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Abstract

We demonstrate a heuristic algorithm to compute the

approximate low-rank singular value decomposition. The

algorithm is inspired by ideas from compressed sensing and,

in particular, is suitable for image and video processing

applications. Specifically, our compressed singular value de-

composition (cSVD) algorithm employs aggressive random

test matrices to efficiently sketch the row space of the input

matrix. The resulting compressed representation of the data

enables the computation of an accurate approximation of the

dominant high-dimensional left and right singular vectors.

We benchmark cSVD against the current state-of-the-art ran-

domized SVD and show a performance boost while attaining

near similar relative errors. The cSVD is simple to imple-

ment as well as embarrassingly parallel, i.e, ideally suited

for GPU computations and mobile platforms.

1. Introduction

The singular value decomposition (SVD) is among the

most ubiquitous and powerful methods for data processing

in the computational era. However, the emergence of mas-

sive data has severely challenged our ability to compute this

fundamental matrix decomposition, placing significant con-

straints on both memory and processing power. In particular,

in the context of mobile computing platforms like drones or

autonomous underwater vehicles, which provide only very

limited compute power, data acquisition is often far out-

stripping computational resources. In computer vision, for

instance, there is a growing demand for higher-resolution

imaging, exemplified by 4K video streams. LIDAR (light

detection and ranging) also faces a similar growth trajectory

as it migrates to the consumer electronics market, since it is

expected to be become a standard feature on autonomous ve-

hicles for detecting surrounding objects. Hence, innovations

that reduce the computational and storage demands of the

SVD are increasingly important, i.e., algorithms that scale

with the underlying signal complexity rather than the size of

the ambient measurement space.

Randomized algorithms have been demonstrated to be

highly viable methods to substantially reduce the computa-

tional demands of the SVD [18, 24, 31]. These methods are,

in particular, suitable for high-dimensional signals, which

feature a low-rank structure. This means, that the intrinsic

rank of the data is relatively small compared to the dimen-

sion of the ambient measurement space. The idea is to derive

a smaller matrix from the high-dimensional input matrix

which captures the essential information. This can be done

efficiently by using random sampling as a computational

strategy. Then, the smaller matrix is used to learn, or extract,

the dominant structure from the data.

We demonstrate a simple and computationally efficient

two-pass algorithm to compute the approximate low-rank

SVD. Specifically, we leverage concepts from compressed

sensing to sketch the row space of the input matrix, as il-

lustrated in Figure 1. This approach faithfully preserves

Figure 1: Schematic illustration of the compressed SVD

architecture.

the dominant spectral information, and enables an efficient

computation which approximates the high-dimensional SVD.

The results show that the compressed SVD is, in particular,

suited for image and video processing applications. Our

work is in closely related to the ideas of Drinea et al. [10]

and it has connections to existing randomized and sketched

matrix algorithms [14, 26, 28, 18, 15].

The emphasis of this work is to present an intuitive and
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readily implementable algorithm to compute the low-rank

SVD through sketching [22]. The presented algorithm takes

full advantage of highly sparsified random test matrices.

Further, the formulation of the algorithm provides some

interesting flexibility to update the prior on the target-rank

based on the approximated singular value spectrum, before

recovering both the left and right singular vectors. Thus the

expensive computational steps are performed after cheaply

sketching the singular value spectrum.

In the following, we provide context for our cSVD algo-

rithm, examining different measurement matrices and com-

paring the performance with the randomized SVD. The or-

ganization is as follows: First, Section 2 briefly reviews the

SVD and randomized algorithms as well as the basic concept

of sparsity and low-rank structure. Then, the compressed

SVD algorithm is described in Section 3. The results are

presented in Section 4. Final remarks are given in Section 5.

2. Background

2.1. Singular Value Decomposition

Given a real matrix X of dimension m× n, the singular

value decomposition admits the following factorization

X = USV⊤, (1)

where the left and right singular vectors are denoted as U

and V, respectively. The spectrum of the data is described

by the singular values, which are the diagonal elements of

the matrix S. Instead of the full factorization, it is often of

interest to compute a low-rank matrix approximation. Specif-

ically, the optimal k-rank approximation Xk to the matrix

X in the least square sense that minimizes the Frobenius or

2-norm is given by

Xk := UkSkV
⊤

k := argmin
X

′

k

‖X−X′

k‖. (2)

The low-rank approximation can be obtained by simply

truncating the singular values and vectors computed via a de-

terministic algorithm [16]. However, this approach becomes

infeasible for high-dimensional data matrices. Instead, it-

erative algorithms like Krylov-subspace methods can be

used to approximate the dominant singular vectors more effi-

ciently [16]. These partial algorithms are the most popular

approach for computing low-rank matrix approximations, in

particular, for large sparse matrices. However, randomized

algorithms have become increasingly popular over the last

two decades. This is because randomized algorithms often

show a better performance in practice and are more robust

than Krylov methods [25].

2.2. Randomized Low­Rank Approximations

In 1998, Frieze et al. [14] presented a rigorous approach

to efficiently compute the approximate low-rank SVD using

a Monte Carlo based approach. They showed that a ma-

trix can be approximated from a much smaller sub-matrix

obtained through non-uniform row and column sampling.

The rows and columns are selected by importance sampling

based on leverage scores. Further improvements and theoret-

ical results have since been obtained [19, 8, 2].

Sarlos [28] and Martinsson et al. [26] introduced an ap-

proach based on random projections. They use the properties

of random vectors to efficiently build a subspace that cap-

tures the range of the matrix. This approach was further

improved by Woolfe et al. [32], and eventually Halko et

al. [18] unified and extended this work in their seminal paper.

The randomized singular value decomposition (rSVD) is

now considered a state-of-the-art algorithm for computing

a low-rank matrix approximation [24]. For implementation

details see [30, 13].

A third line of work based on compressive measurements

is closely related to matrix sketching [22, 31]. Gilbert et

al. [15] presented a single-pass algorithm, and correspond-

ing error bounds, to compute the singular values and right

singular vectors from a sketched matrix for a streaming data

model. The various approaches outlined here highlight the

growing importance of randomized techniques for matrix

decompositions.

2.3. Sparsity and Low­Rank Structure

The theory of compressed sensing [6, 9] demonstrates

that a signal can be approximately reconstructed from a

low-dimensional subsample using fewer measurements than

required by the Shannon-Nyquist sampling theorem. The key

assumption is that the data is compressible i.e., the signal

is sparse in some domain. This is certainly the case for

highly structured signals like audio and images. Consider

a compressible signal x ∈ R
m which is sparse with respect

to some transform basis Ψ, so that x = Ψs. Then we can

formulate the following model to obtain a compressed signal

y ∈ R
s as

y := Φx = ΦΨs, (3)

where Φ ∈ R
s×m is a random test matrix, also called mea-

surement matrix. Specifically, Φ is a linear map R
m 7→ R

s,

reducing the dimensionality, while preserving the informa-

tion. We do not need explicit knowledge about the transform

basis Ψ in order to obtain y. Instead, we can understand

I := ΦΨ as an information operator, sampling s pieces of

information about the underlying sparse signal s [9].

More generally, we are often interested in highly struc-

tured 2-D or 3-D signals, such as image or video data. Sig-

nals of this type are stored as arrays and feature a natural

low-rank structure. Hence, we want to generalize the model

presented in Eq. (3) to

Y := ΦX, (4)
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where we refer to X ∈ R
m×n as the high-dimensional data

and Y ∈ R
s×n as the compressed data or sketch of the data.

3. Compressed Singular Value Decomposition

Despite increasing computational power, big data matri-

ces pose a tremendous computational challenge for current

deterministic SVD algorithms. In such cases an approxi-

mate SVD is often the only feasible computation and may be

suitable for many uses. The only disadvantage comes from

incurring an error penalty ǫ ≥ 0 so that the approximate

low-rank SVD satisfies

‖X− X̂k‖F ≤ ‖X−Xk‖F · (1 + ǫ).

Ideas from compressed sensing provide a computationally

efficient framework to approximate the SVD from just a few

incoherent measurements. Therefore, we assume that the

data are low dimensional, which implies that the columns

are sparse in some transform basis Ψ so that X = ΨS.

The concept of matrix compression enables one to capture

and represent the information of data matrix X in a much

smaller compressed matrix Y. If we understand each vector

in our data matrix as a data point in a high-dimensional space,

then from an information retrieval perspective we are mainly

interested in the geometric relationships between the vec-

tors, so that similarities and differences can be identified [3].

The compressed matrix must ensure that distances and an-

gles between the data points are preserved. The restricted

isometry property (RIP) guarantees this property with high

probability, when using a sufficient number of incoherent

measurements [5]. Thus, compression can be understood as

a sampling process that captures a parsimonious represen-

tation of the dominant information of the data matrix. In-

terestingly, many high-dimensional signals arising in image

and video processing applications have a low intrinsic rank

relative to the dimension of the ambient measurement space.

Specifically, the theory of compressed sensing demonstrates

that certain data can be well-approximated from massively

under-sampled or compressed representations. However,

depending on the underlying structure of the data, the com-

pressed SVD may require many fewer measurements than

the compressed sensing theory suggests. This is because we

actually have access to the full high-dimensional data

3.1. Compressed Algorithm

In order to obtain a low-rank SVD approximation of X ∈
R

m×n with target-rank k and m ≥ n, we require a random

test matrix Φ ∈ R
l×m, where l = k + p. Here p denotes a

parameter for oversampling, and we shall see that a small

amount of oversampling is often sufficient in practice. From

Eq. (4) we obtain the compressed data matrix Y ∈ R
l×n as

Y := ΦX.

Next, our aim is it to approximate the right singular vectors.

Recall, that the singular values and vectors can be related to

the eigendecomposition of the inner and outer dot product

of a matrix A ∈ R
m×n as

A⊤A = (VSU⊤)(USV⊤) = VDV⊤, (5)

AA⊤ = (USV⊤)(VSU⊤) = UDU⊤, (6)

where the eigenvalues are the squared singular values, i.e.,

D = S2. Thus, we proceed by forming a smaller matrix

B ∈ R
l×l first

B := YY⊤, (7)

followed by computing the eigendecomposition

B =: TD̃T⊤. (8)

The matrix T ∈ R
l×l and D̃ ∈ R

l×l are the approximate

eigenvectors and eigenvalues, respectively. Hence, the ap-

proximate singular values are S̃ =
√
D. If, l > k we trun-

cate the decomposition, i.e., we extract the first k dominant

eigenvectors trunc(T, k) and singular values trunc(S̃, k). At

this point of the algorithm we can also update our prior deci-

sion of the target-rank k based on the approximated singular

value spectrum, i.e., a smaller target-rank might be sufficient.

This flexibility of the algorithm might be interesting in sev-

eral applications like robust principal component analysis.

From Equation (1) it follows that either the left or right

singular vectors can be approximated from each other as

U = XVS−1 or V = X⊤US−1. Thus, the approximate

right singular vectors Ṽ ∈ R
n×k are recovered as

Ṽ := Y⊤TS̃−1. (9)

Similarly, the approximate left singular vectors Ũ ∈ R
m×k

are obtained as follows

Ũ := XṼS̃−1. (10)

This last step involves a second pass over the high-

dimensional input matrix. However, the problem in practice

is that the columns of Ũ are only approximately orthogo-

nal. This is due to the approximation errors in the eigen-

values. Thus, we need to introduce an additional updating

step. Specifically, we compute the SVD of the scaled right

singular vectors (principal components)

ŨS̃ =: USQ⊤. (11)

Then, the last step is to update of the right singular vectors

V := ṼQ, (12)

which completes the approximate computation of the singu-

lar value decomposition. A justification for this approach is

motivated as follows
[

ŨS̃
]

Ṽ⊤ =:
[

USQ⊤
]

V̂⊤ =: USV⊤ ≈ Xk. (13)

The computational steps are summarized in Algorithm 1. An

alternative (numerically more stable) formulation is outlined

in Algorithm 2 in Appendix A.
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Algorithm 1 Compressed SVD (cSVD)

Input: Input matrix X of dimension m× n, and target rank k.

Optional: Parameters p to control oversampling.

(1) l← k + p Slight oversampling

(2) Φ← rand(l,m) Generate l ×m random test matrix.

(3) Y ← Φ ∗X Sketch input matrix.

(4) B← Y ∗Y⊤ Form smaller l × l matrix.

(5) B← 1

2
· (B+B⊤) Ensure symmetry.

(6) T,D← eig(B, k) Truncated eigendecomposition.

(7) S̃←
√
D Rescale eigenvalues.

(8) Ṽ← Y⊤ ∗T ∗ S̃−1 Approx. right singular values.

(9) Ũ← X ∗ Ṽ Approx. unscaled left singular vals.

(10) U,S,Q⊤ ← svd(Ũ) Update left singular vectors and vals.

(11) V← ṼQ Update right singular vectors.

Return: U ∈ R
m×k, S ∈ R

k×k and V ∈ R
n×k

Remark 1. If the input matrix has low-rank structure, a small

amount of oversampling is sufficient, i.e., p = {10, 20}.
Remark 2. The computational performance depends consid-

erably on the random test matrix used for sketching in Step 3.

Very sparse or single pixel measurements (uniform random

selected rows), as discussed in Section 3.3, perform aston-

ishingly well in image and video processing applications.

Remark 3. It is optional to compute power (subspace) itera-

tions [30] after Step 3 to improve the quality of the sketch.

Remark 4. Numerical issues can arise, if k is chosen larger

than the actual intrinsic rank r of the input matrix. Specifi-

cally, in this case the eigenvalues {λi}i>r are close to zero

or negative, which can lead to an arithmetic underflow in

Step 7 and 8. Thus, these eigenvalues and the corresponding

eigenvectors are masked.

3.2. Computational Complexity Analysis

To contextualize the computational complexity of Algo-

rithm 1 in terms of the number of floating points operations,

we evaluate the complexity of each step:

Step 1: Requires O(1) operations.

Step 2: Generating a l × m (sparse) random test matrix

requires O(nnz(Φ)) operations, where nnz(·) is the

number of nonzero entries.

Step 3: Forming the sketch Y requires CΦ · n operations,

where CΦ denotes the complexity of applying the ran-

dom test matrix to an m× 1 column vector of X. If the

random test matrix is dense, then CΦ = O(lm).
Step 4: Computing B requires O(l2n) operations.

Step 5: Ensuring symmetry requires O(l2) operations.

Step 6: The eigendecomposition requires O(l3).
Step 7: Requires O(k) operations.

Step 8: Computing Ṽ requires O(nlk + lk) operations.

Step 9: Computing Ũ requires O(mnk) operations.

Step 10: Computing the SVD requires O(mk2) operations.

Step 11: Updating V requires O(nk2) operations.

In summary, the dominant complexities sum up to

CcSV D = CΦ ·n+O(l2n+ l3+nlk+mnk+mk2) (14)

operations, and the algorithm is dominated by the complexity

O(mnk). However, steps (2), (3), (4), (5), (8), (9) and (11)

are embarrassingly parallel and can substantially benefit

from GPU accelerated computations. If the data matrix does

not fit into fast memory, the algorithm’s bottleneck is posed

by the required number of sequential reads of the entire data

matrix. The transfer of data from slow to fast memory is

relatively expensive and can dominate the actual flop count

of the algorithm. Like the randomized SVD algorithm, the

proposed compressed algorithms require only two passes

over the data matrix X. If the input matrix is to big to

be accessed a second time, single pass algorithms are an

interesting alternative [29].

3.3. Measurement Matrices

To construct an efficient measurement matrix we rely

on randomness. The Gaussian random test matrix is the

most prominent choice, consisting of independent identi-

cally distributed (iid) standard normal entries. It follows that

columns or rows are linear independent with high probability.

Yet, Gaussian measurement matrices have drawbacks: they

are expensive to generate and dense matrix multiplications

are computationally intensive. This can make the method

infeasible when dealing with high-dimensional data. How-

ever, there are several interesting alternatives for sketching a

matrix.

Matrices in image and video processing applications of-

ten feature some natural structure, i.e., the mass is well

distributed and the matrix is sparse in some domain. In this

case it is sufficient to construct even simpler sensing matri-

ces. A most memory efficient sensing matrix, which also

makes the matrix multiplication for compression redundant

is to use ‘single-pixel’ (spixel) measurements, i.e., uniform

random row sampling [7]. Specifically, the sketch Y is con-

structed by choosing l random rows without replacement

from X. In addition, the signs of each selected row can be

randomly flipped to introduce additional randomness into the

sampling process. This measurement matrix is also known

as the ‘CountSkech’ [31]. However, this approach is prone

to fail if the data mass is unevenly centered.

Another highly efficient approach is based on sparse ran-

dom projections, originally introduced by Achlioptas [1].

Specifically, a sparse sensing matrix Φ with only a few

nonzero iid random entries is constructed (see Appendix B).

Li et al. [21] demonstrated that accurate results can be

achieved even with more aggressive (highly sparse) random
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test matrices. Hence, by leveraging high-performance sparse

matrix multiplication routines, the sketch Y can be obtained

in a fraction of the time as compared to using a dense random

test matrix.

4. Experimental Evaluation

In the following we evaluate the proposed cSVD algo-

rithm, and compare its performance to the randomized SVD.

Both algorithms are implemented in Python as part of the

open-software package ristretto (GIT repository: https:

//github.com/Benli11/ristretto). All compu-

tations were performed on a machine with the following

specifications: Intel Core i7-6500U CPU (2.5GHz), and

16GB DDR3 memory. The relative reconstruction error is

computed as ||X−Xk||F /||X||F , where the rank k approx-

imation is denoted as Ak.

4.1. Image Compression

The singular value decomposition is a standard tool for

image and video compression. A natural image can be re-

constructed in general from a very small subset of dominant

singular values and vectors. Here we use Canaletto’s fa-

mous painting ‘Bucentaur’s return to the pier by the Palazzo

Ducale’, which is provided by the Google Art Project as a

high resolution image with 30000× 20857 pixels.1

First, we use a lower resolution to 4096×2848 pixels. For

computational convince we stack the three color channels to-

gether so that we yield an array of dimension 12288× 2848.

Then we seek to reveal the dominant structure of the im-

age by computing the first k = 500 singular values and

vectors. Figure 3 shows the original image as well as the

low-rank approximation computed via the randomized and

compressed SVD algorithms, using a small amount of over-

sampling p = 10. By visual inspection the reconstruction

error is hardly noticeable; however, the randomized SVD

algorithm achieves a slightly lower relative error as shown in

Table 1. This is because the randomized SVD approximates

Time (s) Speedup Error

Truncated SVD 39.46 * 0.083

rSVD (p=10, q=0) 2.4 16.4 0.111

rSVD (p=10, q=1) 4.49 8.8 0.088

rSVD (p=10, q=2) 6.72 5.9 0.085

cSVD sparse (p=10) 2.3 17.1 0.111

cSVD spixel (p=10) 1.7 23.2 0.112

Table 1: Computational results for Canaletto’s low-

resolution painting (12288×2848). The * indicates baseline.

1Canaletto’s painting shows a lively scene of the pier on Ascen-

sion day in Venice. Since 1930 it has been part of the collec-

tion of the Pushkin State Museum of Fine Arts, Moscow. See

google’s art project for more details: https://www.google.com/

culturalinstitute/beta/asset/mwEV7sO9uSFCpw.

the column space of the input matrix, thus more informa-

tion is used. Another advantage of the randomized SVD is

that the approximation quality can be considerably improved

by computing additional power iterations. Performing two

power iterations q = 2 achieves a near optimal reconstruc-

tion error compared to the deterministic (truncated) SVD.

Nevertheless, this comes with higher computational costs.

The approximation quality of the compressed SVD might

be sufficient in a variety of applications, with the clear ad-

vantage of being computationally cheap, especially with

increasing dimensions.

Next, we compute the k = 500 dominant singular values

and vectors on the grayscale high resolution image. The

results are summarized in Table 2. The 30000 × 20857 ar-

ray representing the image is to big to be decomposed by

the deterministic SVD algorithm on our test workstation,

i.e., the machine runs out of memory. Both the random-

ized and compressed SVD algorithm are able to provide

the low-rank approximation with ease. However, it can be

seen that the computation of power iterations requires a sig-

nificant amount of additional computational resources on

an array of this dimension. The compressed SVD using

single-pixel measurements achieves higher speedups while

attaining competitive reconstruction errors.

Time (s) Speedup Error

Truncated SVD - - -

rSVD (p=10, q=0) 25.8 3.2 0.132

rSVD (p=10, q=1) 52.93 1.5 0.110

rSVD (p=10, q=2) 82.01 * 0.108

cSVD sparse (p=10) 19.01 4.3 0.132

cSVD spixel (p=10) 13.1 6.7 0.132

Table 2: Computational results for the high-resolution

grayscale image (30000 × 20857). Truncated SVD failed

due to limited memory. The * indicates baseline.

The dominant singular values are shown in Figure 2. All

algorithms capture faithfully the dominant spectral informa-

tion. However, the approximated singular values by both the
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Figure 2: Singular values of Canaletto’s painting approxi-

mated by the randomized and compressed algorithm.
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(a) Input image. (b) Reconstructed using rSVD. (c) Reconstructed using cSVD (sparse).

Figure 3: Canaletto’s famous painting ‘Bucentaur’s return to the pier by the Palazzo Ducale‘ is used to demonstrate the image

compression performance of both the rSVD and cSVD algorithm. By visual inspection no distinct difference is notable.

compressed and randomized algorithm (without power itera-

tions) start to fall of for k > 20. The performance could be

slightly improved by increasing the amount of oversampling.

4.2. Background/Foreground Separation

Background/foreground separation is an integral task in

video surveillance; however, estimating a good model for the

background is computationally challenging. Robust princi-

pal component analysis (RPCA) is a viable candidate for this

task. The idea is to formulate the problem as a matrix separa-

tion problem. Specifically, it is assumed that the background

is approximately low-rank, while foreground objects are

treated as sparse errors. Bouwmans et al. [4] provide a com-

prehensive survey of matrix separation techniques suitable

for background/foreground separation. Despite the outstand-

ing performance of many of these techniques, the computa-

tional costs are tremendous for high-resolution video streams.

This is because the computationally expensive singular value

decomposition is the work-horse algorithm behind many of

these techniques. Erichson et al. [13] have proposed using

the randomized SVD to ease the computational demands,

and Oh et al. [27] have proposed a fast randomized singu-

lar value thresholding algorithms for low-rank optimization.

Similarly we evaluate and compare the compressed SVD

for this task. Specifically, we use the method of inexact

augmented Lagrange multipliers (IALM) [23] to obtain the

background/foreground separation.

The results for separating 200 frames of a static surveil-

lance video of resolution 480× 720 are shown in Figure 4

and Table 3. Here, the ‘snowFall’ video sequence of the

CDNET database were used [17]. On first glance the results

might seem surprising. The compressed SVD algorithm

using single-pixel measurements is not only substantially

faster, but also achieves a better performance in terms of

the F-measure. This phenomena is explained by the intrin-

sic regularization effect of randomized methods [24]. In

particular, sampling random rows improves the accuracy of

the algorithm, which is similar to the concept of bagging in

statistics. It is interesting that the weaker performance in

terms of the reconstruction error can improve the accuracy

in terms of the F-measure. Further, we see that the com-

pressed SVD algorithm is computational more efficient for

tall and skinny matrices like video sequences. The advantage

becomes pronounced with increasing dimension as demon-

strated in the next section. The IALM algorithm could be

further improved by taking advantage of the compressed

algorithm’s ability to threshold the number of left and right

singular vectors before actually computing them.

Time (s) Speedup F-measure

Truncated SVD 258.25 * 0.663

rSVD (p=10, q=0) 141.99 1.8 0.705

cSVD sparse (p=10) 115.38 2.2 0.712

cSVD spixel (p=10) 113.64 2.3 0.749

Table 3: Computational results of the IALM method using

different SVD algorithms. The cSVD algorithm using single-

pixel measurements shows the best performance.
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IALM (SVD) F=0.663
IALM (rSVD) F=0.702
IALM (cSVD sparse) F=0.712
IALM (cSVD spixel) F=0.740

Figure 4: Performance evaluation of the IALM method using

the deterministic SVD algorithm as well as the randomized

and compressed algorithm. Interestingly, cSVD with single-

pixel measurements outperforms the other methods.
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(a) Synthetic 20000× 10000 matrix of rank r = 600.
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(b) Synthetic 20000× 10000 matrix of rank r = 600, perturbed with 10% white noise.
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(c) High definition 1080× 1920 video sequence with 200 frames.

Figure 5: Algorithm runtime, speedups and relative reconstruction errors for varying target ranks. The compressed algorithm

shows substantial speedups, in particular, for computing the low-rank approximation for the high definition video sequence

(tall and skinny matrix). Here the speedups of the cSVD are computed using the rSVD as baseline algorithm.

4.3. Timing

To contextualize the computational performance we evalu-

ate the compressed algorithm on synthetic low-rank matrices

and a high definition video sequence. The randomized SVD

(without power iterations) is used as benchmark. Both meth-

ods require two passes over the input matrix, and a slight

oversampling parameter of p = 10 is used. It is important to

note that the computational performance of the rSVD could

be increased by using random structured or very sparse test

matrices.

Figure 5a shows the algorithm runtime, speedups and

relative reconstruction errors averaged over 20 runs for a

synthetic 20000× 10000 matrix of rank r = 600. The com-

pressed SVD using both sparse (labeled ‘sparse’) and single-

pixel (labeled ‘spixel’) measurements achieves speedups

over the randomized SVD, while attaining nearly the same

reconstruction errors. The experiment is repeated in the

presence of white noise in Figure 5b, and the results appear

to be very similar. Further, we note that both methods are

somewhat robust to noise.

The performance results for the high definition video se-

quence are more interesting. Specifically, we have computed

various low-rank approximations for the tall and skinny

matrix formed by stacking 200 frames with resolution of

1080× 1920 pixels. Here, the compressed SVD algorithm

shows an improvement in computational time over the ran-

domized SVD by a factor of about 2 to 5 across the varying

target ranks. Interestingly, high-dimensional data can often

be massively under-sampled while still preserving the domi-

nant structure. Thus, the reconstruction error is competitive

despite the enormous compression factor as demonstrated

here. Overall, sparse random measurements achieve a better
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reconstruction error, while exhibiting less variability than

single-pixel measurements (uniform random selected rows).

This is because the sparse random test matrix has the ability

to capture slightly more information across the data matrix.

5. Conclusion

Massive data poses a tremendous computational chal-

lenge for deterministic SVD algorithms, despite modern

computer power. Indeed, data acquisition is far outstripping

computational resources, necessitating algorithms that scale

with the underlying signal complexity rather than the size

of the ambient measurement space. In computer vision, for

instance, there is a growing demand for higher-resolution

imaging, exemplified by 4K video, which produces approx-

imately 24 million data points per image in RGB. Hence,

algorithms based on compressed representations of the data

present a promising and enabling alternative for computing

matrix factorizations in this domain; some advances include

randomized, sketched, and Monte Carlo methods, in addition

to the cSVD presented here.

The randomized SVD as formulated by [26, 18] is the best

off-the-shelf randomized algorithm for computing low-rank

matrix approximations. The algorithm is robust, reliable

and the approximation quality can be controlled via over-

sampling and power iterations. Further, the algorithm is

mathematical sound and comes with strong error bounds.

Still, there is room for innovations and modifications.

Inspired by the compressed sensing literature, we demon-

strate a computationally efficient two-pass algorithm to com-

pute the approximate low-rank SVD of a large data matrix

from a small compressed matrix. Despite the limited differ-

ence to previous proposed randomized algorithms, the subtle

modifications compare favorably with the randomized SVD

in image and video processing applications. Further, the

ideas can also be used to compute the dynamic mode decom-

position [11, 12]. The cSVD algorithm provides a interesting

trade-off between precision and speed in these specific ap-

plications. This is mainly achieved by exploiting aggressive

sampling strategies, i.e., single-pixel measurements and very

sparse random test matrices. The results show that the cSVD

algorithm is highly suitable for the task of approximating

large imagery like data as well as to approximate large tall

and skinny matrices. Thereby, the computational advantage

becomes pronounced with increasing dimensions. The draw-

back, however, is that the approximation quality can not

be further improved via power iterations as the randomized

SVD algorithm does.

Future research focuses on better utilizing the additional

flexibility provided by the compressed algorithm. Specifi-

cally, it is interesting to update the prior on the target-rank

based on the sketched singular value spectrum. This is of

interest in applications like RPCA, where algorithms employ

a hard-threshold based on the singular value spectrum. Thus,

the computational costs can be reduced by computing only

the relevant left and right singular vectors. Further, as with

other randomized algorithms, cSVD is readily parallelized

and can benefit from a GPU accelerated implementation.

A. Compressed Algorithm II

Algorithm 2 presents a different implementation of the

compressed SVD algorithm, which is slightly more compu-

tationally expensive. However, the accuracy and numerical

stability of the algorithm is improved by computing the

deterministic SVD of Y in step 4, instead of using the eigen-

decomposition of the smaller matrix B. Thus, in practice we

favor this algorithm, in particular, for tall and skinny matri-

ces. However, for fat matrices which have a large dimension

n it becomes more efficient to form the smaller matrix B

first, as outlined in Algorithm 1.

Algorithm 2 Compressed SVD (cSVD) version II

Input: Input matrix X of dimension m× n, and target rank k.

Optional: Parameters p to control oversampling.

(1) l← k + p Slight oversampling

(2) Φ← rand(l,m) Generate l ×m random matrix.

(3) Y ← Φ ∗X Sketch input matrix.

(4) Optional: compute power (subspace) iterations [30].

(5) T, S̃, Ṽ← svd(Y, k) Compute truncated SVD.

(6) U,S,Q⊤ ← svd(X ∗ Ṽ) Update decomposition.

(7) V← ṼQ Update right singular vectors.

Return: U ∈ R
m×k, S ∈ R

k×k and V ∈ R
n×k

B. Sparse Random Test Matrix

Following the ideas of Achlioptas [1], a sparse random

test matrix Φ can be constructed by drawing entries φij from

the following distribution

φij =
√
c







1 with prob. 1

2c

0 with prob. 1− 1

c

-1 with prob. 1

2c

(15)

The parameter c controls the density of the nonzero entries,

e.g. c = 2, 3. Li et al. [21] demonstrated that accurate

results can be achieved even with more aggressive (highly

sparse) sampling rates like c =
√
m or c = m/log(m). In

practice, we obtained that replacing the nonnegative entries

by uniform distributed random entries performs slightly bet-

ter. Further, it is interesting to note that it is very efficient

to premultiply a dense matrix by a sparse matrix using the

compressed sparse row (CSR) matrix multiplication routines

in SciPy [20]. Post multiplying a dense matrix by a sparse

matrix is not as efficient. It is also not efficient to premul-

tiply a in place transposed matrix. Thus, the randomized

SVD does not benefit as much as the compressed SVD from

sparse random test matrices, if implemented in Python.
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