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Abstract

Low-rank decomposition (LRD) is a state-of-the-art

method for visual data reconstruction and modelling. How-

ever, it is a very challenging problem when the image data

contains significant occlusion, noise, illumination varia-

tion, and misalignment from rotation or viewpoint changes.

We leverage the specific structure of data in order to im-

prove the performance of LRD when the data are not ideal.

To this end, we propose a new framework that embeds

manifold priors into LRD. To implement the framework,

we design an alternating direction method of multipliers

(ADMM) method which efficiently integrates the manifold

constraints during the optimization process. The proposed

approach is successfully used to calculate low-rank models

from face images, hand-written digits and planar surface

images. The results show a consistent increase of perfor-

mance when compared to the state-of-the-art over a wide

range of realistic image misalignments and corruptions.

1. Introduction

With the increasing number of images and videos pro-

duced everyday, it becomes more problematic when exist-

ing algorithms have to deal with realistic data containing

severe occlusion, misalignment, noise, significant illumina-

tion variation, and viewpoint changes [13, 14, 11]. Low-

rank decomposition (LRD) techniques have been an impor-

tant tool in batch data analysis in the past decade, which ef-

fectively converts high dimensional raw data into a compact

and low-dimensional representation. It has been success-

fully used in a variety of applications such as subspace seg-

mentation [22], visual tracking, image clustering [29] and

video background foreground separation [2]. However, this

technique works properly when the data is captured in an

ideal situation or it is manually aligned. The performance

∗Baochang Zhang is the corresponding author.

of the algorithm degrades significantly in case of rotation,

corruption, occlusion and misalignment in the data. In such

situations, low-rank matrices cannot be accurately recov-

ered from the data because geometrical distortions are diffi-

cult to grasp with a linear subspace model.

To make LRD based methods applicable in more real-

istic scenarios, various solutions have been developed. For

instance, a sophisticated measure of image similarity is used

in [23, 12] to address the batch image alignment problem.

Alternatively, Learned-Miller’s congealing algorithm [12]

seeks an alignment that minimizes the sum of entropy of

pixel value at each pixel location in the batch of aligned im-

ages. Instead of using the entropy, the least squares congeal-

ing procedure [8] minimizes the sum of squared distances

between pairs of images, and therefore requires the columns

to be nearly constant. In [6], Vedaldi et al. choose to min-

imize a log-determinant measure that can be viewed as a

smooth surrogate for the rank function. The Robust Princi-

pal Component Analysis (RPCA) algorithm fits a low-rank

model, and uses a fitting function to reduce the influence of

corruptions and occlusions.

Differently, the Robust Alignment by Sparse and Low-

rank Decomposition (RASL) [17] has shown the potential

to solve realistic problems with misalignments and corrup-

tions by using a nuclear-norm minimization based on the

alternating direction method of multipliers (ADMM). The

core idea of the method is to find an optimal set of transfor-

mations such that the matrix of transformed images can be

decomposed as a low-rank matrix of recovered aligned im-

ages and a sparse matrix of errors. The algorithm is subject

to a set of linear equality constraints, which impose a linear

relationship with the input data. However, the fact that in-

put data has generally a nonlinear structure, i.e. distributed

over a manifold, is not fully investigated in the optimization

process.

In this paper, we provide new insights into the nuclear-

norm minimization method, in particular a relevant intuition

that was neglected in previous work. That is, data often
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Table 1. A brief description of variables used in the paper.

Vd: input data matrix (samples in rows) Vr: low-rank matrix calculated from Vd

τ : geometric transformation ∆τ : to calculate new τ

Vm: calculated by ∆τ and Vd V ′m: embedding of Vm

E: the error matrix Sα[x]: soft-thresholding function

lies on specific manifolds [21], especially when the data

comes from a well-defined object from a given set of sam-

ples (e.g. faces, digits, etc.). From the optimization perspec-

tive, assuming that the solution of the optimization prob-

lem is always data related, the constraints derived from the

data structure can make the algorithm immune to the vari-

ations in the testing data [3]. Consequently, it is important

to incorporate the data structure prior in the learning pro-

cedure. In this paper, we show that there is a solution with

high practicability that can include manifold constraints in

ADMM, which is applied to solve the LRD problem. Tech-

nically, we avoid complex nonlinear optimization over the

manifold by recasting the problem as a simpler matrix pro-

jection over the same manifold. Different from other works

[1], the manifold is not given but actually estimated from

the data, leading to a solution complying with the intrinsic

data distribution.

In summary, the contributions of this paper are twofold.

• We propose to incorporate the manifold constraints

in low-rank decomposition methods, achieving much bet-

ter results than the prior art.

• We present a manifold embedding based ADMM

(MeADMM) framework, where the manifold constraint is

translated into a matrix projection operation computed by

a neighbor-preserving embedding process, which greatly

simplifies the optimization.

For clarity, we summarize all the variables in Table 1.

The matrix Vd is the data matrix containing the data sam-

ples at each row. The matrix Vr is the low-rank matrix cal-

culated from Vd. The geometric transformation functions

τ and ∆τ are used to calculate Vm from Vr. Using τ and

∆τ , we register the data in a way that the rank properties

are preserved. Finally, V ′m is a manifold embedding of the

registered input data Vm.

2. Related work

Our work is related to the RASL framework [17] and

manifold methods. Therefore, the literature overview fo-

cuses on RASL methodology as well as relevant manifold

approaches. RASL. The misalignment problem is one of

the most difficult problems in computer vision. By formu-

lating the batch image alignment as searching for a set of

transformations that minimize the rank of the transformed

images, RASL investigates the linearly correlated relation-

ship among the input images, which is shown in Problem 1

(P1):

V̂r, τ̂ = argmin rank(Vr) + λ ∗ ||E||1,

subject to Vd ◦ τ = Vr + E, τ ∈ G
(P1)

As a practical example, each row of Vd can correspond to

an M × N image frame of a video with B frames while

Vr contain a compact low-rank description of the video. In

particular, Vd can be a collection of images with variations

including rotation, illumination changes, occlusion and ge-

ometric transformations given by τ ∈ G where the operator

G is defined as a 3 × 3 matrix [17]. To efficiently solve the

problem, a linearization process is used such that:

Vd ◦ (τ +∆τ) = Vd ◦ τ +

B∑

i

Ji∆τiǫi, (1)

where (τ + ∆τ) gives at each step the new τ during it-

erations while the increment ∆τ is derived as detailed in

[17]. Ji is the Jacobian matrix of the ith image with re-

spect to the transformation parameters and ǫi denotes the

standard bases. The above linearisation process only holds

locally. Therefore, linearisation of current estimates is re-

peated by solving a sequence of convex problems. After

the linearisation, a semi-definite programming problem is

solved in thousands or millions of variables. Thanks to

recent works on high-dimensional nuclear norm minimiza-

tion, such problems are well within the capability of a stan-

dard PC [17].

Manifolds. Manifolds are popular in machine learning,

because they allow to describe the intrinsic distribution of

data in the Euclidean space. Most of the existing works

related to manifolds focus on modeling the nonlinearity of

data. To represent high-dimensional data, manifold learn-

ing [19] projects the original data onto lower dimensions

such that its inherent structure can be preserved. As an-

other application of manifold learning, an embedding of a

sample can be obtained by projecting onto a well-designed

manifold [18]. To exploit the geometry of the marginal dis-

tribution, a semi-supervised framework based on manifold

regularization is used to learn from both labeled and un-

labeled data in the form of a multiple kernel learning. In

[9], by representing the covariance matrix as a point on a

manifold, a new metric is learned for that manifold. Differ-

ently, [1] imposes the manifold constraints in an augmented

Lagrange multipliers (ALM) strategy by using a matrix pro-

jection as a constraint for the optimized variable, which effi-

ciently computes the solution over several given manifolds.
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Figure 1. The framework of the proposed manifold constrained

low-rank decomposition.

The work leads to a new framework using given manifolds

to solve the optimization problem. However, it fails to ex-

plain why the variable should stop on a manifold.

Unlike the existing works, we present a new method that

exploits learned manifold constraints in the ADMM frame-

work. Instead of empirically adding manifold constraints on

a variable, we introduce a manifold based ADMM approach

to regulate the optimization problem for LRD.

3. Low-rank decomposition based on manifold

constraints

A constrained learning model allows to incorporate

domain-specific knowledge to balance the learned model

based on the implicit structure of the data [4]. From a ma-

chine learning perspective, it is important to simplify the

learning stage while improving the accuracy of the solu-

tion. In this section, we present how manifold constraints

can be embedded into an optimization problem. We formu-

late the LRD optimization problem in terms of MeADMM,

resulting in a relaxed and more efficient solution to the new

problem defined as P2.

Our idea is intuitively illustrated in Fig. 1, where the in-

put images are first embedded into a manifold and the low-

rank results are obtained afterwards by LRD.

3.1. LRD reformulation based on MeADMM

To efficiently calculate low-rank from data with a non-

linear structure, MeADMM reformulate the manifold con-

straint in the optimization process. We first introduce a new

variable Vm such that Vm = Vd ◦ (τ +∆τ). the matrix Vm

replaces Vd ◦ τ , which is a new variable and linearly corre-

lated to Vr in the new problem. LRD is then reformulated

as:
V̂r, Ê, τ̂ = argmin{rank(Vr) + λ ∗ ||E||1},

subject to Vm = Vr + E, Vr,i ∈ M, τ ∈ G
(P2)

Normally, if Vm contains images, only a small fraction of

pixels will be affected by partial occlusions or corruptions,

thus E is considered to be sparse. Supposed that the in-

put data Vm is generally of nonlinear structure, the samples

of Vr are reasonably considered to be from a manifold M.

That is, Vr,i ∈ M. We propose to solve the problem in

three steps. We first exploit the ALM framework in this sub-

section to solve the problem without taking manifold con-

straints into account. In the second step, we introduce the

manifold constraint into the objective function in Sec. 3.2.

Finally, we solve all variables in Algorithms 1 and 2 in Sec.

3.4.

The idea of ALM is searching for a saddle point of the

augmented Lagrangian function instead of directly solving

the constrained optimization problem. Given P1, we define

f(Vr, E,∆τ) = f(Vr, Vm, E,∆τ) = (Vr + E)

−(Vd ◦ τ +
∑

Ji∆τiǫi) = (Vr + E)− Vm.
(2)

Then we have:

Lµ(Vr, E,∆τ, Y ) = ||Vr||∗ + λ ∗ ||E||1

− < Y, f(Vr, E,∆τ) > +
µ

2
||f(Vr, E,∆τ)||2,

(3)

where Y ∈ ℜM×N is a Lagrange multiplier matrix, µ is a

positive scalar and < ., . > denotes the matrix inner prod-

uct. For an appropriate choice of the Lagrange multiplier

matrix Y and sufficiently large constant µ, it can be shown

that ALM has the same minimizer as that of the original

constrained optimization problem.

3.2. MeADMM

MeADMM is proposed to solve our new problem (P2)

with the data lying over a manifold. Specifically, we pro-

pose to consider Vr as an unknown variable of the optimiza-

tion by performing variable cloning i.e. Vr,i → V ′r,i ∈ M
and enforcing manifold constraints over the cloned vari-

ables V ′r. This introduces explicitly the manifold con-

straints at the expenses of replicating a set of variables. The

variable cloning V ′r,i = Vr,i is used to add the manifold con-

straint to replace Vr,i ∈ M in a set of equations. Now, the

problem P2 can be rewritten as:

V̂r, Ê, τ̂ = argminLµ(Vr, E,∆τ, Y ),

subject to V ′r,i = Vr,i, V ′r,i ∈ M
(P3)

To solve this problem (P3), we can derive with ADMM the

following objective cost function:

Lµ,1(Vr, E,∆τ, Y ) = ||Vr||∗ + λ ∗ ||E||1

− < Y, f(Vr, E,∆τ) > +
µ

2
||f(Vr, E,∆τ)||2

+

B∑

i

σi

2
||Vr,i − V ′r,i||

2

(4)

where σi is a positive value. However, the above objective

is still too complicated to be solved, as Lµ,1 is the combi-

nation of Lµ and another function related to Vr as shown in

1802



Eq. 4. In this case, the calculation of Vr is more compli-

cated than RASL, which is based on Lµ only. Assuming a

linear constraint on Vm and Vr, i.e. Vm = Vr + E, we ne-

glect the error matrix E and obtain the following objective:

Lµ,2(Vr, Vm, E,∆τ, Y ) = ||Vr||∗ + λ ∗ ||E||1

− < Y, f(Vr, Vm, E,∆τ) > +
µ

2
||f(Vr, Vm, E,∆τ)||2

+

B∑

i

σi

2
|̇|Vm,i − V ′m,i||

2,

(5)

with V ′m,i = Vm,i and V ′m,i ∈ M as beforehand. The

above expression requires a minimization over V ′m,i ∈ M
with i = 1, . . . , F . In [1], the manifold constraints are

enforced in an ALM strategy by using a matrix projection

which computes the solution over several given manifolds

(e.g. Stiefel and unit sphere). Differently, in our method

data is embedded into a manifold not known a priori but

learned from the very same data.

Now we formalize the manifold by introducing a

neighbor-preserving embedding [20, 5], which aims to find

an estimation of the manifold. Such a formalization is sim-

ilar to [5] which calculates the weights in the process of

dimension reduction by LLE [18]. In particular, the embed-

ding generated by [5] is exactly based on a manifold given

by a small set of samples. To do so, we find a projection in

a manifold based on the “true” neighbors of input data mea-

sured by the Geodesic distance information, thus avoiding

the perturbation of samples that are far from the input data.

3.3. Embedding for MeADMM

Let M be the sample set representing a manifold and x

be the embedding of M via a mapping function Φ(·).

Definition 1 The mapping function Φ : x → M in

the neighbour-preserving embedding method is conducted

based on the Geodesic distance, which is defined as follows:

1. First we define M1 =
∑K

j=1 (1 −Wj)Mj where Wj

is the Geodesic distance of the sample x and the jth

sample in a set M.

2. We define E = M−M1, and have:

Φα,ǫ(x,M) = xα,ǫ′ = M1 + ǫ′ · Sα[E ]; Sα[x] =
sign(x) ·max{|x| − α, 0}
where α and ǫ′ are used to represent the shrinkage fac-

tor and the scaler for reconstruction error respectively.

3. For a given point projected onto the manifold, larger

weights are reasonably assigned to its nearest points

in the recovery process.

From Definition 1, the input sample can be projected

onto a manifold via an embedding function by fully exploit-

ing the neighbor structure information [5]. As shown in

LLE [21], a local point on a manifold can be represented by

a small and compact set of K nearest neighbors to approxi-

mate ISOMAP. In [20], it has been shown that the Geodesic

distance used in ISOMAP is another effective way to locate

the neighbors for a linear embedding. We first follow the

idea in [15] to estimate the manifold dimension by PCA.

Next, we propose the mapping function Φ to generate an

embedding sample that lies on a given manifold. Our idea is

similar to [5] but the difference lies in its simplicity and fea-

sibility to solve the problem at hand. Note that MeADMM

adds an extra computational cost to our problem because

variables are added by the cloning mechanism.

The soft-thresholding function for the scalar values [17]

is defined as:

Sα[x] = sign(x).max(|x| − α, 0),

where α ≥ 0. When applied to vectors and matrices, the

shrinkage operator acts element-wise. Based on Definition

1, MeADMM can be alternatively used to solve our problem

and in the following we give details about the optimization

procedure.

Algorithm 1: Main algorithm to solve LRD based on

MeADMM
1: INPUT:

1)Vd ◦ τ = [vec(I1), ..., vec(IB ]), where Ii with i = 1, ..., B represent

B input images;

2) Initialise with (V 0
d , E0,∆τ0).

2: repeat

3: compute Jacobian matrices w.r.t transformations:

Ji ←
∂
∂ζ

(

vec(Ii◦ζ)

‖vec(Ii◦ζ)‖

)

∣

∣

∣

ζ=τ
;

4: warp and normalize the images:

Vd ◦ τ = [
vec(I1◦ζ)

‖vec(I1◦ζ)‖
,

vec(I2◦ζ)

‖vec(I2◦ζ)‖
, ...,

vec(IB◦ζ)

‖vec(IB◦ζ)‖
)

5: solve the manifold constraint on the transformation process on

Vd ◦ τ +
∑

Ji∆τiǫi
the details of V ′

m and Vr are shown in the Alg. 2 and Eq. 8. (inner loop)

6: update the transformation: τ = τ + ∆τ
7: until some stopping criterion

8: OUTPUT: the solution (V ∗
r , E∗,∆τ∗) in our optimization framework.

3.4. The MeADMM algorithm

The main algorithm to solve LRD based on MeADMM

is shown in Algorithm 1. In the outer loop, we solve τ ,

while other variables such as Vr and Vm are solved in the

inner loop (MeADMM). A separable structure based on

Lµ,2(, ) can be exploited by ADMM, which is:

(V [k+1]
r , E[k+1],∆τ [k+1], Y [k+1]) =

arg
Vr,E,∆τ

minLµ,2(V
[k]
m , E[k],∆τ [k], Y [k]).

(6)

Details on the solution of Eq. 6 are shown in Algorithm 2.

Different from the original objective function in [17], the

matrix V
[k]
m needs to be estimated first in order to perform
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SVD decomposition. Considering the constraint V
[k]
m =

V
′[k]
m , the matrix V

′[k]
m can be used to replace the original

V
[k]
m as shown in Algorithm 2. V

′[k+1]
m is actually used to

approximate V
[k+1]
m that lies on the manifold. Now we have

a new objective as:

Lµ,2(Vr, Vm, E,∆τ, Y ) = ||Vr||∗ + λ ∗ ||E||1

− < Y, ((Vr + E)− V
′

m) > +
µ

2
||(Vr + E)− V

′

m||2

+

B∑

i

σi

2
|̇|Vm,i − V

′

m,i||
2
, and V

′

m,i ∈ M

(7)

Algorithm 2: Variable solution based on the

MeADMM algorithm

1: INPUT: V
′[k]
m calculated in Def. 1.

2: compute (U,Σ,V) = SVD(V
′[k]
m + Y [k]/µ[k] − E[k])

3: compute V [k+1]
r = US 1

µ[k]
|Σ|VT

4: compute

E[k+1] = S 1

µ[k]
[Vd ◦ τ [k] +

∑
Ji∆τ

[k]
i ǫiǫ

T
i + Y [k]/µ[k]

− V
[k+1]
r ]

∆τ [k+1] =
∑

i

Ji(V
[k+1]
r +E[k+1]

− Vd ◦ τ [k] − 1/(µ[k])Y [k])ǫiǫ
T
i

Y [k+1] = Y [k] + µ[k]Lu(V
[k+1]
r , E[k+1],∆τ [k+1], Y [k])

µ[k+1] = max(0.9µ[k], µ̃)

5: compute V
′[k+1]
m based on Def. 1.

6: OUTPUT: the solution (V ∗

r , E∗,∆τ∗, Y ∗) to the recovery process

in our optimization framework.

From Eq. 7, the unknowns Y [k+1], E[k+1] and ∆[k+1]

are not directly related to
∑B

i
σi

2 |̇|Vm,i−V ′m,i||
2. So we can

solve (Algorithm 2) in a similar method as that of [17]. Now

only the matrix V
′[k+1]
m remains unsolved. Given V

[k+1]
m =

V
[k+1]
r + E[k+1], based on the derivative of Eq. 7, V

′[k+1]
m

is solved as:

V
′[k+1]
m = Tm · V [k+1]

m . (8)

As shown in Eq. 8, Tm
1 is a unknown projection ma-

trix on V
[k+1]
m . Based on the manifold embedding, the

projection is solved in an efficient way, i.e. V
′[k+1]
m,i =

Φα,ǫ(V
[k+1]
m,i , V

[k+1]
m ). The embedding performs well for a

small set of nearest samples, which leads to the robustness

against severe illumination and corruption.

4. Experiments

We evaluate MeADMM on four datasets including Ex-

tended Yale face database B [7], AR face [16], USPS digits

1Without considering the manifold constraint, we have Tm = (Y +
(σ∗ + µ) · I)−1 · (σ∗ + 2µ), σi is the diagonal element of σ∗, and I is

the identity matrix.

Table 2. Alignment errors in eye centers, calculated as the dis-

tances from the estimated eye centers to their ground truth.

Methods Mean error (pixel) Error std. Max error

Initial 1.69 0.428 2.23

RASL 0.16 0.36 1.0

MeADMM 0.14 0.35 1.0

[10] and planar surfaces (window images) [17]. The images

in those databases suffer from rotation, occlusion and light-

ing variations. The Geodesic distance is calculated based

on Vr with a number of the neighbors (K) set to 7.We also

empirically set α = 0.05 and ǫ′ = 0.85 in all our experi-

ments.

We compare the performance of the proposed

MeADMM with RASL [17], which is the state-of-

the-art algorithm for LRD. An improved algorithm based

on RASL is proposed in [28]. Due to lack of imple-

mentation, we implemented their algorithm by ourselves,

but cannot reproduce the results reported in their paper.

Therefore, to facilitate a fair comparison, in this paper

we show comparison results of MeADMM and RASL

evaluated on each dataset. It is also worth noting that the

parameter settings of our method are the same as those

used by RASL.

Extended Yale-B. In the Extended Yale Face Database

B, each subject image contains 64 different illumination

conditions and the images are resized to 42 × 45. The 64

images of a subject in a given pose were acquired at 30

frames/second in about 2 seconds, so there is only a small

change in head pose and facial expressions in the images.

To increase the difficulty of the LRD problem, we ran-

domly rotate and shift the face images. The qualitative

results are illustrated in Fig. 2.

With respect to the alignment, both methods achieve

more or less the same performance. For the average faces

after alignment, both methods can well solve the misalign-

ment problem. We also present the quantitative results in

terms of alignment errors in eye centers on this dataset (see

Table 2). As evident in this table, both approaches achieve

small misalignment errors for the faces with rotation, light-

ing variations and shifting. Different from RASL that fo-

cuses on the misalignment performance, we pay more atten-

tion to the recovery effectiveness. Fig. 2 shows MeADMM

achieving much better performance than RASL in terms of

reconstruction quality. Especially for the results on the last

three rows, MeADMM significantly eliminates the illumi-

nation variations from the original images, even in the pres-

ence of severe illumination changes and misalignment.

AR Face Database. We next test MeADMM on the

AR face database which contains 126 persons with different

facial expressions, illumination conditions, and occlusions

(such as sun glasses and scarf). The pictures were taken

with no restrictions on participants’ appearance (clothes,

1804



Figure 2. Results of RASL and MeADMM on the Extended Yale-B database. In the first row, the averages of input, alignment, and low-rank

results are shown for RASL and MeADMM. In the second row, the first and third columns results are obtained by RASL and MeADMM,

respectively. (D: Input; A: Low-rank component)

glasses, etc.), make-up, hair style, etc. in two sessions, sep-

arated by two weeks time. For each person, we choose 26
images (64 × 64) from Session 1 to validate both methods.

Different from Yale database B, the faces are severely oc-

cluded by glasses and scarf. It can be observed from Fig. 3

that MeADMM achieves much better low-rank images than

RASL, especially for the subjects wearing scarf and having

large expression variations. The eyes and mouths are almost

recovered from the input images as shown in the last row,

demonstrating the superiority of MeADMM on image re-

covery. This is also beneficial for other vision applications

such as face recognition and human re-identification.

USPS Database. In the USPS handwritten digit

database, we use a standard subset containing 10-class digit

images, and perform MeADMM and RASL on the train-

ing set. The low-rank decomposition results are illustrated

in Fig. 3. MeADMM successfully recovers all the im-

ages of digit 1, but RASL fails on three images. Similarly,

MeADMM works well on digit 4, whereas RASL fails to

recover one low-rank image. The experiments on the digit

images again show the advantages of our method with varia-

tions such as rotation, shift and affine transformations. Due

to lack of ground truth, we can only show the qualitative

results for digits analysis and window image analysis fol-

lowing the evaluation protocol of [17].

Planar Surfaces. Moreover, we demonstrate that

MeADMM can be used to align images affected by planar

homography transformations. To better demonstrate the ro-

bustness of MeADMM, we manipulate the input images by

cropping patches or changing illuminations, as in Fig. 4

(input). MeADMM achieves better results than RASL (first

and third window images). MeADMM not only aligns the
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RASL

MeADMM

Input

Figure 3. Low-rank decomposition results by RASL and MeADMM on the AR database. The top row shows the input images. The second

and third rows show the results by RASL and MeADMM, respectively.

windows and removes the occluded tree branches, but also

faithfully inpaints the missing areas. Together with con-

sistent results obtained from faces and digits datasets, we

could draw a conclusion that MeADMM is more effective

for low-rank calculation, when the data includes rotation,

occlusion and illumination variations.The performance im-

provement of MeADMM is attribute to the manifold con-

straint implicitly learned from the data.

Speed of MeADMM. Regarding the computational cost,

MeADMM is not as fast as RASL due to solving additional

variables. Running time for window images is 220ms and

102ms for MeADMM and RASL, respectively on a PC with

Intel i5 CPU and 4G RAM. The source code of the proposed

MeADMM algorithm will be released to public to facilitate

further development.

5. Conclusion

This paper presents a new insight into low-rank de-

composition using manifold constraint and we propose the

MeADMM method based on a neighbour-preserving em-

bedding approach. We solve manifold constraint with a

projection, which is efficiently calculated during the em-

bedding process. The proposed approach is successfully

applied to faces, digits and planar surfaces, showing a con-

sistent increase on image alignment and recovery perfor-

mance as compared to the state-of-the-art. In future work,

we will investigate MeADMM in other applications such as

image inpainting, video frame prediction, background sub-

straction, tracking [24, 25, 26, 27].
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