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Abstract

Sparse coding-based algorithms have been successfully

applied to the single-image super resolution problem. Con-

ventional multi-image super-resolution (SR) algorithms in-

corporate auxiliary frames into the model by a registration

process using subpixel block matching algorithms that are

computationally expensive. This becomes increasingly im-

portant as super-resolving UHD video content with existing

sparse-based SR approaches become less efficient. In order

to fully utilize the spatio-temporal information, we propose

a novel multi-frame video SR approach that is aided by a

low-rank plus sparse decomposition of the video sequence.

We introduce a group of pictures structure where we seek

a rank-1 low-rank part that recovers the shared spatio-

temporal information among the frames in the group of pic-

tures (GOP). Then we super-resolve the low-rank frame and

sparse frames separately. This assumption results in signif-

icant time reductions, as well as surpassing state-of-the-art

performance both qualitatively and quantitatively.

1. Introduction

The recovery of high-resolution (HR) images and videos

from low-resolutions (LR) content is a topic of great inter-

est in digital image processing with applications in many

areas such as HDTV [11], medical imaging [20], satellite

imaging [23], face recognition [12], immersive content gen-

eration, and surveillance [27]. The global super-resolution

(SR) problem assumes that the LR image is a noisy, low-

pass filtered, and downsampled version of the HR image.

This problem is highly ill-posed, as a result of the high-

frequency information being lost during the non-invertible

low-pass filtering and subsampling. Moreover, the SR prob-

lem is practically a one-to-many mapping from the LR to

HR space that can have multiple solutions. Finding the cor-

rect solution amongst the possible solutions is non-trivial.

In SR techniques it is generally assumed that the majority

of the high-frequency data is redundant and can be recon-

structed accurately from the low-frequency content. The

SR methods can be divided into two categories. The multi-

image SR (MISR) and single-image SR (SISR) methods.

Conventional MISR methods [14], [10], [1] attempt to ex-

ploit the explicit redundancy by constraining the problem

with additional information, i.e., they normally require mul-

tiple low-resolution images of the same scene. However,

these models usually require complex subpixel image reg-

istration [21] and fusion stages, the accuracy of which di-

rectly impacts the quality of the result. The SISR methods

attempt to learn the implicit redundancy present in natural

data to recover the HR data from the available LR coun-

terpart. These can include but are not limited to the local

spatial correlations in images and temporal correlations in

videos. A comprehensive survey of recent SISR methods

can be found in [25].

A recent thriving family of the SISR methods is sparsity-

based techniques that suggest image patches can be well-

represented as a sparse linear combination of elements from

an appropriately chosen over-complete dictionary [26],

[14], [24], [8], [4]. According to this observation, one could

seek a sparse representation for each patch of the LR input,

and then use the coefficients of this representation to gen-

erate the HR output. The learned dictionary should then be

able to embed the prior knowledge necessary to constrain

the ill-posed problem of SR. Attempts have been made in

order to adapt the sparse-based techniques to MISR prob-

lem to improve the output quality. Recently, an extension

of the model in [26] has been proposed by Kato et al. [14],

to incorporate multi-frame SR where uni-level HR dictio-

naries are learned using patches from the HR training im-

ages, and the LR dictionary is generated in the testing phase

assuming a blur and an estimated translation between the

LR target patch and the LR auxiliary patches. In [14], it

is assumed the distortion are simple vertical and horizontal

translation and the warping operators that are calculated us-

ing a sub-pixel block matching algorithm proposed by [21].

A drawback of these approaches is that the registration pro-

cess is generally computationally expensive. To perform

the SR operation on an image, it is necessary to increase

the resolution of the LR image to the resolution of the HR

image at some stage in the process. Several models based

on deep neural networks [3], [17], [19] have achieved this
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by upscaling the LR image to the HR space using a single

filter, commonly Bicubic interpolation, before reconstruc-

tion. That is the SR operation is performed in the HR space,

which is sub-optimal and adds computational complexity.

Moreover, the previously mentioned methods typically re-

quire enormous databases of millions of HR and LR patch

pairs, and therefore are computationally expensive.

A reasonable assumption when processing video infor-

mation is that most of a scene’s content is shared by neigh-

boring video frames; except for the scene changes and ob-

jects intermittently appearing and then disappearing from

the scene. This provides additional redundancy that can be

exploited for video super resolution. An SR method that is

able to utilize the inherent spatio-temporal information in

the video, can potentially demonstrate better performance

across a wide range of video SR tasks.

In this paper, we propose a novel multi-frame SR ap-

proach for the video SR problem. Our method operates

on groups of pictures (GOP) in the LR domain that each

contain between 8 to 64 frames. The GOP structures have

been used in the literature [28] to accelerate the SR process,

using the motion vector, block-size, and prediction resid-

ual values that are computed by the video encoder. Here,

in each GOP, we calculate a low-rank + block-sparse de-

composition [6] in order to separate the static blocks and

the dynamic blocks in the video frames, while accounting

for the possible camera-induced motion in the background

of the scene. We refer to the static blocks that are de-

composed in the low-rank component as background, al-

though this may not be the correct nomenclature given the

characteristics of this decomposition; similarly we refer to

the dynamic (changing) blocks that are decomposed into

the sparse component as the foreground. The obtained LR

background frame and LR foreground frames are the super-

resolved separately with a sparsity-based approach using a

compact over-complete dictionary of atoms. Then the HR

GOP is reconstructed using the obtained HR background

frame and HR foreground frames.

Motivated by [26] the SR part of our algorithm requires

only two compact learned dictionaries. Moreover, by super-

resolving the background and foreground parts separately,

the computation becomes more efficient and scalable, com-

pared with [26], [14], and [10]. The efficiency of our

method is two-fold: firstly that the frames in a GOP usu-

ally share a significant number of similar blocks, that im-

plicitly enable us to exploit spatio-temporal redundancy in

the video. Secondly, we strictly set the rank of the back-

ground of each GOP to 1, meaning that we obtain a sin-

gle image that can be representative of the whole GOP’s

unchanging pixel structures; this then implies that we only

have to super-resolve one background for the whole GOP.

The sparse part contains many zero blocks that are super-

resolvable by several orders of magnitude faster than its

original corresponding frame. Also, the number of opera-

tions needed for the matrix decomposition is significantly

smaller than that of a block-matching algorithm used in

state-of-the-art alternatives. Consequently, these lead to su-

perior performance, both qualitatively and quantitatively,

compared to other state-of-the-art alternatives.

The rest of this paper is organized as follows. In Sec-

tion 2 we describe the fundamentals of sparsity-based SR.

Then in Section 3 we introduce our multi-frame video

SR method called VSRGOP. The modified approximated

RPCA method for SR problem is introduced. Finally, in

Section 4 we demonstrate the efficacy of our proposed

method by extensive experimental evaluations.

2. Sparse-Based SR

We denote the LR image as Y , and the HR image of the

same scene as X . Lowercase y and x denote the low- and

high- resolution image patches, respectively. D is used to

refer to the dictionary for sparse coding; specifically the Dl

andDh denote the dictionaries for low- and high- resolution

image patches, respectively. It has been statistically proven

that image patches can be well-represented as a sparse lin-

ear combinations of elements, namely atoms of a dictionary

taken from a finite and not too big bag [5], [26]. Each vec-

torized patch y 2 R
m of an LR image Y , can be written

as:

y = ↵1D1 + ↵2D2 + · · ·+ ↵nDn, (1)

where most of the coefficients ↵1, ↵2, . . . , ↵n are zero if the

atoms D1, D2, . . . , Dn of the dictionary D are properly se-

lected. Whenm = n,D has to be a complete basis to repre-

sent any patch. However, when n > m it is possible to find

solutions ↵ = (↵1, ↵2, . . . , ↵n) where a considerable num-

ber of coefficients ↵i are zero. We can conveniently assume

a sparse representation for y as each patch is completely de-

termined for a substantially reduced number of parameters

that is usually far less than the number of atoms.

To calculate the sparse representation of a patch one

needs to determine the appropriate dictionaries D (learning

phase), and then estimate the coefficients of the linear com-

bination of the atoms (testing phase). We can find the spars-

est ↵ results in the convex Lasso regularized minimization

problem below

min
α

kD↵− yk22 + µk↵k1, (2)

where µ is a regularization parameter to balance the recon-

struction error and sparsity. Different solvers such as Least

Angle Regression (LARS), Shooting algorithm, etc., have

been used to solve this problem. A systematic way to calcu-

late the dictionary D is solving the following minimization

problem

min
D,Z

kDZ −Xk22 + µkZk1, (3)
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where X is the HR training data. The objective function

above is non-convex with respect to both D and Z. Z con-

tains the coefficients of the linear combination of the atoms

that approximate the training data. The problem above can

be solved in an alternating process, by keeping one fixed

and solving for the other at a time until convergence. This

alternating solution is convex. The selection of training data

and the incorporation of structures and characteristics in the

dictionaries is application-specific.

2.1. Single-Image SR based on Sparse Coding

Yang et al. [26] assume that the degradation from the HR

patch x to the LR patch y is nearly linear, where each HR

patch and its corresponding LR patch share the same sparse

linear coefficients ↵ = (↵1, . . . , ↵n). The high-resolution

dictionary Dh and the low-resolution dictionary Dl need

to be defined properly. There are then two stages to solv-

ing the sparse representation-based SR: the learning phase

where the bi-level dictionaries Dh and Dl are constructed,

and the testing phase where the vector coefficients ↵ that

correspond to each LR patch are calculated.

2.1.1 Learning Phase

We assume that the sparse representation of the HR patches

is the same as the sparse representation of the correspond-

ing LR patch; therefore, the set of training samples can be

formed by a group of N HR sampled patches Xh and M
LR sampled patches Yl (here N = M ). The HR and LR

vectorized atoms are the columns of the matrices Dh and

Dl that solve the following minimization problem

min
Dh,Dl,Z

kXc −DcZk
2
2 + µkZk1, (4)

where Xc =

2

4

1
p
N

Xh

1
p
M

Yl

3

5 and Dc =

2

4

1
p
N

Dh

1
p
M

Dl

3

5.

The minimization problem above is non-convex with

three variables Dh, Dl and Z. A convex solution would

be an alternating process where two variables are kept fixed

and the other one is solved until convergence. WhenDh and

Dl are fixed, the optimization problem is solved by non-

negative quadratic linear programming using feature sign

(L1QP solver). When Z is fixed, a constrained quadratic

programming technique in its dual formulation is used. The

details of this solution appears in [15].

2.1.2 Testing Phase

Here, given a LR patch y, the HR desired patch x can be

defined as

x = Dh↵
l, (5)

where ↵l is the solution of the minimization problem

↵l = argmin
α

ky −Dl↵k
2
2 + µk↵k1 (6)

This problem can be solved using the LARS-Lasso al-

gorithm [7] or the feature-sign search algorithms [15]. To

increase perceptual quality of the results a few more steps

are required. In order to enforce the compatibility between

adjacent patches, the authors in [26] proposed an overlap-

ping strategy that modifies the minimization problem (6)

that involves the HR and LR dictionaries. Also, a feature

transformation F is used to enforce the high-frequency con-

tent of the LR image. Finally, once the HR image has been

reconstructed patch by patch using sparse coding, a back-

projection algorithm is performed to enforce the global re-

construction constraint to correct for noise in the LR image.

3. VSRGOP: Multi-Frame Video SR

We propose a novel sparse coding-based algorithm for

multi-frame SR in videos that is aided by a low-rank and

sparse decomposition (LRSD) to fully utilize the spatio-

temporal information in the video. To the best of our knowl-

edge only a handful of algorithms based on multi-frame

sparse coding-based SR exist in the literature where usually

an expensive block-matching algorithm is used. Our algo-

rithm is the first to involve a LRSD step in order to avoid

the registration by block-matching. The majority of SR al-

gorithms have been proposed to the SISR problem and do

not take into account the temporal information in videos. In

[28] the authors proposed to use the motion vectors, block

sizes, and prediction residual that is computed by the video

encoder in compressed videos to accelerate their algorithm.

Low-rank and sparse decomposition (LRSD) methods have

been used in many applications such as background sub-

traction [6], [9], robust subspace clustering, etc.; however,

these LRSD models are not suitable for the problem at hand.

To adapt the LRSD to the SR problem, we propose a novel

modified approximated RPCA model where the low-rank

component L is a rank-1 matrix and the sparse matrix S has

a tree-regularized block structure.

As discussed before, the main limitation of using the

sparse coding-based algorithms for video SR is the high

computational cost associated with the super-resolving

frames individually. Here, we propose a novel approach that

alleviates the high computational cost. Our method obtains

greater visual quality while achieving significant reduction

of the number of floating point operations.

We propose to super-resolve the LR video in GOPs of

F frames with F = [8, 16, 24, 32, 64]; we decompose each

GOP into a low-rank component L that contains mostly the

static unchanging parts of the scene and a sparse compo-

nent S that contains dynamic pixels, changes in the scene,

and possible noise. Then each obtained L and S image
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for the frames in the GOP are upsampled separately us-

ing the sparse coding method described in the previous sec-

tion. Notice that since we perform the SR on a low-rank

component that is obtained by decomposing a GOP, we im-

plicitly incorporate temporal information into our SR ap-

proach. Another advantage of this method is that, since

the sparse component S is expected to contain very few

non-zero blocks of pixels, the upsampling for each sparse

image can be performed with several orders of magnitude

faster than that of a non-sparse image. Therefore, the spatio-

temporal information in the GOP are fully exploited without

having to calculate any block matching, complex registra-

tion, or relying on motion vectors calculated by the video

encoder. Then the shared information between the images

in the GOP that is contained in the matrix L is upsampled

only once – again providing time savings – as opposed to

having to perform the upsampling for each frame individu-

ally. This is supported by empirical evidence that we will

explain later. The LRSD provides a robust motion compen-

sation possibility for the cases where camera-induced mo-

tion is present in the video sequence. The assumption of

low-rankness and sparsity itself gives a good cue for being

able to describe the global motion in the scene as transfor-

mations between the low-rank images in adjacent frames.

We find that in videos containing camera-induced motion,

our method performs better than the state-of-the-art alterna-

tives.

3.1. LRSD for SR Problem

Given a set of frames in a GOP of N frames I =
{I1, I2, . . . , In}, we can form the matrix A 2 R

m×n by

stacking the frames in I as columns in the matrix A. The

problem of finding a low-rank matrix L and a sparse matrix

S such that A = L+ S has been extensively studied in the

literature [2], [29], [18], [9], [6]. In [6], the authors propose

a modified approximated RPCA where they solve a 3-term

decomposition problem. We are interested in decomposing

the matrix A into 2 terms L and S as

min
rank(L)≤r,S,τ

kA ◦ ⌧ − L− Sk2F + λ (S) (7)

where we have strictly set rank(L)  r  rank(A).
k · kF is the Frobenius norm of a matrix defined as kAkF =
q

P

i,j A
2
ij ; λ is a scalar that controls the amount of data

in S. We find that setting it to λ = 1/
p

max(m,n) works

well for our experimental data. ⌧ stands for some trans-

formation describing the global motion induced by camera

motion (e.g. 2D affine transformations, or 3D projective

transformations).
The matrix S contains noise and sparse components.

Similar to [6] we use a tree-structured sparse component
since it better describes the spatial connectivity of the pix-
els in the sparse matrix. The scene in a frame can be de-

scribed using a tree structure by subdivision where each
child node is a subset of its parent node and the nodes of
the same depth level do not overlap. Denote G as a set
of groups from the power set of the index set {1, . . . ,m},
with each group G 2 G containing a subset of these
indices. The aforementioned tree-structured groups used
in this paper are formally defined as follows: A set of
groups G is said to be tree-structured in {1, . . . ,m} if G =
{. . . , Gi

1, G
i
2, . . . , G

i
bi
, . . . } where i = 0, 1, 2, . . . , d, d is

the depth of the tree, b0 = 1 and G0
1 = {1, 2, . . . ,m}, bd =

m and correspondingly {Gd
j}

m
j=1 are singleton groups. Let

Gi
j be the parent node of a node Gi+1

j0 in the tree, we have

Gi+1
j0 ✓ Gi

j . We also haveGi
j\G

i
k = ;, 8i = 1, . . . , d, j 6=

k, 1  j, k  bi. Similar group structures are also consid-
ered in [6], [13]. With the above notation, a general tree-
structured sparsity-inducing norm can be written as

ψ(S) =

dX

i=0

biX

j=1

w
i
jkSGi

j
k2,1, (8)

where SGi
j

is a vector with entries equal to those of S for

the indices in Gi
j and 0 otherwise. wi

j are positive weights

for groups Gi
j chosen as wi

j = 1/max(AGi
j
) to enforce

illumination invariance in the regularization scheme across

patches. The regularizer  (·) on S is chosen to be k · k2,1.

`2,1-norm is a group sparsity inducing norm that acts in a

tree-structured which involves a hierarchical partition of the

m variables in S into groups.

The optimization problem (7) is solved via an alternat-

ing minimization strategy described in [6]. First an initial-

ization of ⌧ is found, by pre-aligning all the frames in the

GOP to the middle frame. Then ⌧ is linearized via the ro-

bust multiresolution method proposed in [16], [18]. Then

the function is minimized for L and S separately until con-

vergence as

Lt = argmin
rank(L)≤r

kA ◦ ⌧ − L− St−1k2F (9)

St = argmin
S

kA ◦ ⌧ − Lt − Sk2F + λ
d

X

i=0

bi
X

j=1

wi
jkSGi

j
k2,1

(10)

Both these subproblems have non-convex constraints.

Their global solutions Lt and St exist. In particular, the

two subproblems can be solved by updating Lt via singu-

lar value hard thresholding of A − St−1 [30], and updat-

ing St via our structured-sparsity inducing norms with a

soft-thresholding with λ. The penalty term in (10) assures

the structured-sparsity of S w.r.t. the defined tree-structured

groups.

Using the LRSD method we propose the VSRGOP algo-

rithm shorthand for Video Super Resolution using Groups

of Pictures. The parameters that we need to set for this

algorithm are: number of atoms of the dictionaries, patch
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Algorithm 1 VSRGOP Algorithm

Input: LR frames of the GOP

Output: HR frames of the GOP

Learning phase: Construct of the bilateral dictionaries Dh and Dl fol-

lowing the strategy by [26]. (This phase can be performed in advance

and use Dh and Dl as inputs of the algorithm.)

Testing phase:

1) Estimate the LRSD of matrix A, while estimating the camera

motion as A ◦ τ ⇡ L + S, where rank(L) = 1, S is block-

sparse, and τ is the transformation parameter.

2) Construct a HR version of the frame corresponding to back-

ground frame using the SISR algorithm described in Section 2.1.

3) For all the frames in the GOP (1, 2, . . . , N ) construct a HR ver-

sion of the frames corresponding to the columns S using the SISR

algorithm.

4) Reconstruct the SR version of the GOP with the HR background

and HR foreground frames, applying the inverse transformation.

size, number of frames in GOP, the overlap size of patches,

regularization parameter, and scale factor. Algorithm 1 de-

scribes VSRGOP steps in detail. Following the strategy in

[26], in steps 2 and 3 of Algorithm 1 we use a high-pass

filtering in order to extract local features that correspond

to the high-frequency content. Also, a back-projection step

is performed as part of both these steps. Where the back-

projection is used in our tests we refer to it as VSRGOP +

BP. In step 4 the HR backgorund and HR foreground frames

are simply added to create the SR video.

4. Experiments

In this section we show a comparative study of the per-

formance of the proposed algorithm for video and single

image SR. We first demonstrate the SR results obtained

by applying our method on video sequences from our test

databases. Then we show that our method can be success-

fully applied to the SISR problem despite being a video SR

algorithm by nature. Finally we move on to discuss how

various influential factors for the proposed algorithm affect

the global reconstruction, as well as the computational com-

plexity. For video super-resolution we use the following

datasets: BBC1, Ultra Video Group (UVG)2, and SJTU3

[22]. These three datasets comprise of 27 videos of 10 sec-

onds each at 60fps. For our tests we use all the frames in the

videos. Since by default we choose GOP size of 8 frames,

1The BBC has produced and made available the BBC video sequences

for use under the Creative Commons Attribution-NonCommercial 3.0 li-

cence.
2These sequences and all intellectual property rights therein re-

main the property of Digiturk. These videos may be used ac-

cording to Creative Commons Attribution-NonCommercial 3.0 Un-

ported http://creativecommons.org/licenses/by-nc/3.

0/deed.en_US. The dataset can be obtained from: http://

ultravideo.cs.tut.fi/
3SJTU 4K Video Sequences: http://medialab.sjtu.edu.

cn/web4k/index.html

we report average results for an 8-frame GOP where appli-

cable. For single image super-resolution we use the pub-

licly available Set54 and Set145 datasets. Our algorithm

is implemented in MATLAB and run on a Core i7-4770

CPU @3.40GHz (single core) and 32GB of RAM. We com-

pare our method against state-of-the-art in sparse coding SR

methods, namely Kato et al. [14], Yang et al. [26], and a

state-of-the-art deep learning approach by Dong et al. [3],

as well as the baseline Bicubic interpolation. We set the

parameters of our algorithm for these experiments as: The

dictionaries Dh and Dl are learned using 100,000 patches

extracted from 57 HR natural images. The number of atoms

in the dictionary is set to 512. Scale factors 2 and 4 are used.

Patch size is 10, regularization parameter µ 0.15, and toler-

ance 0.05.

Following previous works, for our video SR experi-

ments, we only consider the luminance channel in YCbCr

color space, as humans are more sensitive to luminance

changes. The chroma components of the original video are

interpolated using plain Bicubic interpolation. The evalua-

tions for the Kato et al. [14], and the Yang et al. [26] mod-

els are calculated based on the MATLAB code and mod-

els provided by their respective authors. We have provided

supplementary material for all our tests, that includes the

qualitative results. Please find the supplementary material

available online here https://goo.gl/SKkG9V. Code

for our algorithm will be publicly available online upon ac-

ceptance of the paper.

4.1. Qualitative Evaluation

We later demonstrate that our method is able to obtain

high image quality metric values, however, the final judge

for the image quality is the human viewer. It has been ob-

served that although some methods generate visually ap-

pealing images, their Peak Signal-to-Noise (PSNR) values

could be subjectively lower. Hence, the PSNR alone is not

a reliable criterion for visual image quality.

To make a visual comparison between our model with

other sparse-based methods, we super-resolve a GOP of 8

frames (the first 8 frames of a video) from all our test videos.

We then compare the middle frame of the GOP with the

corresponding SR image obtained by other algorithms. You

can see the results of super-resolving a GOP of 8 frames

from 1080p to 4K UHD with an upscaling factor 2 in Figure

1. Our algorithm is able to handle camera-induced motion

in the background of the sequence well.

In Figure 2 we demonstrate a comparison between our

method and four other methods. Here, a sequence has been

super-resolved from 480⇥270 to 1080p with an upscaling

4http://www.ifp.illinois.edu/˜dingliu2/iccv15/

html/SRdemoFrame_set5.html
5http://www.ifp.illinois.edu/˜dingliu2/iccv15/

html/SRdemoFrame_set14.html
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Figure 1: A GOP of 8 frames in Book, CalendarAndPlants, and CampfireParty sequences up-sampled with upscaling factor 3

(1080p to 4K UHD) with the VSRGOP + BP. Please refer to the supplementary material (available online https://goo.

gl/SKkG9V) for full-size images.

factor 4. A cropped region of the image is shown that con-

tains edges of printed fonts, as well as smooth texture and

shading. While VSRGOP obtains better results than Bicu-

bic and Yang [26], our method plus the Back-Projection

(VSRGOP + BP) obtains higher visual reconstruction as

well as better PSNR. The results in Kato + BP [14] tend

to have grid-like and jagged artifacts.

Figure 3 shows more results for super-resolving se-

quences from 480⇥270 resolution to 1080p. In general our

method is able to produce better texture, edge, and smooth-

shaded region definitions for all the test videos; yet at the

same time, the PSNR values of our results are the high-

est among competitors. While Bicubic interpolation pro-

duces overly smooth and watercolor-like images, our VS-

RGOP + BP is able to recreate both high-frequency and

low-frequency components in the images. Kato + BP [14]

is able to hallucinate the high-frequency content very well,

however, it fails to produce visually appealing results on

smoother regions. Moreover, the ringing and jagged arti-

facts produced by Kato + BP can be seen in the first three

examples (HoneyBee, Jockey, and ParkAndBuildings se-

quences).

Visually our VSRGOP + BP method produces better re-

sults in general. The obtained PSNR values for our multi-

frame algorithm demonstrate superior performance as well.

The advantage of using bilateral dictionaries compared with

the unilateral dictionaries suggested by [14] is corroborated

with our empirical results. Moreover, the visual results

show that our multi-frame strategy outperforms the single-

image algorithm in [26] and the multi-frame algorithm in

[14]. As we will discuss later, the advantage of our method

not only limited to higher qualitative performance, but also

it achieves this with significant reduction of computational

cost.

4.2. Quantitative Evaluation

In this section we analyze the proposed method’s perfor-

mance with PSNR image quality metric. Also, we compare

the time consumption of our algorithm against state-of-the-

art sparse-based SR methods.

Table 1 shows the mean PSNR values for super-resolving

all the frames in each of our test sequences individually. On

average our algorithm outperforms contenders for the SR

problem. Our method provides between 0.77dB to 3.72dB

improvement over its sparse-based predecessor, and be-

tween 0.52dB to 0.81dB improvement over the state-of-the-

art sparse-based SR method. In Table 2 we show an average

time consumption comparison between our method and its

predecessor sparse-based method [26] and state-of-the-art

sparse-based method [14], for processing a 600-frame se-

quence. Our method is between 1.3⇥ to 1.6⇥ faster than its

sparse-based predecessor and 271.1⇥ to 424.6⇥ faster than

the state-of-the-art sparse-based SR method.

Recently, deep learning algorithms have had a great suc-

cess in the SR problem. We have selected the best published

method SRCNN [3] with the 9-5-5 architecture trained on

ImageNet dataset, and report its results in Table 3. Here

an upscaling factor 4 is used. Our method outperforms SR-

CNN by 2.18dB. However, the advantage of deep learning

based methods is that they can be used in real-time process-

ing. Although for applications such as medical imaging,

where exact reconstruction is vitally important our method

offers to be a better alternative.

5. Conclusions

In this paper we introduced a new sparsity-based video

super-resolution method, that exploits the spatio-temporal

information of the video sequence by a low-rank and sparse

decomposition algorithm. Our method builds upon sparse

representations in terms of coupled dictionaries jointly

trained from high- and low-resolution image patch pairs.

Our low-rank and sparse decomposition provides signifi-

cant reductions in computation cost, while increasing the

visual and quantitative quality of the reconstruction results

by exploiting the spatio-temporal information that can be

shared among adjacent frames of a video. Extensive ex-
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Figure 2: Qualitative comparison for up-sampling the frame 2 of Vehicles sequence from 480⇥270 to 1080p using different

methods. Please refer to the supplementary material (available online https://goo.gl/SKkG9V) for full images. For

each sequence a crop of the image, as well as its respective full-image PSNR is shown.

Table 1: Mean PSNR for up-sampling from 1080p to 4K UHD with upscaling factor 2, and from 480⇥270 to 1080p with

upscaling factor 4 for all the frames in the sequences of 3 datasets. Our method provides between 0.77dB to 3.72dB improve-

ment over its sparse-based predecessor, and between 0.52dB to 0.81dB improvement over the state-of-the-art sparse-based

SR method.

1080p to 4K UHD

VSRGOP VSRGOP + BP Kato [14] Kato + BP [14] Yang [26] Bicubic

mean 37.41 39.95 31.61 39.43 36.23 39.29

480⇥270 to 1080p

VSRGOP VSRGOP + BP Kato [14] Kato + BP [14] Yang [26] Bicubic

mean 31.54 32.32 25.16 31.51 31.55 31.72

Table 2: Average time consumption comparison between

our method and its predecessor sparse-based method [26]

and state-of-the-art sparse-based method [14], for process-

ing 1 frame. Our method is between 1.3⇥ to 1.6⇥ faster

than its sparse-based predecessor and 271.1⇥ to 424.6⇥
faster than the state-of-the-art sparse-based SR method.

1080p to 4K UHD

VSRGOP + BP Yang [26] Kato + BP [14]

time (h:mm:ss.s) 0:08:20.9 0:10:32.4 58:57:5.5

480⇥270 to 1080p

VSRGOP + BP Yang [26] Kato + BP [14]

time (h:mm:ss.s) 0:01:32.9 0:02:30.6 6:59:43.0

perimental evaluation on 3 video datasets indicate the effi-

cacy and effectiveness of the proposed algorithm in video

super-resolution for HD and UHD content. Furthermore,

we demonstrated the efficacy of our method for the single-

image super-resolution problem, and showed that it can be

Table 3: Comparison with state-of-the-art Super-Resolution

method with a Deep Learning approach SRCNN 9-5-5 [3]

trained on ImageNet dataset, using an upscaling factor 4.

SRCNN [19] VSRGOP + BP

Bosphorus 37.53 45.21

ReadySetGo 33.69 38.38

Beauty 39.48 35.55

YachtRide 33.17 42.11

ShakeNDry 36.68 39.48

HoneyBee 40.51 38.23

Jockey 41.55 38.98

mean 37.52 39.70

successfully applied to single images, yet at the same time

providing better reconstruction quality as well as less com-

putation time. In future, we will investigate techniques

to obtain real-time performances with our VSRGOP + BP

method.
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Figure 3: Qualitative comparison for up-sampling sequences from 480⇥270 to 1080p using different methods. Please refer

to the supplementary material (available online https://goo.gl/SKkG9V) for full images. For each sequence a crop of

the image, as well as its respective full-image PSNR is shown.
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