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Abstract

Smile detection is an interesting topic in computer vision

and has received increasing attention in recent years. How-

ever, the challenge caused by age variations has not been

sufficiently focused on before. In this paper, we first highlight

the impact of the discrepancy between infants and adults in

a quantitative way on a newly collected database. We then

formulate this issue as an unsupervised domain adaptation

problem and present the solution of deep transfer learning,

which applies the state of the art transfer learning meth-

ods, namely Deep Adaptation Networks (DAN) and Joint

Adaptation Network (JAN), to two baseline deep models, i.e.

AlexNet and ResNet. Thanks to DAN and JAN, the knowl-

edge learned by deep models from adults can be transferred

to infants, where very limited labeled data are available for

training. Cross-dataset experiments are conducted and the

results evidently demonstrate the effectiveness of the pro-

posed approach to smile detection across such an age gap.

1. Introduction

Smile Detection has attracted extensive interests within

the community in recent years due to its considerable appli-

cations such as smiling payment, entertainment, and mental

status examination. However, variations in pose, illumina-

tion, and occlusion impose great difficulties to this task, mak-

ing it more challenging in the real world. Early methods with

hand-crafted features have shown promising performance

on some small databases [10, 25, 28]. But those low level

and mid level features cannot well capture Smile-related in-

formation implied in facial images, evidenced by significant

drops in accuracy when test sets are largely expended with

disturbance factors included. Recently, along with the reju-

venation of deep neural networks, the baselines of computer

vision tasks, particularly face analysis, are greatly increased,

and the robustness to lighting and viewpoint changes is sub-

∗indicates the corresponding author

Figure 1. Examples of smile faces (top two rows) and non-smile

faces (bottom two rows) on the Baby and Child Smile (BCS)

dataset.

stantially improved, for example, [7, 22] on this issue.

Despite of the progress achieved, there still exists a tough

problem, namely age variations, which explicitly degrades

the performance but has not been sufficiently studied before.

To be specific, we find that the models trained on the current

benchmarks do not perform well on faces of babies and

young children1 (as Figure 1 depicts). The reasons lie in two-

fold: (1) facial configuration of infants is different from that

of adults due to immaturity of skull growth; and (2) sample

distribution in public datasets is uneven, where images of

kids are much less than the ones of adults. The latter has

always been concealed in the previous papers by the average

accuracy scores reported, since the number of such little

guys for test is also quite small. This phenomenon tends

to be more serious in deep learning based approaches, as

these end-to-end solutions are data driven and require a big

amount of diverse samples in model building or fine-tuning.

1We use infant, kid, and child interchangeably in this study as the same

concept.
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While, it is indeed important to solve such a problem in

smile detection, because it impedes further popularization of

this technique in practical scenarios. For instance, the smile

shutter in digital cameras is more useful to parents of infants

for capturing decent photos, because young children are less

tractable and display expressions more arbitrarily. Another

example also appears in automatic monitoring systems for

autism diagnosis, where smile detection contributes much

and is required to apply to small kids in a non-intrusive way

for auxiliary prediction.

Unfortunately, it is not easy to deal with such an age gap

in smile detection. As we mention, the existent models can-

not directly generalize for the structural difference between

faces of infants and adults. Furthermore, compared with the

labeled images of adults in the training set, the ones of babies

and children are rather limited, and this disparity induces

imbalanced results, especially for deep models. One may

suggest to collect additional data from Internet, but images

of infants are not as extensive as expected, in particular when

other facial attributes are considered, e.g., gender and race.

Additionally, manually labeling those data greatly consumes

manpower. Both make it unrealistic.

Considering the similarity between infant and adult faces,

there is a strong incentive for leveraging transfer models to

learn transferable features from off-the-shelf labeled data in

a different but related source domain (i.e., adult samples).

This is a typical domain adaptation problem, which aims to

establish knowledge transfer from the labeled source domain

to the unlabeled target domain by exploring domain-invariant

structures that bridge different domains of substantial dis-

tribution discrepancy [21], e.g., the shift in datasets for an

identical task as the case discussed in this study. On the

other side, recent studies have illustrated that deep neural

networks can learn more transferable features for domain

adaptation [17, 20, 19, 33], which produce breakthrough

results in image classification on standard benchmarks. It

ultimately suggests the way to solve this problem.

Therefore, in this paper, we propose a novel and effec-

tive approach to smile detection on facial images of small

kids with limited training data. Specifically, to quantitatively

analyze the impact of this age gap, we first collect a spe-

cial sample set, namely Baby and Child Smile (BCS), to

test current models, and in contrast to available databases

where images of young children are few, BCS contains 1,245

images, all of which are for kids. More importantly, the sam-

ples are balanced smile/non-smile and ethnicity (Caucasian,

Asian, and Africa-American). The evaluation confirms that

the age gap between infants and adults greatly challenges

smile detection systems. We then formulate such an issue

as an unsupervised domain adaptation problem, where the

present dataset of full but uneven age groups is as the source

domain and the newly built BCS of pure children as the target

one. We introduce the state of the art deep transfer learning

methods, namely Deep Adaptation Networks (DAN) [17]

and Joint Adaptation Network (JAN) [19], applied to two

baseline deep models, i.e., AlexNet and ResNet. In the DAN

architecture, hidden representations of all task-specific layers

are embedded in a reproducing kernel Hilbert space where

the mean embeddings of different domain distributions can

be explicitly matched while the shift in marginal distribu-

tions is corrected across domains under the assumption that

conditional distributions remain unchanged after marginal

distribution adaptation. To make it more generalized, JAN

aligns the shift in joint distributions of input features and

output labels in multiple domain-specific layers across do-

mains. They are both able to transfer the knowledge learned

from adults by deep models to infants. Comprehensive Ex-

periments are carried out in the cross-dataset scenario, and

thanks to the advantage of deep transfer learning models,

significant performance gains are reached compared to the

state of the arts when detecting smiles on faces of babies and

young children. It clearly indicates the competency of the

proposed approach.

The contributions of this paper are summarized as fol-

lows: (1) to the best of our knowledge, it is the first time

that aging is pointed out as a challenging factor to smile

detection, supported by quantitative measurements; and (2)

this problem is addressed in the viewpoint of transfer learn-

ing, and DAN and JAN based deep learning solutions are

presented and competitive results are delivered.

The remainder of the paper is organized as follows. Sec-

tion 2 briefly reviews the related work of smile detection

and transfer learning. Section 3 describes the details of the

proposed method, including the baseline deep networks as

well as the deep transfer models. Experimental results are

shown and analyzed in Section 4. Section 5 concludes the

paper with perspectives.

2. Related Work

Our study involves in smile detection and transfer learn-

ing, and this section gives a brief review of related work in

the two aspects.

2.1. Smile Detection

Early smile detection methods typically work in two steps:

i.e., hand-crafted feature extraction from face images and

binary classifier design. Shan [25] used intensity differ-

ences between pixels in gray-scale face images as features

and adopted AdaBoost for classification, and this method

achieved 89.70% on the GENKI-4K database (1,000 images

for test). Jain and Crowley [13] exploited Multi-scale Gaus-

sian Derivatives (MGD) to extract facial features, and after

combined with PCA based dimensionality reduction, they

were fed into the SVM classifier for prediction, reporting

the accuracy of 92.97% on the same database. Cui et al. [3]

employed HOG features combined with RBF kernel based
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SVM, and reached an accuracy of 93.25% on GENKI-4K.

Smolka and Nurzynska [28] proposed Power LBP, a variant

of the traditional LBP operator and applied the SVM clas-

sifier, which displayed the accuracy of 90.75% on the All

database (712 images). Gao et al. [10] claimed that HOG31

with the cell-based feature map (m ×m × 31) is the most

optimized HOG feature, which led to the improved perfor-

mance at 94.06% on GENKI-4K. They further jointly used a

set of features (HOG31, GSS, and Raw Pixels) and multiple

classifiers (AdaBoost and Linear ELM) and obtained state

of the art performance of 94.61%.

Motivated by outstanding performance of Convolutional

Neural Networks (CNNs) in a variety of computer vision

tasks, several deep model based smile detection approaches

have been proposed in recent years. They applied end-to-end

deep CNN methods, which built high-level hierarchical fea-

tures from raw data, and made estimation through a soft-max

classifier. Zhang et al. [34] presented a 6-layer deep network

and achieved a 94.6% classification accuracy on GENKI-

4K. Glauner [11] extracted CNN features both from the

entire face and the mouth region and integrated them, which

displayed the accuracy of 99.45% on the DISFA database

with dynamic sequences shot in a lab-controlled environ-

ment. Current state of the art approaches of smile detection

mostly depend on the multi-task deep learning architecture

which jointly dealt with multiple facial attribute classifica-

tion with a single deep network. Zhang et al. [35] leveraged

the VGG based multi-task deep network and adopted general-

to-specific fine-tuning to both enhance the performance in

gender classification and smile detection, which achieved the

accuracy of 89.34% for the latter issue on the Faces of the

World (FotW) [6] validation set (3,072 images). Ranjan et

al. [23] introduced a method which established the multi-task

learning framework based on AlexNet to simultaneously per-

form classification on seven facial attributes, and for smile

detection they reported a state of the art performance up to

90.83% on the validation set of FotW.

Even if considerable performance gain has proved the

effectiveness of those methods, they principally assume that

the training and test sets are i.i.d., especially for the deep

models that are required to be trained on a large amount of

data. But this is not true in the given topic, since the learned

smile features are probably different across individual age

groups (e.g. infants vs. adults) where upper lip thickness

decreases at rest and upper incisors are more exposed on

smiling as the person become aged [4].

2.2. Transfer Learning

Transfer learning techniques aim to build models to

jointly learn adaptive classifiers and transferable features

from labeled data in the source domain and unlabeled data

in the target domain. The early attempts were made on

hand-crafted features [18, 26, 27]. In [18], Maximum Mean

Discrepancy (MMD) was projected into the PCA subspace

to represent domain discrepancy features. Si et al. [27] pro-

posed to minimize the Bregman divergence between the

distribution of source and target domains in the selected

PCA, LDA, and LPP subspaces.

Regarding deep features, although they are expected to be

more generalized due to its training on large-scale data, it has

been point out that such hierarchical features can only reduce

but do not remove dataset bias [31]. In fact, dataset shift

is a major bottleneck to the transferability of deep features.

Recent research [5, 9, 17, 20, 30] has extended CNNs to do-

main adaptation. For example, DAN [17] matched the shift

in marginal distributions across domains by adding multiple

adaptation layers through which the mean embeddings of

distributions are matched, assuming conditional distributions

remain unchanged. Ganin and Lempitsky [9] added a domain

classifier connected to the feature extractor via a gradient

reversal layer to align the distributions of features across

the two domains. Despite significant improved performance,

these methods are under the assumption that learned domain-

invariant feature representations can be directly transferred

from the source classifier to the target domain.

While this assumption does not hold when the source and

target classifiers cannot be shared. More recently, the JAN

network has been proposed to align the joint distributions

of multiple domain-specific layers across domains based

on a Joint Maximum Mean Discrepancy (JMMD) criterion

without any assumption on the marginal distributions, which

captures full interactions between different variables in the

joint distributions, and can thus work in more general cases.

Transfer learning methods have been successfully applied

to a number of face analysis tasks, such as face verifica-

tion [1], expression recognition [2], pain intensity predic-

tion [8], and age estimation [29]. In this paper, we investigate

them in facial smile detection across the age gap between

infants and adults.

3. Methods

Recall that we formulate smile detection across age as a

transfer learning problem, and propose deep transfer learning

solutions. In the subsequent, we introduce the framework

of deep convolutional networks as well as the DAN- and

JAN-based deep transfer learning methods.

3.1. Deep Convolutional Network

Given a labeled domain Ds, we denote the set of param-

eters, weights Wℓ and bias bℓ at the ℓth layer of CNN as

Θ = {Wℓ, bℓ}lℓ=1, and the empirical risk is defined as

min
Θ

1

ns

ns
∑

i=1

J(θ(xsi ), ysi ) (1)
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where J(·, ·) is the cross-entropy loss function, and θ (xsi )

is the conditional probability that the CNN assigns label ys
i

to xs
i .

We select two CNN models, a basic one (AlexNet) [15]

and an advanced one (ResNet) [12] as the baseline methods,

since they are widely used in related work. To keep the

integrity, we will first introduce the two deep models.

AlexNet consists of five convolutional layers (conv1-

conv5), and three fully-connected layers (fc6-fc8). The

output of the last fc layer is linked to a softmax layer which

produces a distribution over the number of classes. Response-

normalization layers follow the first and second convolu-

tional layers. Max-pooling layers follow both response-

normalization layers as well as the fifth convolutional layer.

The ReLU non-linearity is applied to the output of every

convolutional and fully-connected layer. This is the first

model which makes breakthrough on the ImageNet dataset,

by applying the techniques such as data augmentation and

dropout. AlexNet illustrates the benefits of CNNs, it is still

widely used for its clear and simple architecture, especially

in multi-task learning [23] and transfer learning [17, 19, 20].

ResNet is a “ultra-deep” layer network architecture that

sets latest records in classification, detection, and localiza-

tion. Residual learning is formulated as input x plus its

going through a residual function F(x) to form the result

H(x) = x + F(x), which benefits back propagation. Dif-

ferent from traditional CNN models, where the higher layer

gradient must pass through the weight layer to reach the

lower layer, during back propagation in ResNet, the gradient

of higher layer can directly pass to the lower one which re-

duces the risk of vanishing gradient or exploding gradient.

In our study, a 50-layer ResNet is considered as it is efficient

in training. After 50 convolutional layers, the last layer is a

fully-connected layer.

3.2. Deep Transfer Learning

Recent studies on transferring features in deep convolu-

tional networks reveal that the transferability decreases and

eventually changes from general to specific by the last layer

of the network while convolutional layers can learn generic

features that are transferable across domains [33], and when

the cross-domain discrepancy increases, the transferability

of features and classifiers both degrades. Meanwhile, the

quantification study on deep transfer learning also suggests

that the features can reduce the cross-domain distribution

discrepancy, but cannot eliminate it [17, 19, 20, 33]. While

the deep features at higher layers L are task-specific, the

discrepancy between the training and test domain lingers in

the activations Z1,..., Z|L| (|L| is the number of task-specific

layers). For example, in the case of AlexNet, the activations

in the higher fully-connected layers L = {fc6, fc7, fc8}
are not safely transferable in a new domain. Usually, fine-

tuning is required by the trained deep models for domain

Figure 2. The DAN architecture for learning transferable features on

AlexNet. Deep features eventually transit from general to specific

along the network, and in AlexNet the domain-specific layers are

L = {fc6, fc7, fc8} and |L| = 3, which are not transferable and

should be adapted with MMD.

adaptation. However, target monitoring with limited data

tends to make the fine-tuning work fail, and even if suffi-

cient data are available, manual annotation on them is still

annoying. An alternative is to apply unsupervised learning

to unlabeled target data, making it fit for the paradigm of

transfer learning. Therefore, it is necessary to develop trans-

fer learning methods for deep learning models to solve this

problem.

In unsupervised domain adaptation, given a source do-

main Ds = {(xsi , ys
i )}

ns

i=1 with ns labeled samples and a

target domain Dt = {xtj}
nt

j=1 with nt unlabeled samples,

we apply transfer learning methods to bridge the two do-

mains and generate labels in the target domain. The source

domain and target domain are sampled from different prob-

ability distributions P and Q respectively, where their joint

distributions are P (Xs,Ys) and Q(Xt,Yt) and P 6= Q.

In our case, Ds is a labeled training set of current public

databases with an uneven image distribution in age (sam-

ple of infants are very limited), and Dt is an unlabeled test

set (i.e. BCS) only with images of kids. During domain

adaptation, unsupervised deep neural network y = θ(x) is

designed to reduce the bias between different age groups and

learn transferable features and classifiers, where the target

risk Rt(θ) = E(x,y)∼Q[θ(x) 6= y] by jointly optimizing the

source risk and domain discrepancy.

The main idea of domain adaptation is to decrease the

domain discrepancy by finding an abstract feature repre-

sentation through which the source and target domains are

similar. In the case of deep transfer learning, it is central to

minimize the CNN error defined in (1) on the source labeled

data and the distinguishable feature representation of higher

domain-specific layers L in the source and target domains

jointly.

In this study, we consider two representative deep transfer

learning techniques, i.e., Deep Adaptation Networks (DAN)

and Joint Adaptation Network (JAN), where the latter is the

extension of the former.

In DAN [17], Maximum Mean Discrepancy (MMD) is
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used to measure the difference between the source and target

domain. MMD is designed based on the idea that all sam-

ples in the same generating distribution are identical, i.e.,

P (Xs) = Q(Xt). The definition of MMD is the distance

between embeddings of distributions in Reproducing Kernel

Hilbert Spaces (RKHS) H, and that between probability dis-

tributions P and Q respectively corresponding to source and

target domain is:

dH(P,Q) , sup
θ∈H

(

EXs [θ(Xs)]− EXt [θ(Xt)]
)

. (2)

The most important property is that P = Q if and only if

dH(P,Q) = 0 [24]. The characteristic kernel associated

with the feature map φ, k(xs, xt) = 〈φ(xs), φ(xt)〉. So the

square distance between the empirical kernel mean embed-

dings d2H(P,Q) as metrics to compare the discrepancy in

each domain-specific layer,

d2H(P,Q) =
1

n2
s

ns
∑

i=1

ns
∑

j=1

k(xs
i , xsj)

+
1

n2
t

nt
∑

i=1

nt
∑

j=1

k(xti, xtj)

−
2

nsnt

ns
∑

i=1

nt
∑

j=1

k(xs
i , xtj).

(3)

Therefore, we can compute the MMD-based multi-layer

adaptation regularizer by integrating the MMD estimator (3)

to the CNN error (1) as follows:

min
Θ

1

ns

ns
∑

i=1

J(θ(xsi ), ysi )) + λ
∑

ℓ∈L

d2H(Dℓ
s,D

ℓ
t), (4)

where λ is a positive penalty parameter. Dℓ
∗ is the ℓth layer

hidden representation for the source or target samples, and

d2H(Dℓ
s,D

ℓ
t) is the MMD between the source and target do-

main evaluated on the representation at the ℓth layer (ℓ ∈ L,

and L is the task-specific layers which cannot be safely

transferred). We illustrate the DAN optimization framework

based on AlexNet in Figure 2, where L = {fc6, fc7, fc8}.

DAN learns transferable features from the source domain to

the related target domain by measuring MMD (3) at each

layer ℓ.

Training a deep CNN model requires a large amount of

labeled data, but (3) generates a complexity of O(n2), which

makes its application impossible. Moreover, mini-batch

Stochastic Gradient Descent (SGD) is difficult to realize due

to the summation over pairwise similarities between data

points, which is important to the training effectiveness. To

solve this problem, DAN [17] exploits the unbiased esti-

mate of MMD which is computed with linear complexity

according to d̂2H(p, q) = 2
ns

∑ns/2
i=1 gH(zi), where gH(zi) ,

Figure 3. The JAN architecture for learning transferable features on

AlexNet. Deep features eventually transit from general to specific

along the network, and activations in multiple domain-specific

layers L are not safely transferable. The joint distributions of the

activations P (Zs1, ...,Zs|L|) and Q(Zt1, ...,Zt|L|) in these layers

should be adapted by JMMD minimization. Here, in AlexNet,

L = {fc6, fc7, fc8} and |L| = 3.

k(xs2i−1, xs2i)+k(xt2i−1, xt2i)−k(xs
2i−1, xt

2i)−k(xs2i, xt2i−1)
as in [17]. It allows the computation of an expectation of in-

dependent variables as in (3) with cost O(n), making MMD

implementation in CNNs possible.

It should be noted that DAN is under a hypothesis that

feature layers and classifier layer are independent representa-

tions, and features can thus be directly transferred from the

source classifier to the target one. However, this assumption

may not hold. In this case, JAN is proposed to align the

joint distributions of multiple domain-specific layers across

domains using JMMD.

Different from MMD used in DAN which applies only

uniform weights and does not take the influence of other

variables in other layers into consideration, JMMD adopts

non-uniform weight activations Z|ℓ| at each layer ℓ ∈ L. It

thus emphasizes full interactions between different variables

in joint distributions P (Zs1, ...,Zs|L|) and Q(Zt1, ...,Zt|L|).

Similar to MMD, JMMD is to measure the difference

of Hilbert-Schmidt norm between kernel mean embed-

ding of empirical joint distributions P (Zs1, . . . ,Zs|L|) and

Q(Zt1, . . . ,Zt|L|) in the Hilbert space

d2L(P,Q) , ‖CZs,1:|L|(P )− CZt,1:|L|(Q)‖
2
⊗|L|

ℓ=1
Hℓ , (5)

where CZs,1:|L|(P ) , EZ1:|L| [⊗
|L|
ℓ=1θ(Z

sℓ)] is the joint distri-

bution of P of variables Zs1, . . . ,Zs|L| embedded in space
⊗|L|

ℓ=1H
ℓ. In unsupervised deep learning, we have activa-

tions at the layers L as {(zs1i , . . . , z
s|L|
i )}ns

i=1 from ns labeled

samples in source domain Ds and {(zt1j , . . . , z
t|L|
j )}nt

j=1

from nt unlabeled samples in target domain Dt. The square

distance of JMMD between the empirical kernel mean em-
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beddings is formulated as

d2L(P,Q) =
1

n2
s

ns
∑

i=1

ns
∑

j=1

∏

ℓ∈L

kℓ(zsℓi , zsℓj )

+
1

n2
t

nt
∑

i=1

nt
∑

j=1

∏

ℓ∈L

kℓ(ztℓi , ztℓj )

−
2

nsnt

ns
∑

i=1

nt
∑

j=1

∏

ℓ∈L

kℓ(zsℓi , ztℓj ).

(6)

By explicitly minimizing JMMD, the discrepancy between

the source and target domain can be decreased to enable

domain adaptation.

In JAN, our main objective is to reduce the dis-

crepancy in the joint distributions of the activations of

higher domain-specific layers L, i.e., P (Zs1, ...,Zs|L|) and

Q(Zt1, ...,Zt|L|) where the features are not safely transfer-

able. The joint distributions is matched with the deep net-

work model by adding the JMMD regularizer (6) into the

risk of the deep model (1),

min
Θ

1

ns

ns
∑

i=1

J(θ(xsi ), ysi ) + λd2L(P,Q), (7)

where λ is a positive tradeoff parameter of the JMMD

penalty. As in DAN, for the JAN model we set domain spe-

cific L in AlexNet at the last three layers {fc6, fc7, fc8},

as shown in Figure 3, which are not safely transferable and

should be jointly adapted by minimizing the CNN error

and JMMD. However, limited by its quadratic complexity,

JMMD (6) is impossible to be used in the mini-batch SGD

algorithm. Just like the unbiased estimate of MMD [24],

we apply a similar linear-time estimate of JMMD in practice

for a linear measurement by sampling the same number of

source and target points to eliminate the bias caused by the

domain size. For ResNet, we do it in the same way as on

AlexNet, but apply DAN and JAN to the last two layers, i.e.,

the 5th pooling layer and the fully-connected layer.

4. Experiments

To validate the proposed approach, we conduct experi-

ments on the popular public benchmarks as well as our newly

collected BCS dataset. The data, protocols, and results are

presented subsequently.

4.1. Databases

Two public databases, i.e. CelebFaces Attributes [16]

(CelebA) and FotW, are adopted in our experiments. CelebA

is a large-scale face database, which contains 202,599 images

of 10,177 identities. Each image in CelebA is annotated with

40 facial attributes, and one of them is Smile/Non-Smile.

Most of images in CelebA are clear and frontal faces of

celebrated people. Due to its large amount of data, it is

usually used to pre-train deep models for face analysis tasks.

FotW is a recent standard benchmark for evaluating smile

detection systems, which comes from the 2016 ChaLearn

Looking at People and Faces of the World Challenge and

Workshop. There are in total 17,517 images, where 6,171

are for training, 3,086 for validation, and 8,260 for test. The

samples are of various ages, races, poses, backgrounds, and

image qualities, which are closer to the ones captured in

the real world case. Although FotW is more balanced than

the other datasets, it still suffers from the uneven sample

distribution in age. Specifically, according to our statistics,

the ratio of images of infants and children who are younger

than 5 years old is only around 3.8%.

Race Smile Non-Smile All

Caucasian 222 227 449

African-American 152 160 312

Asian 247 227 484

All 621 624 1245

Table 1. Data distribution in the newly collected BCS dataset.

To demonstrate the problem that smile detection perfor-

mance is largely affected by the age gap between infants and

adults. We build a new database, namely Baby and Child

Smile (BCS). It has 1,245 images, all of which belong to

the children under 5 years. They are first roughly collected

from Internet and then carefully screened out to achieve the

balance in ethnicity and ratio of positive/negative (see Table

1 for more details). Meanwhile, the images also include vari-

ability in illumination, pose, accessory, etc. We manually

annotate the images with either “Smile” or “Non-Smile”.

For pre-processing, we use Seetaface [32] to localize and

crop faces. Figure 1 shows some examples.

4.2. Setup

We carry out three experiments as: Exp.1 to analyze the

impact of age gap; Exp.2 to tune configuration in DAN;

and Exp.3 to highlight the effectiveness of deep transfer

learning methods. All the experiments are conducted in a

cross-dataset manner, where the models are trained using

the public benchmarks and tested on the entire BCS dataset.

Meanwhile, we display the results on the validation partition

of FotW in Exp.1 for contrast. In addition, besides average

accuracy, we also report the score of recall on smile samples,

for more comprehensive analysis.

In experiments, we use the similar fine-tuning pipeline as

in [35], where we adopt CNNs (AlexNet and ResNet) pre-

trained by the large scale ImageNet for image classification.

Then we fine-tune the models for the specific task smile of

detection on the CelebA training set and the FotW training
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set. All the CNN models are implemented using the Caffe

deep learning toolbox [14]. The momentum is set at 0.9, the

weight decay is set at 0.0005, and the base learning rate is

between 102 and 105 with a multiplicative step-size equal to

101/2.

In DAN and JAN, we set lr multi at 0.1 on all the convo-

lutional layers while we set it at 0.2 on fc6 (AlexNet) and

0.5 on the last fully connected layers. We set the batch size

at 64 and the total iterations at 200,000 in all the steps.

4.3. Results

Exp.1: Discrepancy Analysis. We evaluate the impact of

the discrepancy between infants and adults on performance.

The results are summarized in Table 2. It can be seen in this

table, when fine-tuned using the data in the FotW training set,

both AlexNet and ResNet achieve more than 85% accuracy

and around 80% recall, and the scores of ResNet are slightly

superior to the ones of AlexNet. Such accuracies are very

close to the state of the art accuracy of 90.83% reported

in [23] through a multi-task deep model. It indicates the

effectiveness of the two baseline models.

However, when directly applying the baseline models to

BCS which only contains samples of infants and children,

the accuracy scores of AlexNet and ResNet are reduced to

59.12% and 69.00% respectively, both of which suffer a

drop of more about 20% to 30%. Regarding recall, the case

is even worse, with a dramatical fall of 30 to 50 points. It

illustrates that the age difference between the two test sets

is challenging to current deep model based methods. On

the other hand, the very deep ResNet performs better than

the basic AlexNet, which validates that deeper models not

only boost the performance of specific tasks but also learn

more transferable representations for domain adaptation. It

confirms that the deep model can only reduce, but cannot

remove the discrepancy of different datasets [33].

Method Accuracy (%) Recall (%)

on FotW Validation

AlexNet 86.51 77.08

ResNet 87.03 79.32

on BCS

AlexNet 59.12 25.60

ResNet 69.00 45.89

Table 2. Result comparison in terms of accuracy and recall on the

FotW and BCS datasets.

Exp.2: Configuration Tuning in DAN. [17] states that

DAN based deep domain adaptation with multi-layers is su-

perior to that with only one hidden layer fc6, since different

layers in deep networks extract features at different levels.

We test it on AlexNet, and the results are displayed in Table

Method Accuracy Recall

DAN AlexNet(fc6+fc7) 73.57% 63.12%

DAN AlexNet(fc6+fc8) 72.20% 61.03%

DAN AlexNet(fc6+fc7+fc8) 77.03% 63.77%

Table 3. Comparison of different configurations in DAN based on

AlexNet.

Method Accuracy (%) Recall (%)

AlexNet [15] 59.12 25.60

DAN AlexNet 77.03 63.77

JAN AlexNet 83.85 74.23

ResNet [12] 69.00 45.89

DAN ResNet 80.16 69.89

JAN ResNet 85.06 78.10

Table 4. Comparison of results with and without deep transfer

learning on the BCS database.

3. We can see that the adaptation with fc7 and fc8 outper-

forms that with either single layer, fc7 or fc8, in terms of

accuracy and recall, which confirms this claim. Therefore,

in Exp.3, we use DAN with multi-layers, i.e. fc6, fc7 and

fc8 on AlexNet as well as pool5 and fc on ResNet.

Exp.3: Contribution Assessment of Deep Transfer Learn-

ing. The results with and without transfer learning are

demonstrated in Table 4. We can see that both the accura-

cies of AlexNet and ResNet are largely improved by transfer

learning methods. Specifically, for AlexNet, DAN and JAN

increase the baseline score (59.12%) to 77.03% and 83.85%,

and for ResNet, they increase the baseline result (69.00%) to

80.16% and 85.06%. More importantly, the recall scores of

smile samples are sharply promoted either by DAN or JAN.

Figure 4 depicts some examples whose labels are corrected

by transfer learning.

When we compare the results of AlexNet and ResNet,

similar conclusions can be made as those in Table 2. Re-

garding the comparison between DAN and JAN, JAN always

reaches better results than DAN does. Although they both

adapt multiple domain-specific layers, DAN is based on an

assumption that the feature and classifier layers are inde-

pendent. DAN uses MMD as penalty, and the shift in the

marginal distribution at each layer is reduced independently,

while JAN adopts the JMMD penalty to reduce the shift in

the joint distributions of multiple task-specific layers, re-

flecting the relationship between input features and output

labels.

The results prove the effectiveness of deep transfer learn-

ing in solving the problem of discrepancy between infants

and adults in smile detection. The difference between labeled

source data and unlabeled target data is bridged, where very
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Figure 4. Some samples whose labels are corrected by transfer

learning on the BCS database, where the first two rows show smile

samples and the last two rows show non-smile ones.

limited labeled data are available for training. In practice,

deep transfer learning methods can augment the expansibil-

ity of a trained model in a new dataset without the burden of

heavy manual annotation work.

5. Conclusion

This paper discusses the issue of smile detection across

the difference between infants and adults. We address it

in the viewpoint of domain adaptation and propose a novel

approach which integrates state of the art transfer learning

techniques, i.e. DAN and JAN, and popular deep models.

The proposed approach learns the knowledge from adults and

successfully adapts it to infants, with very limited labeled

data for training. Experimental results achieved in a cross-

dataset scenario illustrate its effectiveness in smile detection

in the presence of such an age gap.
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