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Abstract

We demonstrate that the problem of fitting a plane of mir-

ror symmetry to data in any Euclidian space can be reduced

to the problem of registering two datasets. The exactness

of the resulting solution depends entirely on the registra-

tion accuracy. This new Mirror Symmetry via Registration

(MSR) framework involves (1) data reflection with respect

to an arbitrary plane, (2) registration of original and re-

flected datasets, and (3) calculation of the eigenvector of

eigenvalue -1 for the transformation matrix representing

the reflection and registration mappings. To support MSR,

we also introduce a novel 2D registration method based

on random sample consensus of an ensemble of normal-

ized cross-correlation matches. With this as its registra-

tion back-end, MSR achieves state-of-the-art performance

for symmetry line detection in two independent 2D testing

databases. We further demonstrate the generality of MSR

by testing it on a database of 3D shapes with an itera-

tive closest point registration back-end. We finally explore

its applicability to examining symmetry in natural systems

by assessing the degree of symmetry present in myelinated

axon reconstructions from a larval zebrafish. Using the

MSR-computed plane of symmetry, we introduce techniques

for the optimal symmetric pairwise assignment between

axon reconstructions and provide visualizations illustrat-

ing how neighborhood relationships between nearby axon

pairs compare with the relationships between their mirror-

reflected counterparts along the anteroposterior axis.

1. Introduction

Symmetry is frequently found in nature and man-made

designs, and the human visual system exploits this fact to

facilitate object recognition [38]. Similarly, computational

tools can take advantage of symmetry for simplified data

representation, since it implies a great degree of informa-

tion redundancy [11]. Therefore, symmetry detection has

great potential utility in practical computer vision applica-

tions including object recognition and image compression.

In natural images, any present symmetric objects are

often surrounded by clutter or partially occluded. This

makes symmetry detection challenging, forcing methods

to be robust to outliers. Perhaps as a consequence, the

symmetry detection approaches that currently perform best

([22], [7]) are partially or entirely based on sampling or

voting schemes. However, despite increased resiliency

through such schemes, the current state-of-the-art methods

still leave substantial room for improvement.

In this work, we show that the problem of finding mirror

symmetry—also known as reflection symmetry or bilateral

symmetry—in R
n can be reduced to a registration problem

using a new method that we refer to as Mirror Symmetry

via Registration (MSR). This is accomplished by comput-

ing the eigenvector of eigenvalue −1 for a transformation

matrix computed from reflection and registration mappings.

We provide straightforward theoretical deductions to sup-

port this claim and demonstrate its utility through examples.

To enhance symmetry detection with MSR, we also

present a registration algorithm of the random sample con-

sensus (RANSAC) class for two-dimensional (2D) images.

This algorithm infers optimal parameters from a collection

of patch-to-image registrations computed via Normalized

Cross-Correlation (NCC) [16]. By combining these ap-

proaches, we achieve state-of-the-art performance for 2D

symmetry line and segment detection on two independent

testing databases: the CVPR 2013 Symmetry Detection

from Real World Images competition [19] and the NYU

Symmetry database [7].

To highlight the MSR procedure’s generality, we also ap-

plied it to symmetric three-dimensional (3D) objects from

the McGill 3D Shape Benchmark [34]. These tests achieved

86% accuracy when using an Iterative Closest Point (ICP)

algorithm for the underlying registration [6, 4].

Finally, we recognize that symmetry detection algo-

rithms can be helpful for analyzing natural systems. To-

ward this goal, we apply MSR to start examining questions
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in the field of neuroscience that are concerned with the de-

gree of symmetry in neuronal morphology and patterning.

We develop techniques to optimally assign pairs of sym-

metric axons (represented as 3D curves), and to visualize

local symmetries and relationships between pairs of axons

in slices perpendicular to the symmetry plane.

The approach we present here exposes symmetry de-

tection to a new line of attack and introduces registration-

technique developers to a new type of data on which to test

novel methods. The paper is organized as follows: Sec-

tion 2 reviews existing literature to put MSR in perspec-

tive. Section 3 contains mathematical preliminaries and a

description of MSR. Section 4 details quantitative experi-

ments on 2D and 3D testing databases. Section 5 analyzes

mirror symmetry between pairs of curves in 3D. Finally,

section 6 discusses MSR advantages, limitations, and pos-

sible future directions.

2. Previous Work

Listed here is a review of some relevant previous work,

though necessarily incomplete due to space restrictions. For

a more comprehensive review, we refer the reader to [21].

2.1. Mirror Symmetry Detection on 2D Data

1993. [23]: The image is reflected w.r.t. quantized candi-

date lines, and the correlation between the resulting images

and the original image is calculated. 2007. [20]: Develop

a symmetry-based method to identify dihedral and frieze

symmetry as well as asymmetric sub-patterns to generate

a fold-then-cut plan that can be used to recreate the in-

put papercut pattern and synthesize new papercut patterns.

2006. [22]: Scale-invariant feature transform (SIFT) fea-

tures were grouped into “symmetric constellations” by a

voting scheme. Dominant symmetries present in the image

emerged as local maxima. [9]: Proposes an artificial neu-

ral network that extracts axes of symmetry from visual pat-

terns. 2012. [15]: Generalized mirror symmetry detection

to a curved transflection (glide reflection) symmetry detec-

tion problem. Estimated symmetry via a set of contiguous

local straight reflection axes. 2013. [14]: Developed a 3-

step algorithm, wherein (1) SIFT correlation measures are

computed along discrete directions, (2) symmetrical regions

are identified from matches in the directions characterized

by maximum correlations, and then steps (1) and (2) are

repeated at different scales. [31]: Created a 2-step algo-

rithm, wherein candidates for mirror-symmetric patches are

identified using a Hough-like voting scheme and then vali-

dated using a principled statistical procedure inspired from

a contrario theory. [24]: Introduced a combinatorial gestalt

algebra technique to be used on top of SIFT descriptors.

[19]: Evaluated the performance of various symmetry de-

tection methods on a common database, with [22] emerging

as overall winner. 2014. [8]: Described a pairwise voting-

scheme based on tangents computed via wavelet filtering.

[5]: Presented an adaptive feature point detection algorithm

to overcome susceptibility to clutter in feature-based meth-

ods. 2015. [39]: Exhibited use of traditional edge detec-

tors and a voting process, respectively, before and after a

novel edge description and matching step based on locally

affine-invariant features. 2016. [7]: Introduced a pairwise

convolutional approach to mirror symmetry detection simi-

lar to [8]. The method outperformed [22] by a small margin

and its authors released a new database, which we use here

for testing. [10]: Exploited ambiguities and challenges in

symmetry detection to propose a method for producing re-

CAPTCHA solutions based on symmetry.

2.2. Mirror Symmetry Detection on 3D Data

1992. [25] Shows that for a body which exhibits planar

symmetry its plane of symmetry is perpendicular to a prin-

cipal axis and contains the object’s center of mass. 1997.

[37]: Converted the symmetry detection problem to the cor-

relation of the Gaussian image. 2002. [3]: Presented an

approach similar to MSR in the reflection and registration

steps. However, the symmetry plane was fit on the set of

midpoints, not obtained as the eigenvalue solution. Math-

ematical proofs for the results were not provided and tests

were only conducted in 3D for symmetry in human faces.

2006. [32]: Described a planar reflective symmetry trans-

form that captures a continuous measure of a shape’s de-

gree of mirror symmetry with respect to all possible planes.

[30]: Presented a more robust Gaussian image-based ap-

proach. [35]: Uses [25] to “solve for the current plane of

maximum symmetry in a closed form manner by consider-

ing the center of mass [...] and weighted covariance matrix

[...] relative to the weights”. 2007. [26]: Present a sym-

metrization algorithm for geometric objects, whereby op-

timal displacement vectors are used to drive a constrained

deformation model that pulls the shape towards symmetry.

2011. [40]: Introduced a 2-step method, wherein landmark-

related region detection is followed by a learning stage that

computes a symmetry plane from the landmarks based on

training input consisting of standard symmetry planes iden-

tified by medical experts. [29]: Reviewed [3] and ICP vari-

ations. 2013. [27]: Discussed applications in computer

graphics and geometry that can utilize symmetry informa-

tion for more effective processing. [13]: Described bilateral

symmetry plane estimation for 3D shapes that is carried out

in the spherical harmonic domain. 2014. [36]: Presented an

algorithm that generates a set of candidate symmetries by

matching local maxima of a surface function based on heat

diffusion in local domains, with a global optimum obtained

by a voting scheme. 2015. [41]: Developed a skeleton-

intrinsic symmetrization method for recovering the aesthet-

ics of mirror symmetry from asymmetric shapes while pre-

serving their general pose. This was accomplished by mea-
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Figure 1. 3D Teapot Point Clouds: Symmetry plane detection in 3D using MSR. (a) The original data (red) is reflected (green) with

respect to an arbitrary plane. (b) Registration between original and reflected point clouds using an Iterative Closest Point (ICP) algorithm.

(c) Visualization of every midpoint (black) between a point in the original set and the corresponding point in the reflected set. (d) Computing

the symmetry plane in this case involves either fitting a plane to the midpoints in (c) or analytically solving an eigenvalue problem on a

function of the transformation matrices corresponding to the reflection and ICP registration mappings. 2D Baloon Images: Symmetry line

and segment detection in 2D using MSR. (e) Input. (f) Mirror reflection of the original image with respect to a vertical line through the

center of the image. (g) Registration of (b) with respect to (a). (h) The symmetry line computed by the proposed algorithm (MSR) is shown

in yellow. (i) The symmetry segment can be computed from (d) via a post-processing phase, as in [7].

suring intrinsic distances over a curve skeleton backbone

for symmetry analysis, symmetrizing about the skeleton,

and propagating the symmetrization from skeleton to shape.

[2]: Propose a scale invariant structure feature which de-

scribes points on extremum curvature along edges for de-

tecting visually salient, structure based symmetry patterns.

2016. [17]: Achieved symmetry plane detection by gener-

ating a candidate plane based on a matching pair of sample

views and then verifying whether the number of remaining

matching pairs fell within a preset minimum number.

3. Method

Definition 1 (of Mirror Symmetry). A set of points P ⊂ R
n

is said to present mirror, reflection, or bilateral symmetry if

there exists a hyperplane H ⊂ R
n of dimension n− 1 such

that the mirror reflection of P with respect to H produces a

set of points Q such that P = Q.

Definition 2 (of Mirror Reflection). Let H ⊂ R
n be a (n−

1)-dimensional hyperplane, v a unit vector perpendicular

to H , and p a fixed point in H , so that H = {q ∈ R
n :

〈q − p, v〉 = 0}. The mirror reflection of a set of points P

with respect to H is the set {q − 2〈q − p, v〉v : q ∈ P}.

Notice that mirror symmetry is a property of a set of

points present (as in “the set is mirror symmetric”), whereas

mirror reflection is a mathematical transform (e.g. “we took

the mirror symmetric of the set with respect to an arbitrary

plane”).

The mirror reflection of a point x with respect to a plane

through the origin and with normal vector v is given by x 7→

Svx, where Sv = I − 2vv⊤, where I is the identity matrix.

The reflection with respect to a plane through an arbitrary

point p and with normal vector v is given by:

x 7→ Sp,v(x) = Svx+ 2dv , (1)

where d = 〈p, v〉 is the “signed” distance between the plane

and the origin. For simplicity of notation, we will hence-

forth denote Sp,v(x) as Sp,vx.

The symmetry plane in R
n can be computed in 3 steps,

as illustrated in Figure 1:

1. Reflect original data with respect to an arbitrary plane.

2. Register original and reflected sets.

3. Infer optimal symmetry plane from the parameters of

the reflection and registration mappings.

Remarks:

• Depending on the registration algorithm used, it can

help to start in MSR step 1 with an arbitrary plane

that is near—or a good guess for—the actual symme-

try plane. We employ this strategy for the application

described in Section 5. Alternatively, several runs with

different initial planes can be attempted and the one for

which the registration algorithm returns the most con-

fident result chosen. We use this second strategy for

the 3D experiments in Section 4. On 2D experiments,

the initial reflection is with respect to the vertical line

passing through the center of the image.
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• All steps in the MSR framework are exact (when fac-

toring out numerical errors) except for registration. If

the data is not perfectly mirror symmetric, then the

registration will not be precise. The MSR approach

reduces mirror symmetry detection to a registration

problem, with the caveat that its robustness depends

entirely on the robustness of the underlying registra-

tion method.

• MSR step 3 can be performed in one of two ways:

either by fitting a plane through the midpoints of all

corresponding original-transformed point pairs, or by

solving an eigenvalue problem related to the global (re-

flection and rigid) transformation that was applied to

the original data during registration. We adopt the lat-

ter approach here.

We now mathematically demonstrate why the MSR ap-

proach works for detecting mirror symmetry.

Let P = {p1, ..., pN} be a point cloud and Q =
{q1, ..., qN} the reflection of P given by Sp,v , that is, qi =
Sp,vpi ∀i.

Proposition 1. Let mi = 1

2
(pi + qi), so that M =

{m1, ...,mN} is the set of midpoints between correspond-

ing points in P and Q. Then the set M is contained in the

plane with normal vector v passing through dv.

Proof. For x ∈ P , the reflection by Sp,v is Svx+ 2dv, so

〈
1

2
(x+ Svx+ 2dv)− dv, v〉 = (2)

〈
1

2
x, v〉+ 〈

1

2
Svx, v〉+ 〈dv, v〉 − 〈dv, v〉. (3)

But Sv is symmetric, so 〈Svx, v〉 = 〈x, Svv〉. Further,

Svv = −v because Sv is the reflection with respect to

the plane through the origin with normal vector v, so

〈x, Svv〉 = −〈x, v〉. Therefore, (3) is equal to 0.

Let now R be the rigid transformation defined by

R(x) = R0x + t, where R0 is a rotation matrix and t a

translation vector. If we reflect a point x ∈ P by Sp,v and

then transform it through R, the result is R0(Svx+2dv)+t.

Proposition 2. Let T = SvR
⊤

0
and w equal the unit eigen-

vector of T corresponding to the eigenvalue −1. That is,

Tw = −w. We will show in Proposition 3 that such a w ex-

ists. Let r = 1

2
(R0(2dv) + t), with d as previously defined.

Then the midpoints 1

2
(x + R0(Svx + 2dv) + t) lie in the

plane with normal vector w passing through r.

Proof.

〈
1

2
(x+R0(Svx+ 2dv) + t)− r, w〉 = (4)

〈
1

2
(x+R0(Svx+ 2dv) + t)−

1

2
(R0(2dv) + t), w〉 = (5)

1

2
〈x+R0(Svx), w〉 = (6)

1

2
(〈x,w〉+ 〈R0Svx,w〉) = (7)

1

2
(〈x,w〉+ 〈x, SvR

⊤

0
w〉) = (8)

1

2
(〈x,w〉+ 〈x,−w〉) = (9)

0. (10)

Proposition 3. If S is a reflection and R is a rotation, then

SR is a reflection. As a consequence, SR necessarily has

−1 as an eigenvalue.

Proof. Since S and R are orthogonal, so is SR (this fol-

lows immediately from the definition of orthogonality and

the fact that (SR)⊤ = R⊤S⊤). Further, since the determi-

nant of the product equals the product of the determinants,

the determinant of SR is −1. Considering the reflection

SR, let H be the reflection hyperplane with normal vector

v. In this case, SRv = −v, so v is the eigenvector of SR

corresponding to the eigenvalue −1.

3.1. Symmetry Detection Pipeline

Given these results, the precise MSR pipeline for finding

the mirror symmetry plane for a set of points P is:

1. Choose an initial reflection plane, given by a point p

and a perpendicular vector v. For example, p can be

the average (center of mass) of the points in P and v

set as the vector (1, 0, ..., 0).

2. Reflect all the points x ∈ P :

d = 〈p, v〉 , (11)

x 7→ Sp,vx = Svx+ 2dv , (12)

to obtain a new set of points Q.

3. Register Q to P through a rigid transformation, ob-

taining a rotation matrix R0 and a translation vector

t. That is, the registration transformation is given by

x 7→ R0x+ t.

4. Compute the eigenvector v̄ of the matrix SvR
⊤

0
corre-

sponding to the eigenvalue −1, where v̄ is the vector

perpendicular to the symmetry plane.
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5. Completely define the symmetry plane by computing

a point p̄ through which it passes:

p̄ =
1

2
(R0(2dv) + t) . (13)

3.2. Consensus of Patch­to­Image Registrations

We initially tested MSR with a number of off-the-shelf

registration algorithms in our 2D experiments: ICP on edge

maps, intensity-based on images or edge maps, and speeded

up robust feature (SURF)-based on images or edge maps.

However, none of these options produced results with com-

parable precision/recall numbers obtained using the previ-

ous state-of-the-art symmetry detection algorithms.

Therefore, we designed a new registration method based

on a consensus over an ensemble of patch-to-image regis-

tration outputs (i.e., a RANSAC approach). First, we as-

sume that the transformation is rigid (rotation and/or trans-

lation), which is sufficient for MSR. Then, for every angle

α = 0, 360

N
, 2 360

N
, ..., (N − 1) 360

N
, we sample hundreds of

square patches from the moving image and register each

with respect to the target image using NCC [16], selecting

only those registrations for which the maximum in corre-

lation space is above an empirically chosen threshold ( 1
4

).

For this process, we found that N = 60 typically provides

good results. Finally, we look for the K best local maxima

in the space of registration parameters found via NCC. For

precision/recall evaluations, we chose K = 10.

This NCC-based registration approach performed bet-

ter in the MSR framework than the others we tested. In a

one-shot1 symmetry line detection experiment on the NYU

Symmetry database (176 images), our NCC-based registra-

tion achieved 95% accuracy, while other methods accom-

plished accuracies near 73% (Figure 3 (a)).

4. Quantitative Experiments

4.1. Accuracy Metric

For 2D cases, we examined MSR accuracy using estab-

lished metrics. When detecting symmetry segments, the

metric described in [19] was used. When detecting sym-

metry lines, an extension of the metric for segments [7]

was used. In brief, the correctness criteria for segments was

based on both angle and center proximity between the pre-

diction result and the ground truth. The correctness criteria

for lines was similar, except that center proximity was re-

placed with the distance between the center of the ground

truth and the prediction line because the prediction line

has no defined center. For thorough evaluation across ap-

proaches, precision/recall curves were generated as in [7]

for each method from up to the top ten results.

1Only the first guess for symmetry line was used for evaluation.

For 3D cases, we evaluated MSR accuracy by visual in-

spection of projections of the data along three mutually per-

pendicular directions, one of which was orthogonal to the

estimated symmetry plane.

4.2. Results

Figure 2. Images: Sample of MSR results for 2D images from the

NYU Symmetry database. Point Clouds: Sample of MSR results

for 3D shapes from the McGill 3D Shape Benchmark [34]. The

columns show mutually perpendicular views. The left-most view

is orthogonal to the MSR-computed symmetry plane.

2D. The previous state-of-the-art for single-symmetry line

or segment detection in 2D was a pairwise convolutional

method [7], referred to here as Convolutional Approach to

Reflection Symmetry (CARS). Released with its descrip-

tion was the database used for testing (the NYU Symmetry

database), with which we tested the MSR approach. How-

ever, given that CARS does not appear to be peer-reviewed

yet, we additionally conducted testing with the CVPR 2013

database, for which Loy’s method [22] reported best results.

In accordance with the registration method compari-

son depicted in Figure 3 (a), we adopted the NCC-based

registration described in Subsection 3.2 to compute preci-

sion/recall curves for evaluation. Though the MSR method

outputs only lines for 2D cases, not segments (limited sub-

sets of lines), the latter is required for proper comparison

with CARS. For this reason, we post-processed the symme-

try line resulting from MSR into segments using a previ-

ously reported algorithm [7]. Evaluation results are shown

in Figure 3 (b,c) and are accompanied by examples of sym-

metry line detection outputs in Figure 2.

For 2D symmetry detection, our MSR approach outper-

forms the previous state-of-the-art peer-reviewed method

[22] for single-symmetry segment detection on the CVPR

2013 database, while reaching similar performance as

CARS (pre-print [7]). Additionally, MSR outperforms

CARS for single-symmetry line detection on this database.

Note that line detection results for [22] were not reported

and are therefore not available for comparison. MSR also
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(a) (b) (c)

Figure 3. (Left) Accuracy of one-shot symmetry line detection achieved by combining the MSR approach described in Section 3 with

various registration algorithms. Intensity- and SURF-based registrations were performed on the gradients of the images rather than images

themselves, as we could not detect a significant difference between the two. ICP was applied on top of Ultrametric Contour Maps [1].

NCC indicates results from using the NCC-based registration described in Subsection 3.2. For this experiment, the NCC-based registration

was applied on image gradients for 40 × 40 patches with a maximum side length of 200. (Middle, Right) Single-symmetry detection on

the CVPR 2013 and NYU Symmetry databases. Loy refers to [22], which performed best in the CVPR 2013 competition. CARS refers to

[7], which yielded the previous state-of-the-art. The method we describe here is referred to as MSR (Mirror Symmetry via Registration).

Comparison with all existing algorithms would be impractical, so we are comparing only with the state-of-the-art on each dataset.

outperforms CARS on both segment and line detection on

the NYU Symmetry database.

3D. To the best of our knowledge, there are no general-

purpose databases or accuracy metrics for 3D mirror sym-

metry detection tests. We thus created a testing database

consisting of hand-picked 203 symmetric 3D shapes from

the McGill 3D Shape Benchmark [34]. The included shapes

consist of surface points corresponding to objects such as

cups, airplanes, and insects. Because each shape was rep-

resented by a set of points, we chose the ICP algorithm

[6, 4] as the registration back-end for all 3D testing. We

should point out that due to the lack of a common dataset

for comparison, we decided not to test all possible regis-

tration methods as back-end to MSR. ICP has some well

known shortcomings (e.g. sensitivity to local minima and

initialization), but we adopted it because it was the most

conveniently available in Matlab.

We ran the MSR method three times per object, each

with a different initial reflection hyperplane. These hyper-

planes were always selected as passing through the object’s

center of mass and with perpendicular vectors given by the

canonical basis (1, 0, 0), (0, 1, 0), (0, 0, 1). As the final so-

lution, we chose the result whose registration confidence

was highest.

By visual inspection of projections along the three mutu-

ally perpendicular vectors, one of which was always orthog-

onal to the symmetry plane, we found that MSR achieved

87% accuracy. (From the set of 203 shapes, symmetry was

correctly detected in 177.) One example is shown in Fig-

ure 2.

5. Symmetry of Curves in 3D

This project was largely driven by a practical applica-

tion in the field of neuroscience. The presence of bilateral

symmetry in the morphologies of neurons is an indicator

that specialized genetic programs, rather than experience

and neuronal activity, may be responsible for the way that

they develop. Previous work in larval zebrafish examined

symmetry in neuronal circuitry locally with the goal of un-

derstanding the role that left-right asymmetries play in later-

alized behaviors (such as an observed bias in turn direction

during swimming) [reviewed in [33]]. We sought to exam-

ine symmetry more globally throughout the entire brain of

a larval zebrafish by analyzing the precise shapes and po-

sitions of myelinated axon projections. We further aimed

to determine whether the spatial relationships between the

projections of neurons on one side are also present for neu-

rons in the contralateral hemisphere. Maintenance of such

relationships at a fine scale would suggest that the develop-

mental programs for each side are hard-coded and should

provide insights into the strategies employed by neurons

to correctly reach their downstream. Thus, we developed

methods to analyze the degree of bilateral symmetry in

myelinated axons projections reconstructed from a whole

larval zebrafish brain [12].

Myelinated axon reconstructions were manually ex-

tracted from serial-section electron micrographs. The re-

sulting data consisted of curves represented as sequences

of points in 3D, which we refer to as skeletons. We first

sought to find the plane of bilateral symmetry given that the

projections appeared nearly mirror symmetric. A visually

acceptable result was obtained by application of the MSR
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approach with the ICP algorithm as the registration back-

end and a manually selected initial reflection plane corre-

sponding to the vector given by the canonical basis (1, 0, 0).
Figure 4 (a) illustrates the myelinated axon reconstruc-

tions and the MSR-computed symmetry plane using ICP as

the registration back-end. Figure 4 (b) shows projections

of the data along three mutually perpendicular directions,

where the side projection is orthogonal to the symmetry

plane.

We next sought to find the optimally symmetric left-right

pairing of skeletons. To do so, we first defined a metric of

similarity between skeletons.

5.1. Similarity Between Curves

A skeleton s is a discrete curve in R
n:

s = {si : i = 1, ..., ns} . (14)

Given two skeletons s and t, their similarity can be com-

puted via Dynamic Time Warping (DTW), a variation of

Dynamic Programming that is widely used for sequence

matching [18].

DTW admits a parameter for the cost of matching a point

in one sequence with a gap in another. We set this gap cost

to 0 (zero), since our data is sampled at a nearly constant

rate and we want to find the optimal subsequence match in

case one sequence is shorter than or offset with respect to

the other. For optimal skeleton pairing after the hyperplane

of symmetry is found, however, we add to the default DTW

cost a penalty proportional to the portions of the two se-

quences that remained unmatched.

Let lms and lmt be the lengths of the matched portions of

the sequences s and t, respectively. Let ls and lt be the total

lengths of s and t. We define penalties for unmatched points

as

cs =
ls

lms
and ct =

lt

lmt
. (15)

Given the default DTW matching cost c0(s, t), between

s and t, the penalized cost c(s, t) is given by

c(s, t) = c0(s, t) · cs · ct . (16)

Notice that the larger the unmatched portions, the larger the

factors cs and ct, and therefore the larger c(s, t).

5.2. Optimal Pairwise Assignment

Given a reference symmetry plane H , a pairwise sym-

metry measure is computed by comparing one skeleton with

the reflection of the other with respect to H (Figure 4).

Given a matrix of pairwise costs C, where C(i, j) =
C(j, i) is the symmetry measure between skeletons of in-

dexes i and j, we apply the Munkres assignment algorithm

[28] (also known as the Hungarian method) to compute the

globally optimal pairwise assignment between skeletons.

5.3. Slice Visualization

Besides analysis on a skeleton level, we studied the

neighbor relationship between pairs of skeletons (in a sub-

set of skeletons) at a z-slice level. We were interested in the

symmetry they display in terms of relative displacements,

as well as in visualizing more closely how the skeletons are

arranged as z varies. Figure 5 shows the output of this anal-

ysis for a particular z-slice.

Figure 5. One frame of a visualization movie for a slice of data –

i.e., a portion of data in a particular z-interval – for a subset of 12

skeletons. Top-left panel: skeleton points (in coordinates related

to the computed symmetry plane) that fall on a given z range have

their x and y coordinates averaged and plotted as circles, where

identical colors correspond to pairings given by the Munkres al-

gorithm. the vertical line is the projection of the found symmetry

plane. Top-right panel: angle- and distance-based relative differ-

ences between pairs of skeletons from “one side” of the symmetry

plane. Second panel from bottom: linearized version of the differ-

ence matrix; every column aggregates the difference matrix of a

particular slice and the horizontal dimension relates to the z coor-

dinate. Bottom panel: “geographical” location of the slice (shown

in green) with respect to the subset of skeletons with the z coordi-

nate is represented horizontally.

First the coordinates of the points are altered so that the

symmetry plane is the plane {x = 0}, as illustrated in Fig-

ure 4 (d). Given z0, z1, and a skeleton S containing points

s = (sx, sy, sz), let Sz0,z1 = {s ∈ S : z0 ≤ sz < z1}.

That is, Sz0,z1 is the subset of points of S such that the

coordinates sz are in the interval [z0, z1). We refer to the

subset of R3 such that z ∈ [z0, z1) as the slice [z0, z1), as in

Figure 4 (d).

For each slice [z0, z1) and skeleton S, we define 〈Sz0,z1〉
as the mean of the elements in Sz0,z1 . This is the repre-

sentative of the skeleton S in slice [z0, z1) and is used for

plotting (top-left panel in Figure 5) and analysis (top-right

panel).

Let now s1, ..., sn be a set of representative points in a
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(a) (b) (c) (d)

Figure 4. (a) Symmetry plane computed using the MSR approach for myelinated axon reconstructions (blue) obtained from a larval

zebrafish using serial-section electron microscopy. (b) Projections of myelinated axon reconstructions along three mutually perpendicular

directions. The side projection is orthogonal to the MSR-computed symmetry plane. (c) Pairwise skeleton symmetry. Skeleton 2 is

reflected with respect to the symmetry plane and the result matched to skeleton 1 via DTW. The DTW matching cost is the measure of

symmetry between the two skeletons. (d) For within-slice pairwise symmetry analysis, point coordinates were altered so that the symmetry

plane is the plane {x = 0}. A slice [z0, z1) is the subset of R3 such that z ∈ [z0, z1).

fixed slice for skeletons S1, ..., Sn and t1, ..., tn the repre-

sentative points (for the same slice) of the respective skele-

tons T1, ..., Tn that were paired to S1, ..., Sn by the Munkres

algorithm.

We visualized the local (at the slice level) symmetry be-

tween the sets si and ti (for i = 1, ..., n) by plotting them

across different slices. Furthermore, we devised a measure

of relative displacements between the two sets as follows.

Let {tsi} be the reflections of {ti} with respect to the

computed plane of symmetry. Given two indexes i and j,

the angle difference between pairs si, sj and tsi , t
s
j is defined

as

ai,j =
1

2

(

1−
〈sj − si, t

s
j − tsi 〉

‖sj − si‖‖tsj − tsi‖

)

, (17)

and the distance difference as

di,j =
|‖sj − si‖ − ‖tsj − tsi‖|

M
, (18)

where M is the maximum of |‖sj − si‖− ‖tsj − tsi‖| across

all pairs i, j and stacks. Notice that ai,j and di,j vary from 0
(no difference) to 1 (maximum difference) and that if points

si and sj are perfectly symmetric with respect to points ti
and tj , then ai,j = 0 and di,j = 0.

A difference matrix D can then be defined for each slice

by setting D(i, j) = ai,j if j > i and D(i, j) = dj,i if j <

i. An example is shown at the top-right panel of Figure 5.

Notice that the angle difference for the blue and orange pairs

is high because the angle between the left blue-orange line

(connecting the blue and orange points on the left) and the

reflected right blue-orange line is large.

The difference matrices can be vectorized (linearized)

and plotted vertically for every slice in order to highlight

slices for which the representative points most deviate from

a symmetric displacement. This is shown in the panel la-

beled “aggregate difference” in Figure 5.

6. Conclusion

In this paper, we introduced Mirror Symmetry via Reg-

istration (MSR), a new framework for mirror symmetry de-

tection that is based on registration and invariant to dimen-

sion. For all but the registration phase, this approach is

mathematically exact. That is, mirror symmetry detection

in R
n is as good as the best available registration method.

In addition, we described a new 2D image registration al-

gorithm based on RANSAC over a set of patch-to-image

registrations.

To illustrate MSR performance, we provided experimen-

tal results from testing on 2D and 3D databases. To show

the utility of MSR in analyses of natural systems, we de-

scribed its application to 3D symmetry detection in the

myelinated axons of a larval zebrafish. We further analyzed

symmetry in zebrafish axons by introducing techniques for

the optimal symmetric pairwise assignment between axons,

and to visualize how the relationship between pairs of ax-

ons and their symmetrics varies across the anteroposterior

axis. For more details on our biological findings, we refer

the reader to [12].

One limitation of MSR is that it does not output the in-

tersection of the computed symmetry hyperplane with the

symmetric object. In 2D, for example, it only outputs the

symmetry line, not the symmetry segment.

Potential improvements to MSR include its extension to

enable detection of multiple symmetry axes and, on the the-

oretical side, a metric for quantifying plane similarity in R
n

for n > 2 should be developed to better measure accuracy.
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