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Abstract

Extracting skeletons from natural images is a challeng-

ing problem, due to complex backgrounds in the scene and

various scales of objects. To address this problem, we pro-

pose a two-stream fully convolutional neural network which

uses the original image and its corresponding semantic seg-

mentation probability map as inputs and predicts the skele-

ton map using merged multi-scale features. We find that the

semantic segmentation probability map is complementary

to the corresponding color image and can boost the perfor-

mance of our baseline model which trained only on color

images. We conduct experiments on SK-LARGE dataset

and the F-measure of our method on validation set is 0.738

which outperforms current state-of-the-art significantly and

demonstrates the effectiveness of our proposed approach.

1. Introduction

Skeleton is an important cue to describe the shape of ob-

jects and has been studied and applied to many fields in

computer vision, such as object detection [8, 2], pose es-

timation [21], text recognition [27] and action recognition

[5] etc. since 1970s [15].

The early methods proposed to extract skeleton are gen-

erally applied to binary images and are used to recognize

and retrieve shapes [22]. However, those methods have dif-

ficulty extracting skeletons from natural images unless fore-

ground masks or contour are well-segmented. Compared to

binary images, natural images are more challenging to ex-

tract skeleton due to following reasons: 1) The background

in natural images can be very complex. Except for some

elements in the background that are very similar to objects,

the non-uniform illumination, shadow, occlusion, and noise

in images will also make the method fail. 2) The appearance

of objects varies in colors, textures. 3) The sizes of objects

are diversified. Objects may have different sizes in different

parts, which determines the variance of skeleton scales.
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Some methods have been proposed to extract skeletons

in natural images. [10, 12, 25, 23] use low-level fea-

tures such as gradient intensity map, super-pixels and hand-

designed features etc. to extract skeletons. Those methods

achieve good performance in the simple scene but often fail

to handle complex images.

With the development of deep learning, Convolutional

Neural Networks (CNNs) have been successfully applied to

various vision tasks, such as image classification[24], se-

mantic segmentation[4], edge / contour detection[18, 26,

14], etc.. Recently, some CNN-based methods for skeleton-

extraction are also proposed to enjoy the benefit of strong

discriminatory power[20, 19, 11, 9]. In [20, 19], Shen et

al. propose a fully convolutional networks based on HED

[26] and formulate the skeleton extraction as an image-to-

image translation. To cope with the scale variance problem,

this paper designs scale-associated ground-truth to train the

proposed model. In [11], Ke et al. propose a model which

learns the error between side outputs and groundtruth to

ease the problem of fitting complex outputs.

In this paper, we also build a fully convolutional network

to extract skeletons based on several existing models. To

handle the scale diversity problem, we follow the network

architecture of U-Net [16] and FPN [13] which use a top

down network to merge features from top stage to bottom

stage, layer by layer. The merged features contain multi-

scale information and are robust to scale variation of ob-

jects. To simplify the complex groundtruth fitting problem,

we train a model which learns to combine image and seg-

mentation cues for skeleton extraction. We use the Deeplab

model[4] to obtain the corresponding segmentation proba-

bility map of an image, and then pass the original image

and the segmentation probability map to our two-stream

network in parallel to predict skeleton. The experimen-

tal results show that the semantic segmentation probability

maps are complementary to the corresponding color images

and can boost the performance of our baseline model which

trained only on original color images.

The contributions of this paper are as follows:

1) We use multi-scale fusion features which can adap-

tively the skeleton of objects with sizes from small to large.
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2) We build a two-stream network that can take seman-

tic segmentation probability maps to provide complemen-

tary information to the original color images for skeleton

extraction.

3) We achieve state-of-the-art performance on the eval-

uation benchmark. The F-measure of our method on SK-

LARGE is 0.738 which outperforms the alternatives signif-

icantly.

2. Our Approach

In this section, we give a detailed description of our ap-

proach, including our base network, the two-stream net-

work, which is very important to capture complementary

information for skeleton localization, and learning strate-

gies.

2.1. Base Network

Network architectures are of great importance in the

design of deep CNNs. Recently, VGG16 network[24], a

very deep convolutional neural network (DCNN), has been

widely used and proved to be effective in a variety of vision

tasks. The original VGG16 network is composed of 13 con-

volutional layers and 3 fully connected layers. The convo-

lutional part can be divided into 5 stages, and each stage is

ended with a 2-stride down sampling layer. Previous litera-

tures also demonstrate that fine-tuning deep neural networks

pre-trained on large scale image classification dataset can

achieve better performance compared with training from

scratch. We therefore build our skeleton extraction network

upon VGG-16 and make the following modifications:

• All fully connected layers are removed to fit the fully

convolutional design.

• Following Deeplab[4], we discard the last two down-

sampling layers so that the feature maps in the last conv

stage have larger spatial resolution and are therefore

better for precise skeleton localization. The conv5 lay-

ers are also replaced with dilated convolution layers to

compensate the loss of receptive fields caused by the

above modification.

• We extend the fully convolutional network to an

encoder-decoder model inspired by U-Net[16] and

FPN[13]. The existing 5-stage convolutional network

serves as an encoder, where image features with differ-

ent scales and levels are extracted in different stages.

The decoder is used to recover the spatial resolution

and more importantly, to merge the multi-scale fea-

tures of different stages from coarse to fine. To be con-

crete, in each stage, we fuse the decoder feature from

the coarser stage (if available) and the encoder feature

from the current stage (i.e. the output of the last convo-

lution layer) by concatenation, and the result is made
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Figure 1. Architecture of the two-stream network. We input RGB

images and segmentation probability maps to predict skeletons.

as the decoder feature in current stage. As the decoder

goes deeper, the combined features become richer.

Similar to HED[26], side-output is introduced to predict

skeleton maps from each stage of the decoder. These side-

outputs are weighed linearly to generate a fusion output. All

side-outputs and fusion output are supervised to train the

model holistically. The resulting encoder-decoder network

is set as the baseline of our work, and further used to build

the two-stream network, as shown in Figure 1 and described

in the next subsection.

2.2. Two-stream Network

Theoretically, segmentation results can serve as a power-

ful cue for skeleton extraction. Early works[3, 1] in skele-

tonization have tried to compute medial axes from binary

images, where foreground masks are off-the-shelf. To ex-

tract skeletons from color images, these methods rely on a

image segmentation step as pre-processing. Due to the sen-

sitivity of skeleton to object boundary and region connectiv-

ity, the segmentation mask need to be of high quality. Oth-

erwise, errors caused in the segmentation stage will dam-

age the skeleton detection results. However, we believe that

even not good enough segmentation results can still be help-

ful if used in a proper way. On one hand, as the original im-

age contains complete information for skeleton extraction,

errors in segmentation can be compensated in a way, if the

two kinds of data are combined. On the other hand, the seg-

mentation result suppresses most of background clutter and

texture inside objects, which make it easier to handle com-

plex scene in an image. We therefore develop a two-stream
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network that takes both a natural image and the correspond-

ing segmentation prediction as input, and that is capable of

learning complementary information in an end-to-end man-

ner.

As shown in Figure 1, we duplicate our base network

described in Sec.2.1 to a unified one with two parallel

branches. The two branches have independent parameters

since they are designated to learn from features with differ-

ent semantic levels. We refer to the one with image input

as im branch and the other seg branch. The segmentation

prediction is a one-channel probability map produced by

the Deeplab[4] model fine-tuned for foreground (two class)

segmentation. To fit the existing base network and share the

same initial weights as the im branch, the probability map is

rescaled to a [0, 255] range and converted to a 3-channel im-

age. The two types of input data go through respective path

and produce side-outputs of either branch. Side-outputs of

each branch are fused in the same way as HED[26] (not

shown in Figure 1 for cleanness). The fused outputs are

called imfuse and segfuse. In order that the two branches

can be complementary and jointly trainable, we propose to

further weigh all side-outputs and produce a finalfuse out-

put. With deep supervision on the finalfuse map, the fu-

sion weight is learned automatically and gradients can be

propagated back to each conv stage in either branch during

training.

2.3. Learning

As the foreground object segmentation results are

needed by the parallel network, we should build a binary

segmentation model first. We choose the Deeplab model[4]

for its good performance. Since we only need to seg-

ment some specific kinds of foreground objects and treat

them equally, we modify the original Deeplab model to per-

form 2-class segmentation and fine-tune it on our dataset.

Though the skeleton dataset doesn’t provide object segmen-

tation annotations, we can recover the foreground masks

with the annotated medial points and radii of the corre-

sponding maximal disks according to the MAT invertibil-

ity property[3]. The generated ground truth masks are then

used to train the segmentation model.

Once the fine-tuning procedure is finished, we pass all

training and testing images to the trained model to obtain

segmentation predictions. The predictions are added to the

original skeleton detection data set. We denote the ex-

tended training set by {(X(n), Y (n), S(n)), n = 1, ..., N}

where Xn = {x
(n)
j , j = 1, ..., |X(n)|} is a raw input im-

age, and Yn = {y
(n)
j , j = 1, ..., |Y (n)|}(y

(n)
j ∈ {0, 1})

and Sn = {x
(n)
j , j = 1, ..., |S(n)|} are its correspond-

ing binary groundtruth skeleton map and foreground ob-

ject probability map. For notation simplicity, we drop the

superscript in later descriptions. Supposing each branch

in the parallel network has M side-outputs (fusion outputs

not included), fusion of the side-outputs in either branch is

computed. To connect the two branches, we additionally

stack the 2M side-outputs and compute the finalfuse out-

put by linear weighing. See HED[26] for the detailed com-

putation of fusion output. For each side-output or fusion

output, class-balanced cross-entropy loss is computed, like

HED[26],

L(W) =− β
∑

j∈Y+

logP (yj=1|X,S;W)

− (1−β)
∑

j∈Y
−

logP (yj=0|X,S;W),
(1)

where W represent all learnable parameters. The multi-

plier β = |Y+|/|Y | is used to handle the imbalance of num-

bers of positive / negative samples. Y+ and Y− denote the

skeleton and background sets of the ground-truth Y , respec-

tively. In the training process, sum of all loss functions is

minimized to obtain the optimal parameters, including the

fusion weights. In the testing phase, given an input image X
and the corresponding segmentation probability map S, the

skeleton prediction map is the activation of the final fusion

output

Ŷ (final) = {Pr(yj = 1|X,S;W∗), j = 1, ..., |X̂|}, (2)

where W
∗ is the set of learned parameters in the network.

3. Experiments

In this section we discuss the implementation details and

evaluate our approach on the SK-LARGE dataset.

3.1. Implementation Details

Our implementation can be divided into 3 parts. First,

we fine-tune object segmentation model[4] pre-trained on

PASCAL VOC 2012[7]. Next, we train our base network

on RGB images. Finally, the two-stream network is fine-

tuned from an initialization with learned weights of the base

network.

a) Data preprocessing. To generate more training

data, strong data augmentation is employed in this work.

Like [19], we rotate training image to 4 degrees (0◦

,90◦,180◦,270◦), and flip each one with different axes (hor-

izontal, vertical, no flip), then resize images to different res-

olution (0.8, 1.0, 1.2). In order to train the object segmenta-

tion model, foreground object mask for each training image

is also extracted, by simply filling the maximal disks cen-

tered at each skeleton point, as the radius annotations are

provided.

b) Object segmentation. We use the best model among

Deeplab-v2 [4] variants and finetune it with the training im-

ages and generated groundtruth masks. We keep the same
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baseline imfuse segfuse final

val 0.717 0.721 0.699 0.738

test∗ 0.704 0.713 0.692 0.731

MIL[25] HED[26] FSDS[20] LMSDS[19]

test∗ 0.293 0.497 0.633 0.649
Table 1. The results of our method and the alternatives. “val”

means the model is evaluated on the validation set which provided

by the ICCV’17 Workshop Symmetry challenges. And “test∗”

means the model is evaluated on the test set which is split by [17].

Groundtruth

LMSDS

Seg Pred

Baseline

Two-stream

Figure 2. Illustration of skeleton extraction results on the

SK-LARGE dataset for several selected images. Results of

LMSDS[17] are directly collected from its paper. Compared with

LMSDS, our method can produce cleaner and smoother results.

Zoom out to see better.

settings as [4] except the following changes:(1) Maximal

number of iterations is set to 2500. (2) CRF is not applied.

(3) The classifier in the network is modified to a binary one.

c) Skeleton extraction. For both the base and the two-

stream network, the hyper parameters (and their values) in-

clude: mini-batch size (1), base learning rate (1e-6), the

learning rate of each side-output layer (1e-7), the learn-

ing rate of each weighed fusion layer (1e-9), loss weight

for each classifier output (1), momentum (0.9), weight de-

cay (2e-4), initialization of side-output filters(0), initializa-

tion of weighted fusion layers (1/n, where n is the number

of input maps to be fused), maximum number of training

epochs (15). For model evaluation, we use the official eval-

uation code and compute F-measure on the non-maximal

suppressed[6] skeleton probability maps.

3.2. Results

We conduct experiments on SK-LARGE and evaluate

our model on two splits. The first one is provided by

ICCV’17 workshop symmetry detection challenges and

named “val”. In order to facilitate the comparison with

other methods, we also evaluate our model on a subset of

SK-LARGE which split by [17]. We refer to this split as

“test∗” . The quantitative results and visualized skeleton

detection results are shown in Table 1 and Figure 2 respec-

tively.

3.2.1 The results of our baseline

The baseline is trained only on natural images. Thanks to

the high resolution of features in conv5 to ensure precise lo-

calization and the fusion of multi-scale features in decoder

to provide richer features, our baseline network achieves

very good performance (F-measure 0.717 on “val” split and

0.704 on “test∗” split) and has a great improvement com-

pared with LMSDS[19] (F-measure 0.649 on “test∗” split)

[17] which shows that our base network is fairly powerful.

3.2.2 The effect of segmentation map

We train our model on both natural images and the cor-

responding segmentation maps using our parallel network.

From the results in Table 1, we can observe that:

1) The features from image branch and segmentation

branch are complementary. By a learnable weighted fusion

of side-outputs on both branches, the performance of the

image branch is improved significantly on both splits.

2) The segmentation branch is positive to the learning of

image branch. With the aid of segmentation map, perfor-

mance of the image branch is better that the baseline.

3) Our model can transform a segmentation probability

map to a precise skeleton map, though the performance of

the segmentation branch is not as good as the image branch.

It is not surprising since the input data is only rough seg-

mentation prediction, of which the quality greatly affect the

skeleton detection result.

4. Conclusion

In this paper, we propose a two-stream fully convolu-

tional network that takes advantage of semantic segmenta-

tion probability map and multi-scale deep features to ad-

dress the challenging problems: complex background and

various size of objects in natural images skeleton extrac-

tion. We train and evaluate our model on SK-LARGE and

achieve impressive result (F-measure: 0.738), and exceed

other state-of-the-arts greatly which proves the effective-

ness of our approach.
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