feature normalization (FN): It is often used as a neces-

sary step in many learning algorithms. It ensures that all

of the features have equal contribution to the cost function

[36]. With deep CNNs, we cannot guarantee this by only

normalizing the input image pixels, because the scale of fea-

tures (from the final FC layer) may change due to a series

of operations at different layers. Therefore, to avoid the in-

fluence of un-normalized features during cost computation,

we provide normalized features fNr
i to the softmax loss as:

fNr = fOp−µ√
σ2

, where µ and σ2 are the mean and variance.

During training, we apply normalization by computing

µ and σ from the samples of each mini-batch. Moreover,

we maintain the moving average of µ and σ and use them

to normalize the test samples. Note that, this is a specific

case of the popular batch normalization (BN) technique [15]

with scale γ = 1 and shift β = 0.

Proposed CNN architecture: Our CNN model consists

of 27 convolution (Conv), 4 pooling (Pool) and 1 fully con-

nected (FC) layers. Each convolution uses a 3 × 3 kernel

and is followed by a PReLU activation function. The CNN

progresses from the lower to higher depth by decreasing the

Figure 1. Illustration of the proposed CNN architecture. CoPr indicates

convolution followed by the PReLU activation function. ResBl is a resid-

ual block which computes output = input + CoPr(CoPr(input)).
# Replication indicates how many times the same block is sequentially

replicated in the CNN model. # Filts denotes the number of feature maps.

FN denotes feature normalization.

spatial resolution using a 2× 2 max Pool layer while gradu-

ally increasing the number of feature maps from 32 to 512.

We use a FC layer of 512 neurons after the last Conv layer.

We normalize (see FN above) the output of this FC layer

and consider it as the desired feature representation of the

input image. Finally, we use the softmax layer to compute

the loss and optimize it during training. Our CNN model

incorporates the residual learning framework [13], see Fig.

1 for the details. Overall, it comprises 40.5M parameters.

3.2. Image pre­processing and face verification

Pre-processing: We maintain the same form of the 2D

face image during training and testing. Our pre-processing

steps are: (a) detect2 face and landmarks using the MTCNN

[45] detector; (b) normalize the face image by applying a

2D similarity transformation. The transformation parame-

ters are computed from the location of the detected land-

marks on the image and pre-set coordinates in a 112×96

image frame; and (c) convert to grayscale.

Face verification: We verify a pair of face images [14],

templates [16] (contains multiple images and video frames)

and videos [40] (given as frames) using the following steps:

1. pre-process: apply the pre-processing3 stage described

in the previous paragraph.

2. extract facial feature/representation: we use the

trained CNN model to extract the facial feature de-

scriptor. For an image i, we obtain its descriptor fi
by taking element-wise maximum of the features from

its original fi,o and horizontally flipped version fi,f .

In order to perform verification based on template [16]

and video [40], we obtain the descriptor for an identity

by taking element-wise average of the features from all

of the images/frames.

3. compute verification score: for a given pair of facial

features, we compute the cosine similarity as the veri-

2In case of multiple faces, we take the face closer to the image center.
3If the landmarks detector fails we keep the face image by cropping it

based on the given/detected bounding box.
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fication score. We compare this score to a threshold to

decide whether two images belong to the same person.

4. Experiments, Results and Discussion

Our experiments consist of first training the CNN model

and then use it to extract facial features and perform dif-

ferent types (single-image [14, 3], multi-image or video

[16, 40]) of face verification. In order to verify the effec-

tiveness, we experiment on several datasets, namely LFW

[14], IJB-A [16], YTF [40] and CACD [3].

4.1. CNN Training

We collect the training images from the cleaned4 ver-

sion of the MS-Celeb-1M [11] database, which consists of

4.47M images of 62.5K identities. We train our CNN model

using only the identity label of each image. We use 95%

images (4.2M images) for training and 5% images (232K

images) for monitoring and evaluating the loss and accu-

racy. We train our CNN using the stochastic gradient de-

scent method and momentum set to 0.9. Moreover, we apply

L2 regularization with the weight decay set to 5e−4. We be-

gin the CNN training with a learning rate 0.1 for 2 epochs.

Then we decrease it after each epoch by a factor 10. We

stop the training after 5 epochs. We use 120 images in each

mini-batch. During training, we apply data augmentation

by horizontally flipping the images. Note that, during evalu-

ation on a particular dataset, we do not apply any additional

CNN training or fine-tuning and dimension reduction.

4.2. Results and Evaluation

Now we evaluate our proposed FR method, called Deep-

Visage, on the most commonly used and challenging facial

image datasets based on their specified protocols.

Labeled Faces in the Wild (LFW) [14]: LFW is one of

the most popular and challenging databases for evaluating

unconstrained FR methods. It consists of 13,233 images of

5,759 identities. It has different evaluation protocols. We

follow the unrestricted-labeled-outside-data protocol based

on the recent trend [17]. The FR task requires verifying

6000 image pairs in 10 folds and report the accuracy. These

pairs are equally divided into genuine and impostor pairs

and comprises 7.7K images of 4,281 identities.

Table 1 provides the results of our method along with the

other state-of-the-art methods. We observe that, our method

achieves significant accuracy (99.62%) and among the top

performers, despite the fact that: (a) we use single CNN,

whereas Baidu [20] used 10 CNNs to obtain 99.77% and (b)

we train CNN with comparatively much less amount of data

4We take the list of 5.05M faces provided by [41] and keep non-

overlapping (with test set) identities which has at least 30 images after

successful landmarks detection.

and identities, whereas FaceNet [29] used 200M images of

8M identities to obtain 99.63%.

Table 1. Comparison of the state-of-the-art methods evaluated on the

LFW benchmark [14].

FR method
# of

CNNs

Dataset

Info

Acc

%

DeepVisage (proposed) 1 4.48M, 62K 99.62

Baidu [20] 10 1.2M, 1.8K 99.77

Baidu [20] 1 1.2M, 1.8K 99.13

FaceNet [29] 1 200M, 8M 99.63

Sparse ConvNet [33] 25 0.29M, 12K 99.55

DeepID3 [31] 25 0.29M, 12K 99.53

Megvii [46] 4 5M, 0.2M 99.50

LF-CNNs [38] 25 0.7M, 17.2K 99.50

DeepID2+ [32] 25 0.29M, 12K 99.47

Center Loss [39] 1 0.7M, 17.2K 99.28

MM-DFR [9] 8 0.49M, 10.57K 99.02

VGG Face [24] 1 2.6M, 2.6K 98.95

MFM-CNN [41] 1 5.1M, 79K 98.80

VIPLFaceNet [21] 1 0.49M, 10.57K 98.60

Webscale [35] 4 4.5M, 55K 98.37

AAL [43] 1 0.49M, 10.57K 98.30

FSS [37] 9 0.49M, 10.57K 98.20

Face-Aug-Pose-Syn [23] 1 2.4M, 10.57K 98.06

CASIA-Webface [44] 1 0.49M, 10.57K 97.73

Unconstrained FV [5] 1 0.49M, 10.5K 97.45

Deepface [34] 3 4.4M, 4K 97.35

The results in the Table 1 indicates saturation, because

all of the methods achieve close to or more than human

performance (97.53%). Besides, it is argued that match-

ing only 6K pairs is insufficient to justify a method w.r.t.

the real world FR scenario [19]. We address these is-

sues by two ways: (a) employ more challenging evalua-

tion metrics and (b) evaluate with the other challenging

datasets. To this aim, first we follow the BLUFR LFW

protocol [19] and measure the true accept rate (TAR) at

a low false accept rate (FAR). BLUFR [19] protocol ex-

ploits all images of the LFW dataset and evaluates meth-

ods based on 10 trials experiments. Each trial computes

47M pair-matching scores (157K positives, 46.9M nega-

tives), which is significantly higher than the 6K scores used

in the standard protocol. Within this protocol, we com-

pute the verification rate (VR) at FAR=0.1% and compare

with the methods which reported results5 in this proto-

col. We observe that: DeepVisage (proposed) (98.65) >

CenterLoss6 [39] (92.97%) > FSS [37] (89.8%) >

CASIA [44] (80.26%) , i.e., our method obtains the best

results published so far. Therefore, this result together with

the Table 1 confirm the remarkable performance of Deep-

Visage on the LFW database. Next, we justify our method

by evaluating it on the challenging IJB-A [16] dataset.

5We do not include results from Baidu [20] (VR@FAR: 99.11% for

single CNN and 99.41% for 10-CNNs ensembles). The reason is that, we

are not sure if they compute results based on the BLUFR protocol [19] or

based on the 6K pairs. Note that, we obtain 99.7% on VR@FAR=0.1%

using the 6K pair-matching scores of the standard protocol.
6Results computed from the features publicly provided by the authors.
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Table 2. Comparison of the state-of-the-art methods evaluated on the IJB-

A benchmark [16]. ‘-’ indicates the information for the entry is unavail-

able. Methods which incorporates external training (ExTr) or CNN fine-

tuning (FT) with IJB-A training data are separated with a horizontal line.

VGG-Face result was provided by [27]. T@F denotes the True Accept Rate

at a fixed False Accept Rate (TAR@FAR).

FR method ExTr FT
T@F

0.01

T@F

0.001

DeepVisage (proposed) N N 0.887 0.824

VGG Face [24] N N 0.805 0.604

Face-Aug-Pose-Syn [23] N N 0.886 0.725

Deep Multipose [1] N N 0.787 -

Pose aware FR [22] N N 0.826 0.652

TPE [28] N N 0.871 0.766

All-In-One [25] N N 0.893 0.787

All-In-One [25] + TPE Y N 0.922 0.823

Sparse ConvNet [33] Y N 0.726 0.460

FSS [37] N Y 0.729 0.510

TPE [28] Y N 0.900 0.813

Unconstrained FV [5] Y Y 0.838 -

TSE [27] Y Y 0.790 0.590

NAN [42] Y N 0.941 0.881

TA [8] Y N 0.939 0.836

End-To-End [6] N Y 0.787 -

IARPA Janus Benchmark A (IJB-A) [16]: The recently

proposed IJB-A database aims at raising the difficulty of

FR by incorporating more variations in pose, illumination,

expression, resolution and occlusion. It consists of 5,712

images and 2,085 videos of 500 identities. The FR task

compares two templates. A template is a set of images and

video-frames. The evaluation protocol requires computing

the true accept rate (TAR) at a fixed false accept rate (FAR)

with various values, e.g., 0.01 and 0.001.

Table 2 presents our results along with the other state-of-

the-art methods. We separate the results (with a horizontal

line) to distinguish two categories: (1) methods only us-

ing a pre-trained CNN; our method belongs to this category

and (2) methods use additional learning, such as CNN fine-

tuning and metric learning. From the comparison among

the 1st category of methods, we observe that, our method

provides the best result for FAR at 0.001% and competitive

(second best) at 0.01%. By comparing it to the 2nd category

we observe that, it is also very competitive and provide bet-

ter results than numerous methods from this category. Be-

sides, similar to [25, 28], it is possible to exploit our CNN

features and further improve the final results with external

learning, such as TA [8], NAN [42] and TPE [28].

YouTube Faces [40] (YTF): The YTF dataset is a widely

used FR dataset of unconstrained videos. It consists of

3,425 videos of 1,595 identities. YTF evaluation requires

matching 5000 video pairs in 10 folds and report average

accuracy. Each fold consists of 500 video pairs and en-

sures subject-mutually exclusive property. We follow the

restricted protocol of YTF, i.e., access to only the similar-

ity information. We report our result in Table 3, along with

the state-of-the-art methods. Results show that our method

provides the best accuracy (96.24%).

Table 3 also provides the results (separated with a hori-

zontal line) from unrestricted protocol, i.e., access to simi-

larity and identity information of the test data. We observe

that our method is very competitive to the best accuracy, al-

though it follows the restricted protocol. The VGG Face

[24] provides results with both protocols and shows that

accuracy increases significantly (from restricted-91.6% to

unrestricted-97.3%) when they learn their CNN feature em-

bedding using the YTF training data. Based on this observa-

tion, we can predict that our result (96.24%) can be further

enhanced by training or fine tuning with the YTF data.

Table 3. Comparison of the state-of-the-art methods evaluated on the

Youtube Face [40]. Ad.Tr. denotes additional training is used.

FR method Ad.Tr. Accuracy (%)

DeepVisage (proposed) N 96.24

VGG Face [24] N 91.60

Sparse ConvNet [33] N 93.50

FaceNet [29] N 95.18

DeepID2+ [32] N 93.20

Center Loss [39] N 94.90

MFM-CNN [41] N 93.40

CASIA-Webface [44] Y 92.24

Deepface [34] Y 91.40

VGG Face [24] Y 97.30

NAN [42] Y 95.72

Cross-Age Celebrity Dataset (CACD) [3]: CACD is a re-

cently released dataset, which aims to ensure large varia-

tions of the ages in the wild. It consists of 163,446 im-

ages of 2000 identities with the age range from 16 to 62.

CACD evaluation requires verifying 4000 image pairs in

ten folds and report average accuracy. Table 4 reports the

results of DeepVisage along with the state-of-the-art meth-

ods. It shows that our method provides the best accuracy.

Moreover, it is better than LF-CNN [38], which is a recent

method specialized on age invariant face recognition.

Table 4. Comparison of the state-of-the-art methods evaluated on the

CACD [3] dataset. VGG [24] result is obtained from [41].

FR method Accuracy (%)

DeepVisage (proposed) 99.13

LF-CNNs [38] 98.50

MFM-CNN [41] 97.95

VGG Face [24] 96.00

CARC [3] 87.60

Human, Avg. 85.70

Human, Voting [3] 94.20

The evaluations of DeepVisage (proposed method)

across different challenging datasets prove that it not only

achieves significant performance but also generalizes very

well. It overcomes several of the difficulties which make

unconstrained FR a challenging task.
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Table 5. Analysis of the influences from training databases, size and num-

ber of classes. T@F denotes the True Accept Rate at a fixed False Accept

Rate (TAR@FAR).

Aspect Add. info
Acc

%

T@F

0.01

DB Size, Class

CASIA [44] 0.43M, 10.6K 99.00 0.988

Pose-CASIA [23] 1.26M, 10.6K 99.15 0.992

UMDFaces [2] 0.34M, 8.5K 99.15 0.992

VGG Face [24] 1.6M, 2.6K 98.40 0.975

MSCeleb [11] 4.2M, 62.5K 99.62 0.997

Min samp/id Size, Class

10 4.48M, 62.7K 99.56 0.996

30 4.47M, 62.5K 99.62 0.997

50 3.91M, 47.3K 99.60 0.997

70 3.11M, 33K 99.55 0.996

100 1.5M, 12.7K 99.23 0.991

4.3. Analysis and Discussion

We perform further analysis to highlight the influences

of several aspects, such as: (a) training datasets; (b) CNN

models and depth; (c) normalization and (d) activation func-

tions. Therefore, we modify and train our CNN model and

observe the accuracy and TAR@FAR=0.01 on LFW. Table

5 presents the results.

First, we study the influence of training the proposed

CNN with different datasets. It helps us to understand the

capacity of the CNN to learn facial representation and iden-

tify the requirements to achieve better performance. The top

part of Table 5 presents the analysis w.r.t. different datasets,

from which we observe that: (a) CNN performance in-

creased by training with larger number of images as well

as identities, the best results are obtained with the largest

dataset, i.e., MSCeleb [11]; (b) synthesized images help to

enhance performance, we see this from the pose augmented

CASIA [44, 23] dataset; (c) a dataset with more variations

per identity helps even with a relatively lower number of

images and identities, we see this by comparing the CA-

SIA [44] and UMD [2] datasets; and (d) large number of

images with smaller number of identities may not help, we

see this from the VGG Face [24] dataset. Besides, we ana-

lyze the dataset uniformity or balance issue, i.e., number of

images-per-identity, see bottom part of of Table 5. We use

the MSCeleb [11] dataset for this experiment. We see that,

while maintaining certain balance is necessary, it is equal-

ity important to train CNN with a larger dataset. We obtain

the best performance by keeping only the identities with 30

images or more.

Besides the size/balance of datasets, it is also impor-

tant to select an appropriate CNN model to learn from such

datasets. To verify this, we trained CASIA-Net [44] (a shal-

lower 10 layers CNN) with the MSCeleb [11] dataset and

observed that it provided 98.6% accuracy, whereas we get

99.62% with the 27 layers CNN used in our method.
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Figure 2. Illustration of the ROC plots for different CNN models evaluates

on the LFW [14] dataset.

Next, we analyze the results based on different CNN

components and models. Table 6 and Fig. 2 present the

results with different forms, where we train all settings with

the CASIA [44] dataset. Our observations are: (a) the pro-

posed CNN model obtains better performance by including

feature normalization (FN) before loss computation, we see

this by comparing with the center loss [39] and without FN

based results and (b) it obtains better accuracy than the other

commonly used CNNs (for FR), such as the VGG-Net [24]

and CASIA-Net [44]. Note that, we do not directly com-

pare with other loss functions (within our CNN model) as

the center loss [39] has been shown to be more efficient than

those. Additionally, we trained our CNN with ReLU instead

of PReLU and observe that it decreases accuracy by approx-

imately 0.5%. In terms of complexity (measured with the

number of parameters in Table 6), our model is more com-

plex than the simpler models (Cas-Net and CN-mod). How-

ever, it is much simpler than the VGG-Net [24]. Results

indicate that, while a simpler model may limit7 the FR per-

formance, a complex model is prone to overfitting. Perhaps

this is the reason why the VGG-Net [24] requires additional

fine-tuning on the target datasets. The above analyses jus-

tify the efficiency of our proposed CNN model.

Table 6. Study the influences from CNN related issues. All CNN models

are trained with the CASIA [44] dataset. CL- center loss [39], FN- feature

normalization. CN-mod modifies the Cas-Net [44] by replacing Pool layer

with a FC layer of 512 neurons.

Settings # params
Acc

%

T@F

0.01

Base-CNN (proposed) 40.5M 99.00 0.988

Base-CNN - FN 40.5M 97.40 0.954

Base-CNN + CL - FN 44.8M 98.85 0.986

VGG-Net [24] 182M 95.15 0.883

Cas-Net [44] 6M 97.10 0.938

CN-mod 8M 97.50 0.956

7We train the CN-mod (see Table 6) with the MSCeleb dataset and

observed that, compared to our proposed CNN model CN-mod provides

lower results and generalizes poorly.

1688



We observe that, feature normalization (FN) before the

loss computation plays a significant role in the performance.

In order to gain further insights, we conduct experiments

and visualize the features of the MNIST digits in the 2D

space. This is similar to the visualization recently shown

in [39] and hence we also provide a comparison with the

center loss (CL). The CNN is composed of 6 convolution,

2 pool and 1 FC (with 2 neurons for 2D visualization) lay-

ers. We optimize it using the softmax loss. Fig. 3 provides

the illustration, from which we observe that: (a) FN pro-

vides a better feature discrimination in the normalized 2D

space, see Fig. 3-b; (b) CL enforces the features towards its

representative center and hence shows discrimination, see

Fig. 3-c and (c) CL+FN does not provide much additional

discrimination, see Fig. 3-b and Fig. 3-d. We also ver-

ified the usefulness of our FN trick with other CNNs and

observe that it improves CN-mod (see Table 6) accuracy

from 97.5% to 97.6% and VGG-Net accuracy from 95.15%

to 98%. This indicates that the FN trick works better with

deeper CNNs (in our CNN model, FN improves from 97.4%

to 99.0%). These observations reveal that, by exploiting the

FN appropriately we can ensure feature discrimination and

hence no additional loss function, e.g., CL, is necessary.

a b

c d

Figure 3. 2D visualization of the MNIST [18] digits features, which are

obtained by using same baseline CNN model and training settings. CL

[39] parameters are set to λ = 0.003 and α = 0.5. a. CNN without FN

and CL; b. CNN with FN; c. CNN with CL; and d. CNN with FN and CL.

Apart from the CNN components, we also exper-

imented with image crop-size and color information.

Our method provides similar results for both includ-

ing/excluding random-crop based training. Moreover, we

did not achieve any additional gain by using larger crop size

and color image.

Finally, we investigate the incorrect results by observing

the face image pairs in which DeepVisage failed. The sup-

plementary material provides the illustrations of the false

accept/reject cases from the different datasets. We observe

that, on LFW it failed (11/20 error cases) when the eyes

are occluded by glasses or a cap. Incorrect CACD results

and higher false rejection rate indicate that our method (al-

though provides best accuracy) encounters difficulties to

recognize the same person from the images of different

ages. Incorrect results from YTF often suffers from high

pose and perhaps low image resolution. IJB-A results re-

veal that our method needs to take care of the face images

with extreme pose variations. Indeed, during the IJB-A ex-

periments, we are forced to keep a large number of images

as un-normalized due to the failure of landmarks detection

for them. Based on empirical evidences, we believe that

these un-normalized faces cause the degradation of our per-

formance. Besides, the results from YTF and IJB-A indi-

cate that we may need to use a better distance computation

strategy.

5. Conclusion

In this paper we present a single-CNN based FR method

which achieves state-of-the-art performance and exhibits

excellent ability of generalize across different FR datasets.

Our method, called DeepVisage, performs face verifica-

tion based on a given pair of single images, templates and

videos. It consists in a deep CNN model which is simple

and straightforward to train. Overall, DeepVisage is very

easy to implement, thanks to the residual learning frame-

work, feature normalization, softmax loss and the simplest

distance. It successfully demonstrates that, in order to

achieve state-of-the-art results it is not necessary to develop

a complicated FR method by using complex training data

preparation and CNN learning procedure. We foresee sev-

eral future perspectives of this work, such as: (a) train CNN

with a larger and more balanced dataset, which can be con-

structed by combining multiple publicly available datasets

or by adopting the face synthesizing strategy [23] with the

existing one; (b) enhance FR performance by incorporating

failure detection based technique [30], particularly for face

and landmarks detection and (c) incorporate better distance

computation method for the template and video compari-

son, e.g., use softmax based distance [23].
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