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Abstract

Recently, benefiting from the advances of the deep con-

volution neural networks (CNNs), significant progress has

been made in the field of the face verification and face

recognition. Specially, the performance of the FaceNet

has overpassed the human level performance in terms of

the accuracy on the datasets “Labeled Faces in the Wild

(LFW)”and “Youtube Faces in the Wild (YTF)”. The triplet

loss used in the FaceNet has proved its effectiveness for face

verification. However, the number of the possible triplets

is explosive when using a large scale dataset to train the

model. In this paper, we propose a simple class-wise triplet

loss based on the intra/inter-class distance metric learning

which can largely reduce the number of the possible triplets

to be learned. However the simplification of the classic

triplet loss function has not degraded the performance of the

proposed approach. The experimental evaluations on the

most widely used benchmarks LFW and YTF show that the

model with the proposed class-wise simple triplet loss can

reach the state-of-the-art performance. And the visualiza-

tion of the distribution of the learned features based on the

MNIST dataset has also shown the effectiveness of the pro-

posed method to better separate the classes and make the

features more discriminative in comparison with the other

state-of-the-art loss function.

1. Introduction

The face verification and face recognition problems rep-

resent a sub-domain of the more general problem of visual

object recognition or classification. In recent years, thanks

to the great development of the deep CNNs the effective

and powerful high-level features have been learned which

can very well represent the images, and the state-of-the-art

of visual object classification and recognition has been sig-

nificantly improved [10, 24, 12, 7, 8]. Generally, the deep

CNNs mainly develops in the following three directions:

1) constructing deeper networks, such as the VGG net-

works [18] which has 19 layers, and the RsNet series [7, 8]

which has even more that 1000 layers; 2) constructing wider

networks, such as the Inception networks [24, 25] which

contain more than one branch by extending one layer with

several different convolution blocks or the maxpool module;

3) constructing the networks by fusing the two structures

from 1) and 2) such as the InceptionV4 [23] which fuses the

inception module into a very deep RsNet networks aiming

to take advantage of the depth and width of the networks.

Given the success of these networks obtained in the field of

the classification or recognition of the visual objects, these

powerful networks have also been applied to the face recog-

nition problem. With the very deep and wide CNNs, this is

first time that the accuracy of face verification/recognition

has overpassed the human-level performance, as evaluated

on some benchmarks such as LFW [9] and YTF [16]. Con-

sidering the good representation capacity of the Inception

networks and the residual learning framework making it

possible to train a deep networks without the problem of

vanishing gradient, in this work we propose to use a deep

networks based on the Inception-RsNet structure. Beside

the architecture of the networks, another important factor

for both general image classification and face verification

problem is the design of the loss function. The loss func-

tion not only controls the object of the optimization of the

deep networks but also affects their efficiency during the

training of the model. In the field of face recognition, the

state-of-the-art FaceNet proposes to use the triplet-loss as

the loss function to train a deep CNNs for establishing an

embedding space, in which the face images of the same

identity should be more close to the face images of the dif-

ferent persons. Ideally, the triplet loss would compare all

the possible pairs of the images in the dataset during the

training. This is unpractical since the number of the pos-

sible pairs will be explosive when the size of the dataset

increases. Thus a complicated sampling strategy was pro-

posed in [16], which only selects the hard or semi-hard sam-

ples to train the model. However even with the vast com-

43211656



putation resources at Google, it took hundreds of hours to

train the model. Inspired by the center-loss in [27] and the

idea of Linear Discriminative Analysis (LDA), we propose

a simple class-wise triplet loss based on the intra/inter-class

distance metric learning to employ the idea of the triplet

loss on the level of classes instead of the individual samples.

The loss function that we have proposed in this work, aims

to decrease the distance of the samples to the center within

the same class and enlarge the distances to the centers of

inter-classes by enforcing a margin between intra-class and

inter-class distances. Specifically, we use the centers of the

classes, instead of the individual samples, as the possible

positives and negatives in the triplet pairs. Since the class-

wise loss function only considers the distance of a sample to

the intra- and inter-classes centers, the number of the triplets

used for training the model can be largely reduced, which

results in a decrease of the computation cost of the train-

ing processing. Our main contributions are summarized as

follows.

• We propose a simple class-wise triplet loss based on

intra/inter-class distance metric learning. The pro-

posed class-wise triplet loss aims to minimize the

intra-class distance of the features meanwhile maxi-

mize the inter-class distance. By using the centers in-

stead of the individual samples as the possible posi-

tives and negatives in the triplets, the class-wise triplet

loss can largely reduce the number of the triplets to be

learned which can consequently simplify the training

procedure.

• The visualization of the distributions of the features

learned by the different loss functions shows the ad-

vantage of the proposed approach which can better

separate the classes and make the data more discrimi-

native.

• The evaluations on the widely used benchmarks LFW

and YTF show the state-of-art performance of the pro-

posed class-wise loss function, even with a small train-

ing dataset the model can reach a comparable state-of-

art performance.

• The deep CNNs networks based on the Inception-

RsNet is proposed to implement the proposed loss

function.

In the following parts of this paper: in Section 2 we

review the related works in the area of face verifica-

tion/recognition; in Section 3 we conduct a preliminary

study based on the dataset MNIST to have an intuitive idea

and then elaborate the formulations of the proposed class-

wise triplet loss function based on intra/inter-loss metric

learning; Section 4 describes the deep CNNs networks used

in this work; and Section 5 presents the datasets used for the

training and the evaluations; finally in Section 6 and 7 we

present the experimental evaluations of our proposed model

and the conclusion, respectively.

2. Related Work

The face verification and recognition problem have al-

ways received the great interests of the researchers. Before

the deep learning, the classification methods for face recog-

nition are mainly based on the well-designed handcrafted

features extracted by the feature engineering. To make a

distinction from the deep neural architecture, these mod-

els are so called “shallow” models. In order to represent

the face image, many local descriptor have been proposed

for face recognition task, such as LBP, HOG, Gabor-LBP,

SIFT [4, 28, 19, 14]. Later, the Fisher Vector [17, 28] has

been proposed to employ a fusion mechanism to integrate

the different features into an overall face descriptor. Re-

cently, face verification or recognition has achieved a series

breakthrough via the deep neural networks and especially

the deep CNNs architecture.

DeepFace [26] firstly introduced a siamese networks ar-

chitecture for the face verification problem. Siamese net-

works consists of two identical CNNs, in parallel, which

are fed by two images in the pair to be distinguished. Two

high-level features extracted from the two CNNs are em-

ployed as the descriptors of the images. A metric learning

based on the L2-norm distance of the two extracted features

is used to train the model, in which the model minimizes

the Euclidean distance of the images of the same identity

and maximizes the distance of the images from the different

person. Besides, a 3D to 2D alignment prep-processing is

applied to align the different poses of the face images. Thus,

in addition to a deep CNNs model, a 3D-based pose align-

ment model has also been adopted in DeepFace. Training

on a private dataset including 4 million examples of 4000

identities, DeepFace has achieved 97.35% on the LFW and

91.4% on the YTF.

DeepID [21, 20, 22] series continue the work of the

DeepFace. The significant feature of the DeepID series is

using more than 200 CNNs to form the so-called multi-scale

ConNets for face verification. However, DeepID [21] and

DeepID2 [20] still keep the structure of siamese architecture

using the Joint Bayesian [2] technique for face verification.

Unlike the DeepFace, DeepID use a simple 2D alignment

instead of the 3D alignment and DeepID was trained on the

public datasets. Benefiting from a very complicated struc-

ture, DeepID series have reached the state-of-the-art perfor-

mance (99.15% on LFW).

FaceNet [16] is proposed by the Google’s researchers

which still keeps the state-of-the-art results for face veri-

fication and recognition on the benchmarks LFW and YTF.

It proposes to use the triplet loss on the sampled triplet face

images including a pair of images from the same person and
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an image from the different person. A distance metric learn-

ing was employed in the triplet-loss, which aims to make the

images from the same person closer than the ones from the

different person in terms of the Euclidean distance. Since it

is impossible to check all possible triplets in the dataset, the

FaceNet uses some strategies to limit the samples which are

so-called “hard samples” or “semi-hard samples”. It means

only the samples most-violating or second-most-violating

the optimization goal have been selected to train the model.

The triplet loss function is applied to train several different

deep CNNs based on Inception structure aiming to adapt

the model to the different use cases. Even with the sam-

pling strategies to limit the training samples, the training

cost is impressive (hundreds of hours for training) based on

their private massive datasets which has about 200 million

images spanning 8 million identities. For face verification

task, FaceNet achieved 99.63% (overpassing human-level

97.5%) on LFW and 95.12% on YTF.

VGG face [18] implements the triplet loss on the VGG

networks and trains the model on the datasets collected by

their proposed protocol with about 2.6 million images span-

ning 2622 celebrities. VGG face also received a state-of-

the-art result for face recognition.

In [27], the center loss joint with the cross entropy loss

of softmax is proposed to use for face recognition. Un-

like the triplet loss, the center loss tries to decrease the dis-

tances of the samples to their within-class centers to make

the data more discriminative. It does not need the sam-

ple strategy as used in the triplet loss. The model uses

a combination of the public datasets including CASIA-

WebFace [29], CACD2000 [1], Celebrity+ [13] to train their

deep CNNs networks and also achieved the state-of-the-art

performance.

3. Proposed Simple Triplet Loss

Triplet loss is proven to be very effective for face veri-

fication/recognition and also in the related domain such as

person re-identification [3]. By enforcing a margin between

the pairs of faces of the same identity and the ones of the

different identities, the triplet loss tries to keep the faces

of the same identity closer than the faces from the differ-

ent identities in the embedding space. This allows the faces

for one identity to live on a manifold while still enforcing

the distance and thus discriminating to other identities [16].

However, in order to describe the entire distribution of the

dataset the classic triplet loss should implement on all pos-

sible triplet pairs denoted by <anchor, positive, negative>,

in which anchor is an input sample, positive is an image

sample belonging to the same identity while the negative is

a sample from the different identity. In this way the number

of the possible triplet pairs will grow exponentially when a

large-scale dataset is provided.

A problem for applying the triplet loss is how to sample

learning

C1
C2

C3

C1

C2

C3

anchor

anchor

Figure 1: The proposed class-wise triplet loss enforces the

input sample (i.e. anchor) closer to the intra-class center

and further to the inter-class centers.

the triplet pairs efficiently. Inspired by the center loss and

Linear Discriminant Analysis (LDA), we would employ a

triplet loss idea on the level of the class rather than the in-

dividual sample by employing the centers of the classes to

represent the overall distribution the classes. Specifically,

we let the input sample closer to their within-class centers

but further to the centers of the other classes in embedding

space (see Figure 1). Since we use the centers of the classes

to represent the global distribution of the classes rather than

the individual samples, we only have k − 1 triplets for

each sample, namely <anchor, intra-class center, inter-class

center>, where k is the number of the classes. Thus the pro-

posed class-center based triplet loss can largely decrease

the number of the possible triplets for each input sample

comparing to the classic triplet loss method. For instance,

assuming a dataset with k classes and n samples in each

class, there are n(n − 1)k possible triplets for each sample

for the classic triplet loss method, while for the proposed

class-center based triplet loss we have only k − 1 triplets

(see Figure 2). The significant decrease of the number of

the triplets can consequently reduce the computation cost

for training the model.

3.1. Preliminary study on MNIST

Before we elaborate the formulations of the proposed

approach, we present an intuitive example based on the

MNIST dataset [11] to illustrate how the proposed class-

wise triplet loss to effect the distribution of the features

learned by a simple CNNs networks. Figure 3 shows the

simple CNNs networks with only 4 hidden layers applied

in the toy experiment. The proposed class-wise triplet loss

is calculated based on the bottleneck layer which is the last

hidden fully connected layer fc2. The last layer of the net-

works is the softmax layer which can help the networks con-

verge fast to make the features discriminable preliminarily.

In order to provide a more intuitive visualization of the dis-

tribution of the learned features, the 2D features are given

in the bottleneck layer for calculating the proposed triplet

loss. Table 1 shows the details of the networks. Since the
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Class-wise

Triplets

Figure 2: The class-wise triplets of the proposed method

and the triplets of the classic triplet loss method. Unlikely

the classic triplet loss method, the number of the class-wise

triplets only depends on the centers of the classes but in-

dependent with the samples within the classes, which can

largely decrease the number of the possible triplets to be

learned.

experiment is based on the MNIST, the output of the soft-

max has 10 classes. In the following illustration, we will use

10 colors to represent the 10 classes. The Stochastic Gradi-

ent Descent (SGD) was employed to optimize the gradients

based on the mini-batch with the learning rate 1e-4.

Meanwhile, the center loss focusing on the intra-class

distance metric and the softmax loss measuring the prob-

ability similarity of the classes have been also carried out

to compare with the class-wise triplet loss. Thus actually

three different models were trained in the toy experiment.

The frameworks of the three models are the same except the

configurations of the loss functions: the cross entropy loss is

served as the total loss of the softmax, while the center loss

and the class-wise triplet loss are joint with the softmax loss

as the total loss respectively. Figure 4 has shown the distri-

butions of the 2D features extracted by the models learned

with the three different metrics. Note that the models used

for extracting the features are trained in advance based on

the training dataset of the MNIST, and then the features of

the test dataset of the MNIST were extracted and their dis-

tributions are shown in the figure. From the Figure 4 we

can see that the softmax can only partly separate the fea-

tures where 5 classes of 10 are separated apparently by the

model trained after 40000 iterations. Comparing to the pure

softmax, the center loss joint with the softmax is much bet-

ter. Benefiting from the optimization of the intra-class dis-

tances to their centers, the learned features of the center loss

are much more centralized and discriminative. The major-

ity part of the classes, i.e. 7 classes in 10, have been well

separated. However the center loss only optimizes the intra-

class distance disregarding of the inter-class distance in the

loss function, and 3 classes (in the color of gray, brown and
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Figure 3: The simple CNNs networks for the toy example

based on the MNIST. The proposed class-wise triplet loss

is computed based on the bottleneck layer, i.e. the last hid-

den full connect layer. The last layer of the networks is the

softmax layer.

layer conv1 pool1 conv2 pool2 fc1 fc2

kernel 5*5 2*2 5*5 2*2 7*7 1024

filters 32 1 64 1 1024 2

Table 1: The simple CNNs networks applied in the toy

example. The 2D features are given by the fc2 layer for

computing the class-wise triplet loss. The rectified linear

unit is employed as the nonlinear activation function in the

networks.

olive) are still gathering together. By adding the measure-

ment of the inter-class distance to the centers of the other

classes, the proposed class-wise triplet loss has further sepa-

rated the classes that 8 classes in 10 have been separated ef-

fectively. In addition, by enforcing the margin between the

intra- and inter-class distance, the class-wise loss enables

the margins of the separated classes are indeed greater than

the center loss which can help to discriminate the learned

features. This point is also demonstrated in the evaluation

of the three models in terms of the accuracy of the classi-

fication (see Figure 5), in which we can see that the model

trained with the proposed class-wise triplet loss can con-

verge faster and obtain a slightly better result.

3.2. Simple classwise triplet loss metric

In this section, we describe the proposed simple class-

wise triplet loss in detail. The basic idea of the triplet loss is

enforcing the input sample as an anchor being closer to the

positive (the sample within the class) than the negative (the

sample belonging to the other classes). While in this work,

the proposed class-wise triplet loss using the centers of the

classes as the possible positives or negatives instead of the

individual samples in the classic triplet loss. Thus the class-

wise triplet loss for a triplet <anchor, positive, negative>

can be described as:
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Figure 4: The distributions of the 2D features learned by

the different metrics based on the dataset MNIST. The rows

from top to bottom are corresponding to the distributions of

the features learned by the metrics of the softmax, center

loss and proposed class-wise triplet loss respectively. The

columns from left to right corresponding to the distributions

of the features extracted by the models trained in different

stages from 1 to 40000 iterations. In particularly the sub-

figure corresponding to the iteration 0 means the distribu-

tion of the input data, and the input data for the three dif-

ferent models are the same. The 10 classes in MNIST are

represented by 10 colors in the figures.

dinter ≥ dintra + β0 (1)

Where, dintra is the intra-class distance of an anchor to

its center within the class, dinter is the inter-class distance

of an anchor to the center of the other class, β0 is the margin

between the intra- and inter-class distances. Thus the class-

wise triplet loss lc of a triplet is given by:

lc = max(dintra + β0 − dinter, 0) (2)

For a given anchor xi ∈ R
d with all possible class-wise

triplets corresponding to k classes, the class-wise triplet loss

of xi is given by:

Lic =
k∑

l=1,l 6=yi

max(dyi,i + β0 − dl,i, 0) (3)

where Lic is the class-wise triplet loss of anchor xi, k is the

number of the classes, dyi,i is the distance of the anchor

xi to the center of the yith class corresponding to the xi,

0 5000 10000 15000 20000 25000 30000 35000 40000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: The accuracies of the classification of the models

trained with the three metrics of the softmax (blue), center

loss (green) and proposed class-wise triplet loss (red) based

on the dataset MNIST. The horizontal axis is the number of

the iterations for training the models.

i.e. the intra-class distance of xi, and dl,i is the inter-class

distance of the anchor xi to the center of the lth class.

Since the training of the deep networks is normally based

on the mini-batch, the class-wise triplet loss Lc of the mini-

batch with m samples is given by:

Lc =

m∑

i=1

Lic

=

m∑

i=1

k∑

l=1,l 6=yi

max(dyi,i + β0 − dl,i, 0)

= max(k

m∑

i=1

dyi,i +m(k − 1)β0 −

m∑

i=1

k∑

l=1

dl,i, 0)

= max(kDintra + β −Dψ, 0)

(4)

Where, Dintra is the sum of the intra-class distances of all

the samples in the mini-batch and Dψ is the sum of the dis-

tances of all the samples to the centers of the classes. Dintra

is given by:

Dintra =
1

2

m∑

i=1

‖xi − cyi‖
2

2
, xi, cyi ∈ R

d (5)

where the cyi is the center of yith class corresponding to the

deep feature xi. Dψ is given by:

Dψ =
1

2

m∑

i=1

k∑

l=1

‖xi − cl‖
2

2
, xi, cl ∈ R

d (6)
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In practice, the Dψ is weighted by θ in the proposed

class-wise loss function. So the class-wise triplet loss can

be degraded to the center loss when the β = 0 and θ = 0 .

Lc = max(kDintra + β − θDψ, 0) (7)

The updating of the centers of the classes can be calcu-

lated simply by averaging the features of the corresponding

class of the mini-batch. Nonetheless, this is inclined to have

large perturbations caused by the mislabeled samples in the

dataset. As proposed in [27], we use a weight γ to control

the learning rate of the updating:

c
t+1

l = c
t
l − γ∆c

t
l (8)

where t is the number of the iterations, and ∆ctl is the varia-

tion of the centers during the updating, γ is the learning rate

for updating. The variation of the center ∆cl is given by:

∆ctl =

∑m
i=1

1{yi = l} · (cl
t − xi

t+1)∑m
i=1

1{yi = l}
(9)

where 1{·} is the indicator function, i.e.1{a true statement}
= 1, and 1{a false statement} = 0. In order to separate the

features rapidly, the cross-entropy loss function of the soft-

max is also jointed with the proposed loss function. For

a mini-batch having m features, the cross-entropy loss of

softmax with k classes is given by:

Ls = −

m∑

i=1

k∑

j=1

1{yi = j}log
eW

T
j xi + byi∑k

l=1
eW

T
l
xi + bl

(10)

Finally, the total loss function of this work is given by:

L = Ls + αLc (11)

where α is the weight used to trade off the class-wise triplet

loss and the softmax loss in the total loss.

Algorithm 1 shows the main procedure of the training

algorithm.

4. Deep Inception-ResNet Networks

In this section, we describe the deep CNNs that we

have used in this work. Overall the deep CNNs based on

the Inception-RsNet architecture has 32 layers in terms the

depth and 4 branches of the width. As mentioned before,

in order to take advantage of the depth and width of the

networks, the inception structure has been adopted. Mean-

while using the residual networks RsNet to avoid the prob-

lem of gradient vanish. Although the deep CNNs has more

than thirty layers, several simplification techniques are in-

troduced by the Inception module, such as using the 1x1

convolution to reduce the dimension of the convolutions,

and also factorizing the standard nxn convolution into 1xn

Algorithm 1: The class-wise triplet loss training algo-

rithm

Input : Training samples {Ii}, i.e. the input images

Output: The networks parameters {w}

1 while t ≤ T do

2 t← t+1

3 Calculate the features xi by forward propagation

4 Calculate the total loss L = Ls + αLc
5 Update the centers of the classes in the mini-batch:

c
t+1

l = c
t
l − γ∆c

t
l

6 Calculate the ∂Ls

∂xi

, ∂Lc

∂xi

by back propagation

7 Update the parameters of the softmax (the output

layer) Wt+1 = W
t − λt ∂Ls

∂Wt

8 Update the parameters of the networks

w
t+1 = w

t − λt(∂Ls
∂xi

· ∂xi

∂wt + ∂Lc
∂xi

· ∂xi

∂wt )

9 end

and nx1 modules which reduce the grid-size of the networks

while expands the filter banks to keep the representation ca-

pability [25, 23]. The total number of the parameter of the

networks is about 10 millions, which is 14 times fewer than

[30] having 140 millions parameters of standard convolu-

tion with 22 layers deep or 6 times fewer than AlexNet [10]

having 60 millions parameters with total 9 layers by using

the standard convolution. In practice, it spends only about

12 hours to train the networks on dataset CASIA-WebFace

with only one GPU (Nvidia TitanX). The architecture of the

deep Inception-RsNet CNNs used in this work is shown in

Figure 6.

5. Datasets

5.1. Datasets for training

Two public datasets of different scales are used sepa-

rately to train the model in this work.

CASIA-WebFace dataset is a public dataset which has

almost 0.5 million images of about 10 thousands identities.

It was one of the largest public dataset when it was intro-

duced. However comparing to the datasets used in Facenet

(200 millions) or the one used in DeepFace (SFC, 4 mil-

lions), even comparing to the other public datasets proposed

recently e.g MS-Celeb-1M [6], it is a relative small dataset

now. We mainly trained our model on the CASIA-WebFace.

MS-Celeb-1M dataset is a public dataset established by

MSR. MS-Celeb-1M is much more larger than CASIA-

WebFace which includes almost 10 millions web images

covering about 1 million celebrities. The images are col-

lected automatically by the search engine providing the

most approximate images of the given celebrities. We also

trained the model on MS-Celeb-1M to see the effect of the
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Figure 6: The deep CNNs networks based on the Inception-

RsNet used in this work. The proposed class-wise loss is

calculated based on the bottleneck layer and the high-level

features are extracted from the bottleneck layer.

different scale of dataset. In this work we only use a subset

of the MS-Celeb-1M to train the model.

5.2. Datasets for evaluation

LFW dataset [9] is the most wildly used dataset for

evaluating the face verification algorithms. LFW contains

13,233 web-collected images from 5749 different identities,

with large variations in pose, expression and illuminations.

YTF dataset [28] is the only dataset consisting of videos.

It includes 3,425 videos of 1,595 different people, with an

average of 2.15 videos per person. The clip durations vary

from 48 frames to 6,070 frames, with an average length of

181.3 frames.

6. Experiments and results

6.1. Training configuration

The model has been mainly trained on the dataset

CASIA-WebFace with a relative small scale. In order to

verify the effectiveness of the class-wise triplet loss, we pro-

pose three configurations for training the model.

Configuration A In this configuration, the softmax loss

has been only included in the total loss function.

Configuration B Using the joint loss function of the cen-

ter loss and the softmax loss as the total loss function to train

the model.

Configuration C Using the joint loss function of pro-

posed class-wise triplet loss and the softmax loss to train

the model. In this configuration, we also trained a model on

the dataset MS-Celeb-1M to see how the different scales of

datasets will affect the model.

The networks of the different configurations are the same

except the different loss function used in the model.

6.2. Evaluation protocol and details

For both evaluation and training procedure, the faces

have been detected by the method described in [31], in

which a cascade multi-task CNNs framework has been em-

ployed to detect and align the faces in the images. The de-

tected face images are aligned to the 180x180 pixels images

and used for training the deep CNNs networks. Before in-

putting the detected face images into the networks, the pro-

cessing of the data augmentation has been applied to the

detected face images:

• Data filtering Since the noise in the dataset is prone to

degrade the performance of model, it is crucial to filter

the data before feeding it to the model for the training.

In particularly, the samples in the dataset MS-Celeb-

1M are collected automatically by the search engine

without any manual checking, thus the data filtering for

the MS-Celeb-1M is essential for the training. In this

work, the data filtering is based on the L2 distances be-

tween the image features and their corresponding cen-

ters. The p% percents image samples corresponding

to the extreme large distance will be filtered out from

the training dataset. In this work, the 5% samples with

the largest distance will be filtered for both datasets

MS-Celeb-1M and CASIA-WebFace. Note that a pre-
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liminary trained model is provided for producing the

deep features of the images.

• Random crop In random crop processing, a specific

size of patch has been cropped randomly from the orig-

inal image aiming to augment the variety of the train-

ing samples. In this work, the 160x160 pixels image

patch has been randomly cropped from the 180x180

pixels detected face image.

• Random left-to-right flip. In random left-to-right flip

processing, the image patch has been randomly (i.e.

with 1/2 chance) flipped horizontally from left. This

can make the model more robust for the flipping im-

ages.

After the preprocessings for the data augmentation, the im-

age patches are fed to the model for training. Since the last

layer of the network is the softmax layer, the high-level fea-

tures learned from the deep networks have been extracted

from the second last full connection (FC) layer, i.e. the bot-

tleneck layer. Then the learned features follow a L2 nor-

malization to make ‖·‖ = 1, which maps the learned fea-

tures into the embedding space for the later face verifica-

tion or recognition tasks. For face verification, the distance

between the two embeddings has been compared. If the dis-

tance is larger than a known threshold we classify the two

face images as a negative pair which means the identities

of the two face images are different and vice versa. The

threshold is searched during the evaluation by the 10-folds

cross validation in this work.

The SGD and the mini-batches of 90 samples with stan-

dard back propagation [15] are used to train the deep CNNs

in this work. The momentum coefficient is set to 0.99 [11].

The learning rate is started from 0.1, and divided by 10 at

the 60K, 80K iterations respectively. The model is regular-

ized by using the dropout with the probability of 0.8 and

the weight decay of 5e-5. The weights of the filters in the

CNNs were initialized by Xavier [5]. Biases were initial-

ized to zero. The weight of the class-wise triplet loss α is

set to 1e-4, the margin β is set to 10, and the weight of the

inter-class distance θ in the class-wise triplet loss function

is set to 0.5.

6.3. Results

Table 2 shows the evaluation results on datasets LFW

and YTF. This evaluation aims to verify the effectiveness of

the proposed class-wise loss and also to compare with the

state-of-the-art performance.

Firstly, the results shown in the Table 2 prove the effec-

tiveness of our proposed class-wise loss function. Either on

LFW or YTF dataset, the performances of the configuration

A are inferior to the configuration B. It means the class-

wise loss function essentially works. Secondly, it shows

Method Images Nets LFW YTF.

Fisher Faces [17] - - 93.10 83.8
DeepFace [26] 4M 3 97.35 91.4
DeepID-2,3 [20, 22] - 200 99.47 93.2
FaceNet [16] 200M 1 99.63 95.1
VGGFace [18] 2.6M 1 98.95 91.6
Centerloss [27] 0.7M 1 99.28 94.9
A(softmax) 0.46M 1 96.00 89.20

B(softmax+centerloss) 0.46M 1 98.40 93.10

C(softmax+Lc) 0.46M 1 98.89 94.80

C*(softmax+Lc) 1.1M 1 99.40 95.00

Table 2: Evaluation results on the LFW and YTF datasets.

C* is the model of configuration C trained on the dataset

MS-Celeb-1M.

that even the model trained on a relative small dataset, it

can obtain a comparable state-of-art result, and when we en-

large the scale of the training dataset, the model can achieve

the state-of-art performance. Although the class-wise loss

function only evaluated for the face verification, it can be

also applied for the face recognition. Moreover, it can be

seen that enlarging the scale of the training dataset can help

to improve the performance.

7. Conclusion

In this work we have proposed a simple class-wise triplet

loss function aiming to decrease the distances between the

anchors and the intra-classes centers and enlarge the dis-

tances of the anchors to the inter-class centers. By using

the centers to instead of the individual samples as the pos-

itives and negatives, the number of the possible triplets to

be learned can be largely decreased which can effectively

simplify the training process. However the simplification

of the classic triplet loss hasn’t degraded the performance

of the proposed approach. Thanks to the optimization of

the intra/inter-class distance simultaneously, the class-wise

triplet loss can better separate the classes to make the fea-

tures more discriminative in compare with the state-of-art

center loss function. The preliminary experiment on the

MNIST and the evaluations on the widely used benchmarks

LFW and YTF prove the effectiveness of the proposed loss

function. Indeed, the center loss can be treated as a special

case of the class-wise triplet loss based on the intra/inter-

class metric learning, which has been proved in the formu-

lations of the class-wise triplet loss. In this work, the eval-

uation of the model only employed for the face verification

task, while the model can be also used for the face recogni-

tion task or even more general classification problems.
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