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Abstract

Classical principal component analysis (PCA) is not ro-

bust when the data contain sparse outliers. The use of the

ℓ1 norm in the Robust PCA (RPCA) method successfully

eliminates this weakness of PCA in separating the sparse

outliers. Here we propose a weighted low rank (WLR)

method, where a simple weight is inserted inside the Frobe-

nius norm. We demonstrate how this method tackles often

computationally expensive algorithms that rely on the ℓ1
norm. As a proof of concept, we present a background esti-

mation model based on WLR, and we compare the model

with RPCA method and with other state-of-the-art algo-

rithms used for background estimation. Our empirical vali-

dation shows that the weighted low-rank approximation we

propose here can perform as well as or better than that of

RPCA and other state-of-the-art algorithms.

1. Introduction
In image processing, rank-reduced signal processing,

computer vision, and in many other engineering applica-

tions the classical principal component analysis (PCA) is

a useful tool [19]. However, it might lead to a degraded

construction in some cases because it can not preserve any

structure of the data matrix. In 1987, Golub et al. [14] were

the first to consider a constrained low rank approximation

problem of matrices to address this fundamental flaw in

PCA: Given A = (A1 A2) ∈ R
m×n with A1 ∈ R

m×k

and A2 ∈ R
m×(n−k), find AG = (B̃1 B̃2) such that

(B̃1 B̃2) = arg min
B=(B1 B2)

B1=A1

rank(B)≤r

‖A−B‖2F , (1)

where ‖·‖F denotes the Frobenius norm of matrices. Golub

et al. required a block of columns, A1, of A must be pre-

served when one looks for a low rank approximation of

(A1 A2). As in the standard low rank approximation (which

is equivalent to PCA), the constrained low-rank approxima-

tion problem of Golub et al. has a closed form solution.

Inspired by (1) and motivated by applications in which

A1 may contain noise, we require ‖A1 − B1‖F small in-

stead of asking for B1 = A1. This leads us to consider the

following problem: Let η > 0, find (B̂1 B̂2) such that

(B̂1 B̂2) = arg min
B=(B1 B2)

‖A1−B1‖F≤η
rank(B)≤r

‖A−B‖2F . (2)

Or, for a large parameter λ, consider

min
B=(B1 B2)
rank(B)≤r

{λ2‖A1 −B1‖
2
F + ‖A2 −B2‖

2
F }. (3)

As it turns out, (3) can be solved in a closed form as a spe-

cial case of weighted low-rank approximation with a rank-

one weight matrix by the use of the singular value decom-

position (SVD) of the given matrix (λA1 A2) [24, 25]. Us-

ing the closed form solutions, one can verify that the so-

lution to (1) is the limit case of the solutions to (3) as

λ → ∞. Thus, (1) can be viewed as a special case of

(3) when λ = ∞. Note that, problem (3) can also be

cast as a special case of structured low rank problems with

element-wise weights [1, 35, 36]. More specifically, we ob-

serve that (3) is contained in the following more general

point-wise weighted low rank (WLR) approximation prob-

lem [12, 13, 24, 25, 32]:

min
X=(X1 X2)

r(X)≤r

‖ ((A1 A2)− (X1 X2))⊙ (W1 W2)‖
2
F , (4)

where W = (W1 W2) ∈ R
m×n is a weight matrix and ⊙

denotes the Hadamard product.

The idea of working with a weighted norm is very nat-

ural in solving many engineering problems. The weighted

low rank approximation problem was first studied with W
being an indicator weight to deal with the missing data case

and then with more general weight in machine learning,

collaborative filtering, 2-D filter design, and computer vi-

sion [7, 9, 18, 22, 23, 26, 30, 32, 33, 38]. Working with

(4) can be challenging because no closed form solution ex-

ists [7, 23, 24, 25, 32].

1.1. RPCA and GFL for Background Estimation

In the past decade, matrix decomposition has been one

of the most prevalently used methods for background es-

timation [2, 4, 31]. Given a sequence of n video frames

with each frame converted into a vector ai ∈ R
m, i =

1, 2, ..., n, the data matrix A = (a1,a2, ...,an) ∈ R
m×n

is the concatenation of all the frame vectors. Because the

background is not expected to change much throughout the
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frames when the camera motion is small, it is assumed to be

low-rank [27]. At the same time, the foreground is usually

sparse if its size is relatively small compared with the frame

size [8, 39, 21]. Therefore, naturally, one considers a matrix

decomposition problem by decomposing A as the sum of its

background and foreground:

A = B + F,

where B,F ∈ R
m×n are the background and foreground

matrices, respectively. The robust principal component

analysis (RPCA) exploits this idea in [8, 21, 39] and solves

the background estimation problem by assuming the back-

ground frames, B, to have a low-rank structure and the fore-

ground, A−B, sparse:

min
B

‖A−B‖ℓ1 + λ‖B‖∗, (5)

where ‖ · ‖ℓ1 and ‖ · ‖∗ denote the ℓ1 norm and the nu-

clear norm (sum of the singular values) of matrices, re-

spectively. But the RPCA model cannot take advantage of

any possible extra information on the background. Recently

in [40], Xin et al. proposed a stronger model called gener-

alized fused Lasso (GFL) for the situation where pure back-

ground frames are given as a supervised learning method.

Based on the assumption that if some pure background

frames are given, then the data matrix A can be written

into A = (A1 A2), where A1 contains the given pure back-

ground frames, Xin et al. [40] proposed the following model

of the unknown matrices B and F : with B = (B1 B2) and

F = (F1 F2) partitioned in the same way as in A, find B
and F satisfying

min
B,F

B1=A1

rank(B) + ‖F‖gfl,

where ‖ · ‖gfl denotes a norm that is a combination of ℓ1
norm and a local spatial total variation norm (to encourage

connectivity of the foreground). To make the problem more

tractable, Xin et al. further specialized the above model by

assuming rank(B) = rank(B1). Since B1 = A1 and A1

is given, so r := rank(B1) is also given and thus, we can

re-write the model of [40] as a special case of the following:

min
B=(B1 B2)
rank(B)≤r
B1=A1

‖A−B‖gfl. (6)

Clearly, except in different norms, problem (6) is a con-

strained low rank approximation problem as in (1).

1.2. Main Contributions
In this paper, we propose an algorithm to solve (4) as

a standalone problem for a special family of weights. As

a proof of concept, we present a background estimation

model by using our WLR algorithm because it seems to be

a natural fit to the problem. In addition, we compare the per-

formance of our proposed model with that of RPCA and of

GFL algorithms in estimation of backgrounds that contains

static and dynamic components. Our goal is to show how

a properly weighted Frobenius norm can be made robust

to tackle the outliers similar to the ℓ1 norm. To compre-

hensively review the most recent and classical algorithms

that solve the background estimation problem, we refer the

reader to [2, 3, 4, 31].

We show that one can use WLR to find a more robust

and efficient approach to solve the background estimation

problem as compared to the RPCA [21] and GFL [40] al-

gorithms if one uses a special weighted version of low

rank approximation (4) and learns the weight (or, more pre-

cisely, the frame indices of weight as explained in Sec-

tion 3). Our proposed model is not only as efficient as RPCA

and GFL algorithms, but also it does not require any prior

information as needed in [40]. More specifically, we show

that (1) our weighted Frobenius norm minimization can re-

place the computationally expensive ℓ1 minimization as in

RPCA and GFL algorithms and achieve a superior or at

least comparable performance, that (2) our model allows

frames that are close to the background to be used without

requiring prior knowledge of the pure background frames,

that (3) these approximate background frames are not given

to us but learned from the data, and that (4) when compared

with other state-of-the-art background and foreground esti-

mation algorithms, our method may provide a better back-

ground estimation.

2. An Algorithm for WLR

In this section, we propose an algorithm to solve (4) for

a special family of weights when W = (W1 W2) with

W2 = ✶, matrix with entries equal to 1. Note that if W1 = ✶

as well, then we are back to PCA. For convenience, let

r(X1) = k. Then any X2 such that r(X1 X2) ≤ r can

be given in the form

X2 = X1C +BD,

for some arbitrary matrices B ∈ R
m×(r−k),

D ∈ R
(r−k)×(n−k), and C ∈ R

k×(n−k). Denote

F (X1, C,B,D) = ‖(A1 −X1)⊙W1‖
2
F + ‖A2 −X1C −

BD‖2F . Therefore, problem (4) with W = (W1 ✶) is

further reduced to:

min
X1,C,B,D

F (X1, C,B,D). (7)

Note that, for the special choice of the weight matrix,

with a block structure (X1 B)

(

Ik C
0 D

)

, problem (7)

can be written alternatively in the framework of alternating

weighted least squares algorithm in [25]. Here we directly

solve (7) by using a fast and simple numerical procedure.

Problem (7) can be numerically solved by using an

alternating strategy [5] of minimizing F with respect to

each component iteratively:






















(X1)p+1 = argmin
X1

F (X1, Cp, Bp, Dp),

Cp+1 = argmin
C

F ((X1)p+1, C,Bp, Dp),

Bp+1 = argmin
B

F ((X1)p+1, Cp+1, B,Dp),

and, Dp+1 = argmin
D

F ((X1)p+1, Cp+1, Bp+1, D).
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Figure 1: Iterations vs. relative error on Stuttgart video se-

quence: Basic scenario, A ∈ R
5120×600.

Each sub-problem above can be solved explicitly as de-

Algorithm 1: WLR Algorithm

1 Input : A = (A1 A2) ∈ R
m×n (the given matrix);

W = (W1 ✶) ∈ R
m×n (the weight), threshold

ǫ > 0;

2 Initialize: (X1)0, C0, B0, D0;

3 while not converged do

4 Ep = A1 ⊙W1 ⊙W1 + (A2 −BpDp)C
T
p ;

5 for i = 1 : m do

6 (X1(i, :))p+1 = (E(i, :))p(diag(W
2
1 (i, 1)

W 2
1 (i, 2) · · ·W

2
1 (i, k)) + CpC

T
p )−1;

end

7 Cp+1 = ((X1)
T
p+1(X1)p+1)

−1(X1)
T
p+1(A2 −BpDp);

8 Bp+1 = (A2 − (X1)p+1Cp+1)D
T
p (DpD

T
p )

−1;

9 Dp+1 = (BT
p+1Bp+1)

−1BT
p+1(A2 − (X1)p+1Cp+1);

10 p = p+ 1;

end

11 Output : (X1)p+1, (X1)p+1Cp+1 +Bp+1Dp+1.

scribed in Algorithm 1. Let (XWLR)p be our approxima-

tion to A at pth iteration and define Ep = ‖(XWLR)p+1 −
(XWLR)p‖F . For a threshold ǫ > 0 the stopping crite-

ria of our algorithm at the pth iteration is Ep < ǫ or
Ep

‖(XWLR)p‖F
< ǫ or if it reaches the maximum itera-

tion. Figure 1 shows iteration p vs. relative error plot for

Algorithm 1 on Stuttgart video sequence which suggests the

convergence of WLR. A more detailed convergence analy-

sis is given in [10, 13].

3. Background Estimation by using WLR

In this section, we propose a background estimation

model that uses Algorithm 1. To use our proposed algorithm

in background estimation, we first solve WLR for W = ✶

(no weighted case which is just PCA) to obtain an initial-

ization of the background and foreground: A = BIn+FIn,

where BIn is a low rank approximation to A given by PCA.

Next, we use BIn and FIn to learn the frame indices that

are closest to the pure background. This is done heuristi-

cally (with a similar idea as in [11] (see Figure 2)) such

that we find the frame indices that are close to the pure

background in A. By setting a threshold ε1 > 0 based on

the histogram of FIn, we convert FIn into a binary matrix

LFIn: all entries of FIn bigger than ε1 are replaced by 1
and the others are replaced by 0. The matrix BIn is directly

converted to a binary matrix LBIn. Next, we calculate the

ratios of the frame sum (i.e. the column sum) of LFIn to the

corresponding frame sum of LBIn and identify the indices

with ratios less than the mode of these ratios as possible

pure background frame indices. Finally, we apply WLR by

putting the weight at the learned frame indices to decom-

pose the data matrix A into background and foreground:

A = B + F . Our experiments show that the performance

depends more on the correct location (indices) of the back-

ground frames than on the values of the weight. We remark

that Dutta and Li [12] and Xin et al. [40] used the pure

background frames in their background estimation model,

but the frames were already given to them. On the contrary,

Algorithm 2 learns the background frame indices from the

data, thus providing a robust background estimation model.

Algorithm 2: Background Estimation using WLR

1 Input : A = (A1 A2) ∈ R
m×n (the data matrix);

W = (W1 ✶) ∈ R
m×n,(the weight),

threshold ǫ > 0, i1, i2 ∈ N;

2 Run PCA to get low rank BIn and FIn = A−BIn;

3 Learn background frame indices S from BIn and FIn;

4 Set k =
⌈

|S|/i1

⌉

, r = k + i2;

5 Rearrange data: Ã1 = (A(:, i))m×k, randomly chosen

k frames from i ∈ S and Ã2 = (A(:, i′))m×(n−k), i
′

from the remaining frames;

6 Apply WLR on Ã = (Ã1 Ã2) to obtain X̃;

7 Rearrange the columns of X̃ similar to A to find X;

8 Output : X .

4. Experiments and Comparisons

In this section, we report how we compare extensively

WLR with RPCA to validate its effectiveness in solving

the background estimation problem. We also compare WLR

with supervised and unsupervised GFL, as well as with

other state-of-the-art background estimation methods.

4.1. Comparison with RPCA

In this set of experiments, we use the Stuttgart syn-

thetic video data set [6] for rigorous qualitative and quanti-

tative comparisons. This video data set is a computer gen-

erated video sequence that comprises both static and dy-
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Figure 2: Learning the weighted frame indices for the Basic scenario. (a) Histogram to choose the threshold ǫ1. (b) Percentage

score plot for 600 frames. (c) Original binary G column sum, which indicates we are able pick up the indices correctly

corresponding to the frames that have the least foreground movement. Originally, there are 53 frames in G that have less than

5 pixels. We picked up 58 frame indexes on the Basic scenario.

Figure 3: The effect of using weights in WLR algorithm

on the Basic scenario, frame 435. Background estimation

using WLR with: (a) (W1)ij ∈ [5, 10], (b) (W1)ij ∈
[500, 1000]. In (a) the estimated background has the blurry

foreground object, but as the weight is increased, the fore-

ground object disappears in (b).

namic background/foreground objects and varying illumi-

nation in the background. We use three different test sce-

narios of the sequence [6]: (i) Basic: This scenario has nei-

ther noisy artifacts nor sudden illumination changes, and it

is used as a general performance measure. (ii) Noisy night:

This scenario is a low-contrast nighttime scene, with in-

creased sensor noise and camouflage. (iii) Light switch:

This scenario has varying illumination effects throughout

the sequence. Note that each scenario has 600 frames and

identical foreground and background objects. Frames 551

to 600 have static foreground, and frames 6 to 12 and 483

to 528 have no foreground. Additionally, the foreground

comes with high quality ground truth mask for each video

frame. To compare our WLR method with the existing

RPCA algorithms, we use the inexact augmented Lagrange

multiplier (iEALM) method proposed by Lin et al. [21],

and the accelerated proximal gradient (APG) algorithm pro-

posed by Wright et al. [39]. We only report on APG if

iEALM has similar performance. For iEALM and APG, we

Original WLR APG 

Figure 4: Background estimated by WLR and APG on Ba-

sic scenario. Top row shows frame 600 and bottom shows

frame 210. APG can not remove the static foreground ob-

ject in frame 600. In frame 210, the low-rank background

estimated by APG has some black patches.

set λ = 1/
√

max{m,n}, and for iEALM we choose µ =
1.5, ρ = 1.25 as used in [8, 21, 39]. Each frame in the test

sequence is resized to 64×80 due to the memory constraint

of RPCA algorithms (originally they were 600× 800). The

resized frames are stacked as column vectors to form the

data matrix A. For the Stuttgart video sequence, we em-

pirically choose k =
⌈

|S|/2
⌉

and set r = k + 1. There-

fore, in Algorithm 2, we use i1 = 2 and i2 = 1. How-

ever, such assumptions do not apply to all practical sce-

narios. The choices of r and k are problem-dependent and

highly heuristic. When calling WLR, we run Algorithm 1

for 50 iterations and choose threshold ǫ = 10−7.
Qualitative Analysis. We present frame 435 of the Ba-

sic scenario in Figure 3 to show the effect of a large

weight, W1, on the first block A1: our weighted low-rank

algorithm can perform well in background estimation with
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Figure 5: Background estimated by WLR and APG on Light

switch and Noisy night scenario, frame 600. APG was not

able to remove the static foreground, but WLR completely

removed the static foreground from both scenarios.

Figure 6: Foreground recovered by WLR and APG on Light

switch scenario, frame 130. Starting from frame 125 the

illumination changes suddenly. The sparse foreground re-

covered by APG does not capture the change in illumina-

tion. WLR captures the effect of change in illumination, ir-

regular movements of the tree leaves, and reflections.

Figure 7: Background and foreground estimated by WLR

and APG on Light switch scenario, frame 300. WLR has

least MSSIM for frame 300 but it still provides a better

visual quality foreground and background estimation than

APG. The red bounding box in APG frame is indicating the

presence of foreground patch.

Method Basic Noisy night Light switch

WLR 23.0676 24.0970 20.1874

iEALM 160.251981 108.679550 173.903928

APG 107.982398 115.547544 109.976457

Table 1: Average Computational time (in seconds) for WLR

and RPCA algorithms in processing 600 frames of size

[64, 80].

proper choice of weight. Next, in Figure 4, we present frame

210 and 600 of the Basic scenario. The performance of APG

on frame 210 is comparable with WLR, but on frame 600,

WLR outperforms APG. Finally, Figure 5 shows that WLR

removes the static foreground and provides a better visual

background in scenes with varying illumination and sensor

noise. To conclude, when the foreground is static, with the

proper choice of W, r, and k our algorithm can provide a

good estimation of the background by removing the static

foreground object. Figures 6 and 7 present the foreground

recovered by WLR and APG on the Light switch scenario.

We show that WLR can capture the changing illumination

and irregular dynamic background movements better than

APG and can provide a visually better background frame,

even on Frame number 300 of Lightswitch scenario where

WLR has least MSSIM. This can be attributed to the fact

that, RPCA algorithms are based on the assumption that the

low-rank component is exactly low-rank while the sparse

component being exactly sparse [4, 8, 39]. Furthermore,

considering the computational time of each algorithm from

Table 1, WLR has minimal execution cost in producing a

superior background estimation.

Quantitative Analysis. We now present different quantita-

tive comparisons between the performance of our algorithm

and that of the existing RPCA algorithms. We use three

different quantitative measures for this purpose: tradition-

ally used receiver and operating characteristic (ROC) curve,

peak signal to noise ratio (PSNR), and the most advanced

measure mean structural similarity index (MSSIM). Be-

cause a ground truth mask is available for each video frame,

we use a pixel-based measure of F , the foreground recov-

ered by each method to form the confusion matrix for the

predictive analysis. In our case, the pixels are represented

by the use of 8 bits per sample, and MI, the maximum pixel

value of the image is 255. Therefore, a uniform threshold

vector linspace(0, MI , 100) is used to compare the pixel-

wise predictive analysis between each recovered foreground

frame and the corresponding ground truth frame. From the

ROC curves in Figure 8, the increment in performance of

WLR compared with RPCA algorithms appear to be sub-

stantial. However, the qualitative performance of the pro-

posed weighted algorithm in all three scenarios is much su-

perior. We attribute this to the fact that WLR removes the
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Figure 8: ROC curve to compare between WLR, iEALM, and APG. The performance gain by WLR compare to APG on

Basic, Noisy night, and Light switch scenarios are 3.252%, 4.3313%, and 6.012% respectively, and compare to iEALM are

3.139%, 4.8139%, and 6.141% respectively.
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Figure 9: True positive and false positive count for WLR

and APG on Basic scenario. The false positive count for

WLR substantially drops after thresholding F by ǫ1. On the

other hand, WLR always has more or equal number of true

positives as APG.

noise uniformly from the video sequence.

In calculating the PSNR, we perceive the information

on how the high intensity regions of the image are com-

ing through the noise, and consequently, we pay much

less attention to the low intensity regions. This motivated

us to remove the noisy components from the recovered

foreground, F , by using the threshold ǫ1 (see Section 3),

such that we set the components below ǫ1 in F to 0. Us-

ing this new F , we give the next two quantitative mea-

sures. PSNR is calculated using the metric: 10log10
M2

I

MSE ,

where MSE = 1
mn

‖F (:, i)−G(:, i)‖22. Conventionally, the

higher the PSNR value, the better the reconstruction algo-

rithm. Figure 10 indicates the PSNR of WLR is superior

than the RPCA algorithms. This can be attributed to the fact

that after thresholding the foreground frames recovered by

WLR in all three scenarios are identical to the ground truth

frames.Finally we use the mean SSIM (MSSIM) index to

evaluate the overall image quality [37]. In order to calcu-
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APG

iEALM

WLR

Figure 10: Frames vs. PSNR for Basic scenario. The mean

PSNR of APG and iEALM on the Basic sequence are

25.0092 and 25.0551, respectively. For WLR, the frames

that do not contain the foreground object have 0 MSE, re-

sulting PSNR equal to infinity, in all three scenarios.

late MSSIM of each recovered foreground video frame, we

consider a 11 × 11 Gaussian window with standard devia-

tion σ = 1.5. In Figure 11, we plot the MSSIM of different

methods for all three scenarios. The MSSIM plot demon-

strates that WLR has superior performance to the RPCA

algorithms, especially when there is no foreground or static

foreground exists. In Figure 12 the SSIM index map of two

sample foreground video frames indicate fragmentary fore-

ground recovered by the RPCA algorithms.

4.2. Comparison with GFL

In this section, we compare the performance of WLR

with the supervised and unsupervised GFL background es-

timation model of Xin et al. [40]. Because the choice of

r and k are problem specific for our model, we have pro-

vided only the quantitative comparison on the Waving tree

scene of the Wallflower dataset [34] and Basic scenario of

the Stuttgart dataset. Xin et al. used 200 pure background
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Figure 11: MSSIM of different methods on all three scenarios. WLR has better MSSIM compare to the RPCA algorithms

corresponding to the frames which has static foreground or no foreground. The slight deterioration of performance of WLR

around frame 300 in (c) can be attributed by poor thresholding as the noise level in those frames are very high.

Figure 12: SSIM index map for frame 175 and 210 of the

Basic scenrio. Left to right: Ground truth frame (size 64 ×
80), SSIM index map (size 54 × 70) of WLR, APG, and

iEALM. WLR has superior SSIM index map than RPCA

algorithms.

Figure 13: SSIM index map of Waving tree. Left to right:

Ground truth frame (size 64 × 80), WLR SSIM index

map (size 54 × 70), and GFL SSIM index map. MSSIM

for WLR and GFL are 0.5018 and 0.5014 respectively.

frames as a prior for supervised GFL. On the other hand, we

used all frames of the sequence to learn the weighted frame

indices and estimate the background without using the exact

location of the pure background frames. SSIM index map in

Figure 13 shows that both methods are very competitive.

For the Basic scenario of the Stuttgart dataset we run

the unsupervised GFL without using the knowledge of pure

background frames and resize the first 200 frames as in

G LIU" L WLR 

(a) 

(b)

Figure 14: SSIM index map of Basic scenario. Left to right:

Ground truth frame (size 144×176), SSIM index map (size

134× 166) for WLR and GFL. MSSIM for WLR and GFL

are (a) frame 120: 0.9326 and 0.9244, (b) frame 75: 0.9659

and 0.9677 respectively.

software [40]. For fair comparison we use the same data

matrix for WLR. From SSIM index map in Figure 14, we

see that both methods are very competitive with WLR be-

ing extraordinarily time efficient than the unsupervised GFL

model. WLR takes approximately 17.75 seconds, while, on

the same hardware, unsupervised GFL took 52297.39 sec-

onds to conduct the experiment.

4.3. Comparison with other state-of-the-art back-
ground estimation models

We also compare WLR with other state-of-the-art robust

background estimation algorithms, such as, Grassmannian

robust adaptive subspace estimation (GRASTA) [17], re-

cursive projected compressive sensing algorithm (Re-

ProCS) [15, 16], and incremental principal component pur-

suit (incPCP) [28, 29] on the Basic scenario. Due to the lim-

itation of space, we refer the readers to the references for

an explanation of these algorithms. For GRASTA, we set

the subsample percentage s at 10%, 20%, and 30% respec-

tively, estimated rank 60, and other parameters the same as

those in [17]. We use 200 background frames of the Ba-

sic sequence for initialization of ReProCS. incPCP algo-

rithm uses the first video frame of the Basic scenario for
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Figure 15: ROC curve to compare between WLR, GRASTA

with different subsamples, ReProCS, and incPCP.
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Figure 16: MSSIM to compare between WLR, ReProCS,

and incPCP on Basic scenario.

initialization. Each frame is resized to 144× 176. The ROC

curves in Figure 15 shows that WLR outperforms all other

methods. MSSIM presented in Figure 16 shows incPCP is

slightly better or comparable to WLR. However, the qualita-

tive result in Figure 17 shows when the foreground is static,

the ℓ1 norm in incPCP cannot capture the foreground ob-

ject, resulting the presence of the static car as a part of the

background. In contrast, WLR detects the static foreground.
4.4. Further Experiments on Dynamic Background

To demonstrate the power of our method on more com-

plex data sets containing dynamic foreground, we perform

extensive qualitative and quantitative analysis on the Li data

set [20]. We use four sequences of the data set contain-

ing dynamic foreground. The SSIM index map on all four

recovered foreground indicates that WLR performs con-

sistently well on the video sequences containing dynamic

background (see Figure 18).

5. Conclusion
Our weighted low-rank approximation algorithm is sim-

ple and fast for a special family of weights. Moreover, the

Figure 17: Frame 600, Basic scenario. Left to right: Orig-

inal, incPCP background, WLR background, WLR SSIM

index map, incPCP SSIM index map. Though incPCP has

slightly better or same MSSIM compare to WLR, it fails to

detect the static foreground object.

. .I

(a) �) (c) (d)

Figure 18: SSIM index map of: (a) Water Surface, (b) Wav-

ing tree, (c) Fountain, and (d) Curtain. Top to bottom:

Original, background estimated by WLR, ground truth

frame (size 64 × 80), SSIM index map (size 54 × 70) for

WLR. The MSSIM are 0.9851, 0.9082, 0.9940, and 0.9343

respectively.

model that we devised for background estimation is efficient

and robust. We demonstrated that when applied to complex

video sequences, our method is more effective than the ex-

isting RPCA method and other state-of-the-art algorithms.

The main motivation of the paper is not just to propose a

background estimation model. Rather, we wish to make a

case for a newcomer, WLR method, by demonstrating how

a properly weighted Frobenius norm can be made robust to

the outliers, similarly to RPCA, GFL, and to other state-of-

the-art background estimation models.
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[6] S. Brutzer, B. Höferlin, and G. Heidemann. Evaluation of back-

ground subtraction techniques for video surveillance. IEEE Com-

puter Vision and Pattern Recognition, pages 1568–1575, 2012. 3,

4

[7] A. M. Buchanan and A. W. Fitzgibbon. Damped Newton algorithms

for matrix factorization with missing data. In Proceedings of the

2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2:316–322, 2005. 1

[8] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal compo-

nent analysis? Journal of the Association for Computing Machinery,

58(3):11:1–11:37, 2011. 2, 4, 5

[9] Y. Chen, Y. Wang, M. Li, and G. He. Augmented lagrangian alter-

nating direction method for low-rank minimization via non-convex

approximation. In Signal, Image and Video Processing, 2017. 1

[10] A. Dutta. Weighted low-rank approximation of matrices: Some ana-

lytical and numerical aspects, 2016. Ph.D. dissertation, Department

of Mathematics, University of Central Florida, Orlando, FL. 3

[11] A. Dutta, B. Gong, X. Li, and M. Shah. Weighted singular value

thresholding and its applications to background estimation, 2017.

arXiv:1707.00133. 3

[12] A. Dutta and X. Li. A fast algorithm for a weighted low rank ap-

proximation. In 2017 Fifteenth IAPR International Conference on

Machine Vision Applications (MVA), pages 93–96, 2017. 1, 3

[13] A. Dutta and X. Li. On a problem of weighted low-rank approxima-

tion of matrices. SIAM Journal on Matrix Analysis and Applications,

38(2):530–553, 2017. 1, 3

[14] G. H. Golub, A. Hoffman, and G. W. Stewart. A generalization of

the Eckart-Young-Mirsky matrix approximation theorem. Linear Al-

gebra and its Applications, 88(89):317–327, 1987. 1

[15] H. Guo, C. Qiu, and N. Vaswani. An online algorithm for separating

sparse and low-dimensional signal sequences from their sum. IEEE

Transactions on Signal Processing, 62(16):4284–4297, 2014. 7

[16] H. Guo, C. Qiu, and N. Vaswani. Practical REPROCS for separating

sparse and low-dimensional signal sequences from their sum-part 1.

In IEEE International Conference on Acoustic, Speech and Signal

Processing, pages 4161–4165, 2014. 7

[17] J. He, L. Balzano, and A. Szlam. Incremental gradient on the grass-

mannian for online foreground and background separation in sub-

sampled video. IEEE Computer Vision and Pattern Recognition,

pages 1937–1944, 2012. 7

[18] S. Javed, A. Mahmood, T. Bouwmans, and S. K. Jung. Spatiotempo-

ral low-rank modeling for complex scene background initialization.

IEEE Transactions on Circuits and Systems for Video Technology,

2016. 1

[19] I. T. Jolliffee. Principal component analysis, 2002. Second edition.

1

[20] L. Li, W. Huang, I.-H. Gu, and Q. Tian. Statistical modeling of com-

plex backgrounds for foreground object detection. IEEE Transac-

tions on Image Processing, 13(11):1459–1472, 2004. 8

[21] Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier

method for exact recovery of corrupted low-rank matrices, 2010.

arXiv1009.5055. 2, 4

[22] W. S. Lu, S. C. Pei, and P. H. Wang. Weighted low-rank approxi-

mation of general complex matrices and its application in the design

of 2-d digital filters. IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, 44(7):650–655, 1997. 1

[23] J. H. Manton, R. Mehony, and Y. Hua. The geometry of weighted

low-rank approximations. IEEE Transactions on Signal Processing,

51(2):500–514, 2003. 1

[24] I. Markovsky. Low-rank approximation: algorithms, implementa-

tion, applications, 2012. Springer. 1

[25] I. Markovsky, J. C. Willems, B. D. Moor, and S. V. Huffel. Exact

and approximate modeling of linear systems: a behavioral approach,

2006. SIAM. 1, 2

[26] T. Okatani and K. Deguchi. On the Wiberg algorithm for matrix

factorization in the presence of missing components. International

Journal of Computer Vision, 72(3):329–337, 2007. 1

[27] N. Oliver, B. Rosario, and A. Pentland. A Bayesian computer vision

system for modeling human interactions. In International Confer-

ence on Computer Vision Systems, pages 255–272, 1999. 2

[28] P. Rodriguez and B. Wohlberg. Incremental principal component

pursuit for video background modeling. Journal of Mathematical

Imaging and Vision, 55(1):1–18, 2016. 7

[29] P. Rodrguez and B. Wohlberg. A matlab implementation of a fast

incremental principal component pursuit algorithm for video back-

ground modeling. In IEEE International Conference on Image Pro-

cessing, pages 3414–3416, 2014. 7

[30] D. Shpak. A weighted-least-squares matrix decomposition with ap-

plication to the design of 2-d digital filters. Proceedings of IEEE

33rd Midwest Symposium on Circuits and Systems, pages 1070–

1073, 1990. 1

[31] A. Sobral and A. Vacavant. A comprehensive review of background

subtraction algorithms evaluated with synthetic and real videos.

Computer Vision and Image Understanding, 122:4–21, 2014. 1, 2

[32] N. Srebro and T. S. Jaakkola. Weighted low-rank approximations.

20th International Conference on Machine Learning, pages 720–

727, 2003. 1

[33] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin

matrix factorization. In Proceedings of Advances in Neural Informa-

tion Processing Systems, 18:1329–1336, 2005. 1

[34] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Prin-

ciples and practice of background maintainance. Seventh Interna-

tional Conference on Computer Vision, pages 255–261, 1999. 6

[35] K. Usevich and I. Markovsky. Optimization on a grassmann manifold

with application to system identification. Automatica, 50(6):1656–

1662, 2014. 1

[36] K. Usevich and I. Markovsky. Variable projection methods for

affinely structured low-rank approximation in weighted 2-norms.

Journal of Computational and Applied Mathematics, 272:430–448,

2014. 1

[37] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image

quality assessment: from error visibility to structural similarity. IEEE

Transaction on Image Processing, 13(4):600–612, 2004. 6

[38] T. Wiberg. Computation of principal components when data are

missing. In Proceedings of the Second Symposium of Computational

Statistics, pages 229–236, 1976. 1

[39] J. Wright, Y. Peng, Y. Ma, A. Ganseh, and S. Rao. Robust principal

component analysis: exact recovery of corrputed low-rank matrices

by convex optimization. Proceedings of 22nd Advances in Neural

Information Processing systems, pages 2080–2088, 2009. 2, 4, 5

[40] B. Xin, Y. Tian, Y. Wang, and W. Gao. Background subtraction via

generalized fused Lasso foreground modeling. IEEE Computer Vi-

sion and Pattern Recognition, pages 4676–4684, 2015. 2, 3, 6, 7

1861


