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Abstract

Principal component pursuit (PCP) is a state-of-the-

art approach to background estimation problems. Due to

their higher computational cost, PCP algorithms, such

as robust principal component analysis (RPCA) and its

variants, are not feasible in processing high definition

videos. To avoid the curse of dimensionality in those al-

gorithms, several methods have been proposed to solve

the background estimation problem incrementally. We build

a batch-incremental background estimation model by us-

ing a special weighted low-rank approximation of matri-

ces. Through experiments with real and synthetic video se-

quences, we demonstrate that our model is superior to the

existing state-of-the-art background estimation algorithms

such as GRASTA, ReProCS, incPCP, and GFL.

1. Introduction

Background estimation and moving object detection are

two important steps in many computer vision systems and

video-surveillance applications. In the past decade, one of

the prevalent approaches used for background estimation

treats it as a low-rank and sparse matrix decomposition

problem [1, 3, 22, 29]. Oliver et al. [24] showed that when

the camera motion is small, the background is not expected

to change much throughout the video frames, and they as-

sumed it to be low-rank. The seminal work of Lin et al.,

Wright et al., and Candès et al. [6, 21, 34], which is consid-

ered robust principal component analysis (RPCA), solves

the problem of background estimation and moving object

detection in a single framework. Given a sequence of n

video frames with each frame ai ∈ R
m being vectorized, let

the data matrix A = (a1,a2, · · · ,an) ∈ R
m×n be the con-

catenation of all the video frames. The foreground is usually

sparse if its size is relatively small compared to the frame

size [6, 21, 34]. Therefore, one can naturally consider a ma-

trix decomposition problem by writing A as the sum of its

background and foreground:

A = B + F,

where B,F ∈ R
m×n are the low-rank background and

sparse foreground matrices, respectively. Therefore, RPCA

solves:
min
B

‖A−B‖ℓ1 + λ‖B‖∗, (1)

where ‖ · ‖ℓ1 and ‖ · ‖∗ denote the ℓ1 norm and the nuclear

norm (sum of the singular values) of matrices, respectively,

and λ > 0 is a balancing parameter.

In contrast, consider a situation when a few, say

k, principal directions are already specified and one

wants to find a rank r approximation of the data, where

k ≤ r. In 1987, Golub et al. [13] formulated the fol-

lowing constrained low-rank approximation problem (to

be referred as GHS from now on) to address this situa-

tion: Given A = (A1 A2) ∈ R
m×n with A1 ∈ R

m×k and

A2 ∈ R
m×(n−k), find AG = (B̃1 B̃2) such that

(B̃1 B̃2) = arg min
B=(B1 B2)

B1=A1

rank(B)≤r

‖A−B‖2F , (2)

where ‖ · ‖F denotes the Frobenius norm of matrices. That

is, Golub et al. required a few columns, A1, of A be

preserved to find a low rank approximation of (A1 A2).
When A1 = ∅, we are back to the standard problem of

low-rank approximation: find B̃ such that

B̃ = arg min
B

rank(B)≤r

‖A−B‖2F . (3)

As it is well known, this problem is equivalent to principal

component analysis (PCA) [18] and has a closed form so-

lution that uses the singular value decomposition (SVD) of

A: if A = PDQt is a SVD of A with unitary matrices P,Q

and diagonal matrix D (of non-ascending diagonal entries),

then the solution to (3) is given by B̃ = Hr(A) := PDrQ
t,

where Dr is a diagonal matrix obtained from D by only

keeping the r largest entries and replacing the rest by 0. The

operator Hr is referred to as the hard thresholding opera-

tor. Using the thresholding operator, GHS problem (2) has

a closed form solution as the following theorem explains.

Theorem 1 [13] Assume rank(A1) = k and r ≥ k, the

solution B̃2 in (2) is given by
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B̃2 = PA1
(A2) +Hr−k

(

P⊥
A1

(A2)
)

, (4)

where PA1
and P⊥

A1
are the projection operators to the col-

umn space of A1 and its orthogonal complement, respec-

tively.

If we assume that some pure background frames are

known, we can apply GHS by using these background

frames as the first block matrix A1. Similarly, recently, Xin

et al. [35] proposed a supervised learning model called

generalized fused Lasso (GFL) which solves:

min
B

B=(B1 B2)
B1=A1

rank(B) + ‖A−B‖gfl, (5)

where ‖·‖gfl denotes a norm that is a combination of the ℓ1
norm and a local spatial total variation norm (to encourage

connectivity of the foreground). To solve GFL problem

(5), Xin et al. [35] further specialized the above model

by requiring rank(B) = rank(A1). Note that, with this

specialization, problem (5) can be viewed as a constrained

low-rank approximation problem as in GHS problem (2),

and it can be formulated as follows:

min
B=(B1 B2)
rank(B)≤r
B1=A1

‖A−B‖gfl. (6)

1.1. Incremental Methods

Conventional PCA [18] is an essential tool to numer-

ically solve both RPCA and GFL problems. PCA oper-

ates at a cost of min{O(m2n),O(mn2)}, which is due to

the SVD of an m × n data matrix. For RPCA algorithms,

the space complexity of an SVD computation is approxi-

mately O((m + n)r), where r is the rank of the low-rank

approximation matrix in each iteration, which is increas-

ing. And a high resolution video sequence characterized by

very large m, is computationally extremely expensive for

the RPCA and GFL algorithms. For example, the acceler-

ated proximal gradient (APG) algorithm runs out of mem-

ory to process 600 video frames each of size 300 × 400
on a computer with 3.1 GHz Intel Core i7-4770S proces-

sor and 8GB memory. In the past few decades, incremental

PCA (IPCA) was developed for machine learning applica-

tions to reduce the computational complexity of performing

PCA on a huge data set. The idea is to produce an efficient

SVD calculation of an augmented matrix of the form [A Ã]
by using the SVD of A, where A ∈ R

m×n is the original

matrix and Ã contains r newly added columns [37]. Similar

to the IPCA, several methods have been proposed to solve

the background estimation problem in an incremental man-

ner [12, 20]. In 2012, He et al. [16] proposed the Grassman-

nian robust adaptive subspace estimation (GRASTA), a ro-

bust subspace tracking algorithm and showed its application

in background estimation problems. More recently, Guo et

al. [14] proposed another online algorithm for separating

sparse and low dimensional subspace. For initial sequence

of training background video frames, Guo et al. devised

a recursive projected compressive sensing algorithm (Re-

ProCS) for background estimation (see also [15, 25]). Fol-

lowing a modified framework of the conventional RPCA

problem, Rodriguez et al. [28] formulated the incremental

principal component pursuit (incPCP) algorithm which pro-

cesses one frame at a time incrementally and uses only a few

frames for initialization of the prior (see also [26, 27]). To

the best of our knowledge, these are the state-of-the-art in-

cremental background estimation models.1

1.2. Contributions

In this paper, we propose an adaptive batch-incremental

model for background estimation. Our model finds the

background frame indexes robustly and incrementally

to process the entire video sequence. Unlike the mod-

els described previously, we do not require any training

frames. The model we use allows us to use the background

information from previous batch in a naturally.

Before describing our model, let us revisit the idea of

Golub et al. Inspired by (2) and by applications in which

A1 may contain noise, we require ‖A1 − B1‖F small not

B1 = A1 as in (2). This leads Dutta et al. [9, 10, 11] to con-

sider the following more general weighted low-rank (WLR)

approximation problem:

min
X=(X1 X2)
rank(X)≤r

‖ ((A1 A2)− (X1 X2))⊙W‖2F , (7)

where W ∈ R
m×n is a matrix with non-negative en-

tires and ⊙ denotes the Hadamard product. Using W =
(W1 ✶), Dutta et al. [9, 11] applied (7) to solve back-

ground estimation problems. Here we propose a batch-

incremental background estimation model, using the WLR

algorithm of Dutta et al. to gain robustness. Similar to the

ℓ1 norm used in conventional and in the incremental meth-

ods, a weighted Frobenius norm used in [9, 11] to make

WLR robust to the outliers for background estimation prob-

lems [9, 11]. Our batch model is as fast as incPCP and

ReProCS also, our model can deal with high quality video

sequences as well as incPCP and ReProCS. Some conven-

tional algorithms, such as supervised GFL or ReProCS re-

quire an initial training sequence, which does not contain

any foreground object. Our experimental results for both

synthetic and real video sequences show that unlike the su-

pervised GFL and ReProCS, our model does not require a

prior; instead, it can estimate its own prior robustly from

the entire data. We believe the adaptive nature of this al-

gorithm is well suited for real time high-definition video

surveillance and for panning motions of the camera where

the background slowly evolves.
1We refer the readers to [17, 30].
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Algorithm 1: WLR Algorithm

1 Input : A = (A1 A2) ∈ R
m×n (the data matrix),

W = (W1 ✶) ∈ R
m×n (the weight), threshold

ǫ > 0;

2 Initialize: (X1)0, C0, B0, D0;

3 while not converged do

4 Ep = A1 ⊙W1 ⊙W1 + (A2 −BpDp)C
T
p ;

5 for i = 1 : m do

6 (X1(i, :))p+1 = (E(i, :))p(diag(W
2
1 (i, 1)

W 2
1 (i, 2) · · ·W

2
1 (i, k)) + CpC

T
p )−1;

end

7 Cp+1 = ((X1)
T
p+1(X1)p+1)

−1(X1)
T
p+1(A2 −BpDp);

8 Bp+1 = (A2 − (X1)p+1Cp+1)D
T
p (DpD

T
p )

−1;

9 Dp+1 = (BT
p+1Bp+1)

−1BT
p+1(A2 − (X1)p+1Cp+1);

10 p = p+ 1;

end

11 Output : (X1)p+1, (X1)p+1Cp+1 +Bp+1Dp+1.

1.3. The WLR algorithm

We now briefly overview the WLR algorithm proposed

by Dutta et al. [7, 10, 11]. Let rank(X1) = k. Then any X2

such that rank(X1 X2) ≤ r can be given in the form,

X2 = X1C +BD,

for some matrices B ∈ R
m×(r−k), D ∈ R

(r−k)×(n−k),

and for C ∈ R
k×(n−k). Therefore, problem (7) with

W = (W1 ✶) of compatible block partition is reduced to:

min
X1,C,B,D

‖(A1 −X1)⊙W1‖
2
F + ‖A2 −X1C −BD‖2F .

(8)

The complexity of one iteration of Algorithm 1 is O(mk3+
mnr) [10].

2. An incremental model using WLR

In this section, we propose an incremental weighted low-

rank approximation (inWLR) algorithm for background es-

timation based on WLR (see Algorithm 2 and Figure 1).

Our algorithm fully exploits WLR, in which a prior knowl-

edge of the background space can be used as an additional

constraint to obtain the low rank (thus the background) esti-

mation of the data matrix A. First, we partition the original

video sequence into p batches: A = (A(1) A(2) . . . A(p)),
where the batch sizes do not need to be equal. Instead of

working on the entire video sequence, the algorithm incre-

mentally works through each batch. To initialize, the al-

gorithm coarsely estimates the possible background frame

indices of A(1): we run the classic singular value thresh-

olding (SVT) of Cai et al. [5] on A(1) to obtain a low rank

component (containing the estimations of the background

frames) B
(1)
In and let F

(1)
In = A(1) − B

(1)
In be the estima-

tion of the foreground matrix (Step 2). From the above es-

timates, we obtain the initialization for B and A(0) (Step

Algorithm 2: Incremental Background Estimation us-

ing WLR (inWLR)

1 Input : p, A = (A(1) A(2) . . . A(p)) ∈ R
m×n, τ >

0 (for SVT), α, β > 0 (for weights), threshold

ǫ > 0, kmax, ir ∈ N;

2 Run SVT on A(1) with parameter τ to obtain:

A(1) = B
(1)
In + F

(1)
In ;

3 Initialize the background block by B = B
(1)
In and

A(0) = A(1);

4 for j = 1 : p do

5 Identify the indices S of at most kmax columns of

A(j−1) that are closest to background using B and

F = A(j−1)
−B;

6 Set k = #(S), r = k + ir;

7 Set the first block: Ã1 = (A(j−1)(:, i))m×k with i ∈ S;

8 Define W = (W1 ✶) with W1 ∈ R
m×k where (W1)ij

are randomly chosen from [α, β];

9 Apply Algorithm 1 on Ã(j) = (Ã1 A(j)) using

threshold ǫ and weight W to obtain its low rank

component B̃(j) and define F̃ (j) = Ã(j)
− B̃(j);

10 Take the sub-matrix of B̃(j) corresponding to the A(j)

block such that A(j) = B(j) + F (j);

11 Update the background block: B = B̃(j);

end

12 Output : B = (B(1), B(2), ..., B(p)).

3). Then, we go through each batch A(j), using the esti-

mates of the background from the previous batch as prior

for the WLR algorithm to obtain the background B̃(j) (Step

9). To determine the indices of the frames that contain the

least information of the foreground we identify the “best

background frames” by using a modified version of the

percentage score model by Dutta et al. [8] (Step 5). Us-

ing this modified model allows us to estimate k, r, and the

first block Ã1 which contains the background prior knowl-

edge (Steps 6-7). Weight matrix W = (W1 ✶) is chosen

by randomly picking the entries of the first block W1 from

an interval [α, β] by using an uniform distribution, where

β > α > 0 are large (Step 8). To understand the effect of

using a large weight in W1, we refer the reader to [9, 10]. Fi-

nally, we collect background information for next itera-

tion (Steps 10-11). Note that the number of columns of

the weight matrix W1 is k, which is controlled by bound

kmax so that the column size of Ã(j) does not grow with

j. The output of the algorithm is the background estima-

tions for each batch collected in a single matrix B. When

the camera motion is small, updating the first block matrix

Ã1 (Step 7) has trivial impact on the model since it does

not change much. However, when the camera is panning

and the background is continuously evolving, our inWLR

could be proven very robust as new frames are entering in
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Figure 1: A flowchart for WLR inspired background estimation model proposed in Algorithm 2.
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Figure 2: Comparison of MSSIM of WLR acting on all

frames, inWLR, and GHS inspired background estimation

model with frame size [144, 176] and p = 6.

the video.

2.1. Complexity analysis

Now, we analyze the complexity of Algorithm 2 for

equal batch size. Primarily, the cost of the SVT algorithm

in Step 2 is only O(mn2

p2 ). Next, in Step 9, the complexity

of implementing Algorithm 1 is O(mk3 + mnr
p

). Note that

r and k are linearly related and k ≤ kmax. Once we obtain

a refined estimate of the background frame indices S as in

Step 5 and form an augmented matrix by adding the next

batch of video frames, a very natural question in proposing

our WLR inspired Algorithm 2 is: why do we use Algo-

rithm 1 in each incremental step (Step 9) of Algorithm 2

instead of using a closed form solution (4) of GHS? We jus-

tify as follows: the estimated background frames Ã1 are not

necessarily exact background; they are only estimations of

background. Thus, GHS inspired model may be forced to

follow the wrong data while inWLR allows enough flexi-

bility to find the best fit to the background subspace. This

is confirmed by our numerical experiments (see Section 3.1

and Figure 2). Thus, to analyze the entire sequence in p

batches, the complexity of Algorithm 2 is approximately

O(m(k3p+ nr)). Note that the complexity of Algorithm 2

is dependent on the partition p of the original data matrix.

Our numerical experiments suggest that for video frames of

varying sizes, the choice of p plays an important role and is

empirically determined.

Unlike Algorithm 2, if Algorithm 1 is used on the entire

data set and if the number of possible background frame in-

dices is k′, then the complexity is O(mk′
3
+mnk′). When

k′ grows with n and becomes much bigger than kmax in

order to achieve competitive performance, we see that Al-

gorithm 1 tends to slow down with higher overhead than

Algorithm 2 does (see Table 1).

3. Qualitative and quantitative analysis

Due to the availability of ground truth frames for each

foreground mask, we use 600 frames of the Basic scenario

of the Stuttgart artificial video sequence [4] to analyze them

quantitatively and qualitatively. To capture an unified com-

parison against each method, we resize the video frames to

[144,176] and for inWLR set p = 6; that is, we add a batch

of 100 new video frames in every iteration until all frames

are exhausted.
3.1. Comparison with GHS

Because the Basic scenario has no noise, once we esti-

mate the background frames, GHS can be used as a baseline
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Figure 3: SSIM map of inWLR and GHS inspired background estimation model, frame size [144, 176], and p = 6. Top to

bottom: Frame 420 with dynamic foreground, frame 600 with static foreground. Left to right: Original, ground truth, inWLR

SSIM, GHS SSIM, inWLR background, and GHS background. SSIM index of the methods are 0.95027 and 0.96152,

respectively.

(a)

(b)

Figure 4: Basic scenario frame: (a) 50, (b)100. Left to right: Original, inWLR background, GFL background, inWLR

SSIM, and GFL SSIM. The MSSIM of inWLR on two frames are 0.9595 and 0.9457, and that of GFL are 0.9534 and

0.9443, respectively.

Figure 5: Basic scenario frame 420: (a) GRASTA, (b) in-

WLR. Left to right: Original, background, and fore-

ground. GRASTA with subsample rate 10% recovers a frag-

mentary foreground and degraded background.

method in comparing the effectiveness of Algorithm 2. To

demonstrate the benefit of using an iterative process as in

Algorithm 1, we first compare the performance of Algo-

rithm 2 against the GHS inspired models. We also compare

regular WLR acting on all 600 frames with the parameters

specified in [11]. The structural similarity index (MSSIM) is

used to quantitatively evaluate the overall image quality as

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

inWLR,area = 0.94470

incPCP, area = 0.86049

GRASTA-10%, area =0.74137

ReProCS, area = 0.87552

GRASTA-20%, area = 0.73495

GRASTA-30%, area = 0.70469

Figure 6: ROC curves on Stuttgart Basic scenario to com-

pare between GRASTA, inWLR, incPCP, and ReProCS.

it mostly agrees with the human visual perception [32]. To

calculate the MSSIM of each recovered foreground video

frame, we consider a 11 × 11 Gaussian window with stan-

dard deviation (σ) 1.5. We perceive the information of how

the high-intensity regions of the images come through the

noise, and consequently, we pay much less attention to the

low-intensity regions. We remove the noisy components
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Figure 7: Basic scenario frame 123. Left to right: Original, inWLR background, ReProCS background, inWLR foreground,

ReProCS foreground, and ground truth. Both methods recover similar quality background, however, ReProCS foreground

has more false positives than inWLR.
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Figure 8: (a) Precision-Recall curves on Stuttgart Basic scenario to compare between ReProCS, inWLR, and

GRASTA. MSSIM on Stuttgart Basic scenario to compare between: (b) ReProCS and inWLR, (c) incPCP and inWLR.

Figure 9: Basic scenario frame 420. Left to right: Original,

incPCP background, incPCP foreground, and inWLR back-

ground. Both methods work equally well in detecting the

dynamic foreground object.

from the foreground recovered by inWLR, F by using a

threshold ǫ1 (calculated implicitly in Step 5 of Algorithm

2 to choose the background frames, see [8]), such that

we set the components below ǫ1 in F to 0. The average

computation time of inWLR is approximately in the range

17.829035 seconds to 19.5755 seconds in processing 600

frames each of size 144 × 176. On the other hand, the

GHS inspired model and WLR model take approximately

273.8382 and 64.5 seconds, respectively. The MSSIM pre-

sented in Figure 2 indicates that the inWLR and GHS in-

spired model produce the same result, with inWLR being

more time efficient than GHS. Next in Figure 3, the SSIM

map of two sample video frames of the Basic scenario show

that both methods recover the similar quality background

and foreground frames. Figure 2 shows that to work on a

high resolution video, inWLR is more accurate than GHS

and WLR.

3.2. Comparison with GFL

We compare the performance of inWLR with the GFL

model of Xin et al. [35]2. For both models, we use

200 frames of the Basic sequence, each frame resized to

[144, 176]. The background recovered and the SSIM map

in Figures 4 and 11 show that both methods are very com-

petitive. However, it is worth mentioning that inWLR is

extraordinarily time efficient compare with the GFL model.

3.3. Comparison with other state­of­the­art models

In this section, we compare the performance of inWLR

against other incremental background estimation models

such as GRASTA, incPCP, and ReProCS on 600 frames

of the Basic scenario of the Stuttgart sequence. For quan-

titative measure, we use the receiver operating characteris-

tic (ROC) curve, the recall and precision (RP) curve, and the

MSSIM. For ROC curve and RP curve, we use a uniform

threshold vector linspace(0, 255, 100) to compare pixel-

wise predictive analysis between each recovered foreground

2http://idm.pku.edu.cn/staff/wangyizhou/
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Figure 10: Basic scenario frame 600. Left to right: Original, incPCP background, incPCP foreground, inWLR background,

inWLR SSIM, and incPCP SSIM. incPCP fails to detect the static foreground object, though a careful reader can detect a

blurry reconstruction of the car in incPCP foreground. However, the SSIM map of both methods are equally good.

Dataset ReProCS GRASTA inWLR incPCP WLR GHS

Basic 15.8122 22.39 17.829035 58.4132 64.0485 273.8382

Fountain - - 3.709931 - 7.135779 4.327475

Waving Tree 4.548824 - 3.3873 - 13.751490 42.302412

Table 1: Computational time comparison. All experiments were performed on a computer with 2.7 GHz Intel Core i7 pro-

cessor and 16 GB memory. The best and the 2nd best results are colored with red and blue, respectively. For frame numbers,

frame size, and p for inWLR see Section 3 and 4.

frame and the corresponding ground truth frame.

3.3.1 Comparison with GRASTA [16]

At each time step i, GRASTA solves the following

optimization problem: For a given orthonormal basis

UΩs
∈ R

|Ωs|×d solve

min
x

‖UΩs
x−AΩs

(:, i)‖ℓ1 , (9)

where each video frame A(:, i) ∈ R
m is subsampled over

the index set Ωs ⊂ {1, 2, · · · ,m} following the model:

AΩs
(:, i) = UΩs

x + FΩs
(:, i) + ǫΩs

, such that, x ∈ R
d

is a weight vector and ǫΩs
∈ R

|Ωs| is a Gaussian noise vec-

tor. After updating x, one has to update UΩs
. We set the

subsample percentage s at 0%, 10%, 20%, and at 30% re-

spectively, estimated rank 60, and keep the other parameters

the same as those in [16]. The GRASTA code is obtained

from the author’s website.3 Note that for a lower estimated

rank GRASTA does not perform well in Basic scenario. Re-

ferring the qualitative result in Figure 5, we only provide the

ROC curve and RP curve to compare GRASTA with differ-

ent subsamples s and inWLR (see Figure 6 and 8a). The

ROC curves and RP curves show the superior performance

of inWLR on the Stuttgart Basic scenario.

3.3.2 Comparison with ReProCS [14]

ReProCS is a two stage algorithm. In the first stage, given

a sequence of training background frames, say t, the al-

gorithm finds an approximate basis which is ideally of

low-rank. After estimating the initial low-rank subspace

in the second stage, the algorithm recursively estimates

3 https://sites.google.com/site/hejunzz/grasta

Ft+1, Bt+1 and the subspace in which Bt+1 lies. We use

200 background frames of the Basic sequence for initializa-

tion of ReProCS. Figure 7 shows that both methods recover

similar quality background. However, ReProCS foreground

contains more false positives than inWLR foreground. The

ROC curve, RP curve, and MSSIM in Figure 6, 8a, and 8b

support our claim quantitatively for the Basic sequence.

Although the average computation time for ReProCS is

15.644460 seconds, which is better than inWLR.

3.3.3 Comparison with incPCP [28]

incPCP follows a modified framework of PCP but is built

with the assumption that the partial rank r SVD of first k−1
background frames Bk−1 is known. And using them, Ak−1

can be written as Ak−1 = Bk−1 + Fk−1. Therefore, for

a new video frame A(:, k), one can solve the optimization

problem as follows:

min
Bk,Fk

rank(Bk)≤r

‖Bk + Fk −Ak‖
2
F + λ‖Fk‖ℓ1 ,

where Ak = [Ak−1 A(:, k)] and Bk = [UrΣrV
T
r B(:, k)]

such that UrΣrV
T
r is a partial SVD of Bk−1. Accord-

ing to [28], the initialization step can be performed incre-

mentally. For the Stuttgart sequence, the algorithm uses

the first video frame for initialization. The incPCP code is

downloaded from the author’s website4. From the MSSIM

presented in Figure 8c and the background recovered by

both methods in Figure 9, both methods appear to perform

equally well on the Basic scenario. However, when the fore-

ground is static (as in frames 551-600 of the Stuttgart se-

4https://sites.google.com/a/istec.net/prodrig/Home/en/pubs/incpcp
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Figure 11: Waving Tree frame 247, frame size [120,160]. Left to right: Original, inWLR background (p = 6), GFL back-

ground, ReProCS background, inWLR SSIM (MSSIM: 0.9592), GFL SSIM (MSSIM: 0.9996), and ReProCS SSIM (MSSIM:

0.5221). inWLR and GFL recover superior quality background.

Figure 12: Left to right: Original, inWLR background, Re-

ProCS background, inWLR foreground, and ReProCS fore-

ground. In Lake sequence ReProCS performs better, and in

Person sequence inWLR has better performance.

Figure 13: Top to bottom: Fountain 500 frames with p = 5,

Campus 600 frames with p = 6, frame size [64,80]. Left

to right: Original, inWLR background, and inWLR fore-

ground.

quence), the ℓ1 norm in incPCP cannot capture the fore-

ground object, thus resulting in the presence of the static

car as a part of the background (see Figure 10). On the

other hand, our inWLR successfully detects and removes

the static foreground from the background.

4. Results on real world sequences

To further validate the robustness of inWLR, we tested it

on some challenging real world video sequences containing

occlusion, dynamic background, and static foreground. We

use I2R and SBI dataset [19, 23, 31] for this purpose. In

Figure 11, we compare inWLR against GFL and ReProCS

on 60 frames of Waving Tree sequence. ReProCS and GFL

use 220 and 200 pure background frames respectively as

training data. In Figure 12, we compare inWLR against

ReProCS on two complex sequences: 80 frames of Lake,

Dataset MSSIM MSSSIM[33] CQM[36]

IBMtest2 0.99979 0.99998 76.30844

Foliage 0.9865 0.99803 85.92427

Candela 0.9999 0.9999949 79.17169

Caviar2 0.99998 0.99999 78.00402

HallMonitor 0.99993 0.99998 63.78041

Snellen 0.99179 0.99891 90.08299

Table 2: Performance of inWLR on SBI dataset [23]. Frame

size 144× 176.

frame size [72, 90], and, 50 frames of Person, frame size

[120, 160]. In those sequences, for inWLR, we set p = 8
and 5, respectively. Due to the absence of ground truth

we only provide qualitative comparison. In Figure 13, we

demonstrate the performance of inWLR on two data sets

with dynamic background and semi-static foreground. In

almost every video sequence, inWLR performs reasonably

well. See Table 1 for the comparisons between computa-

tional time. Due to space limitation we only provide quan-

titative result for six sequences of the SBI dataset (see

Table 2). For this purpose, we use two additional met-

rics: multi-scale SSIM (MSSSIM) [33] and color image

quality measure (CQM) [2, 36]5. For the SBI dataset, we

use a Gaussian window of size 9 × 9 and standard devia-

tion (σ) 1.5 to calculate MSSSIM.

5. Conclusion

In this paper we proposed a novel model for background

estimation. Our model operates on the entire data in a batch-

incremental way and adaptively determines the background

frames without requiring any prior estimate. Furthermore,

our model does not require much storage and allows slow

changes in the background. Our extensive qualitative and

quantitative comparison on real and synthetic video se-

quences demonstrate the robustness of our model. The batch

sizes and the parameters in our model are still empirically

selected. Therefore, we plan to propose a more robust esti-

mate of the parameters and explore the possibilities that our

algorithm can handle videos of more dynamic background.

5The MATLAB codes for MSSSIM and CQM are downloaded from

http://sbmi2015.na.icar.cnr.it/SBIdataset.html
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