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Abstract

Organs, cells and microstructures in cells dealt with in

biomedical image analysis are volumetric data. We are re-

quired to process and analyse these data as volumetric data

without embedding into higher-dimensional vector space

from the viewpoints of object oriented data analysis. Sam-

pled values of volumetric data are expressed as three-way

array data. Therefore, principal component analysis of

multi-way data is an essential technique for subspace-based

pattern recognition, data retrievals and data compression

of volumetric data. For one-way array (the vector form)

problem the discrete cosine transform matrix is a good re-

laxed solution of the eigenmatrix for principal component

analysis. This algebraic property of principal component

analysis, derives an approximate fast algorithm for PCA of

three-way data arrays.

1. Introduction

Principal component analysis (PCA) is a fundamental

methodology [1, 2, 3, 4, 5, 6] in pattern recognition, com-

puter vision, physiology and many natural and social sci-

ences used for data processing. The aim of the paper is

derivation of a first approximation method for the compu-

tation of tensor PCA. There is no closed form for the com-

putation of PCA for three-way array data [7, 8, 9, 10], al-

though there is closed form for 1- and 2-way problems.

For 1-way array (vector form) problem the discrete cosine

transform (DCT) is an approximate solution to Karhunen-

Loève transform [11, 5]. Employing this algebraic property

of Karhunen-Loève transform, we construct a fast approxi-

mate algorithm for PCA of three-way array data.

Using a metric for the collection of trees, the mean and

principal components are computed. Space of binary trees

with tree edit distance as the metric is a Riemannian space

with negative curvature. The mean is computed as Fratch

mean using the metric [14]. Furthermore, the first measure

principal component is the geodesic which pass through the

mean. This data processing is called principal geodesic

analysis (PGA) [15]. GCPCA for phylogenetic trees com-

putes the mean of the trees in the data space. In geodesic

PCA (GPCA), the curvature of spaces is extended from zero

to non-zero. GPCA in a shape space is used for longitudinal

analysis (follow-up analysis) of cancers in organs.

The subspace method based on Karhunen-Loève trans-

form is a fundamental technique in pattern recognition.

Modern pattern recognition techniques for sampled value

of patterns are described using linear algebra for sampled

value embedded in vector space. Organs, cells and mi-

crostructures in cells dealt with in biomedical image anal-

ysis are volumetric data. We are required to process and

analyse these data as volumetric data without embedding

sampled values in vector space from the viewpoints of ob-

ject oriented data analysis [13].

We express sampled values of volumetric data as three-

way array data. These three-way array data are processed

as the third order tensor. This expression of data requires

to develop subspace method for tensor data. For deal-

ing with sampled organs as three-way data from view-

point of OODA, we introduce PCA for three-way data ar-

rays employing the Tucker3 tensor decomposition. In bio-

psychometry, the correlation of three-way arrays are stud-

ied. For instance, correlations among gender, age and inter-

net usage time can be investigated by three-way PCA.

2. Mathematical Preliminaries

2.1. Subspace Method in Vector Space [1, 2, 5]

A volumetric pattern is assumed to be a square integrable

function in a linear space and to be defined on a finite sup-

port in three-dimensional Euclidean space [1, 16, 17] such

that
∫

Ω
|f |2dx < ∞ for Ω ⊂ R

3. Furthermore, we assume
∫

Ω
|∇f |2dx < ∞ and

∫

Ω
tr{(∇∇⊤f)⊤(∇∇⊤f)}dx <

∞, where ∇∇⊤f is the Hessian matrix of f . For an orthog-

onal projection P⊥ = I − P , f‖ = P f and f⊥ = P⊥f
are the canonical element and canonical form of f with re-

spect to P and P⊥, respectively. If P is the projection to
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the space spanned by the constant element, the operation

P⊥f is called the constant canonicalisation. Let P i be the

orthogonal projection to the linear subspace corresponding

to the category Ci. For a pattern f , if |P i∗(f/|f |)| ≤ δ for

an appropriately small positive number δ, we conclude that

f ∈ Ci∗ .

Setting (f, g) to be the inner product in Hilbert space

(H), the relation |f |2 = (f, f) is satisfied. Let θ be

the canonical angle between a pair of linear subspaces L1

and L2. Setting P 1 and P 2 to be the orthogonal projec-

tions to L1 and L2, respectively, cos2 θ is the maximiser of

(P 1f,P 2g)
2 with respect to the conditions |f | = 1, |g| = 1

P 1f = f and P 2g = g. The relation cos2 θ = λ2
max is sat-

isfied, where λmax is the maximal singular value of P 2P 1.

Since, in mutual subspace method, a query f is ex-

pressed by using a set of local bases, we set that Qf is

the orthogonal projection to linear subspace expressing the

query f . Then, if the canonical angle between Qf and P i

satisfies the relation ∠(Qf ,P i) < ∠(Qf ,P
∗
i ) for all Ci,

we conclude that f ∈ Ci∗ .

Setting P i to be the orthogonal projection to linear

subspace Li corresponding to the category Ci, the or-

thogonal projection which maximises the criterion J =
∑n

i=1 |QP i|
2
2with respect to the condition Q∗Q = I

where Q∗ is the conjugate of Q and |A| is the trace norm

of the operator A in Hilbert space H. Though operation Qf
removes common part for all categories from f , (I −Q)f
preserves essentially significant parts for pattern recogni-

tion of f .

In traditional pattern recognition, these sampled patterns

are embedded in an appropriate-dimensional Euclidean

space as vectors. For x ∈ R
n and X ∈ R

n×n, |x|2 and

|X|F are the vector norm and Frobenius norm of x and X ,

respectively.

Setting the data matrix X to be X = (f1,f2, · · · ,fm)
for data vectors {f i}

m
i=1 in R

N , whose mean is zero,

the Karhunen-Loève transform is established by computing

f̂ i = Uf i for U which minimises J1 = |UX|2F with the

condition U⊤U = IN . The orthogonal matrix U is the

minimiser of

J11 = |UX|2F + 〈(U⊤U − I)Λ〉 (1)

where

Λ = Diag(λ1, λ2, · · · , λN ) (2)

for

λ1 ≥ λ2 ≥ λ2 ≥ · · · ≥ λN ≥ 0. (3)

The minimiser of eq. (1) is the solution of the eigenmatrix

problem

MU = UΛ, M = XX⊤ (4)

The row vectors of U are the principal components.

2.2. PCA of TwoWay Array Data[16]

For a collection of matrices {F i}
N
i=1 ∈ R

m×n satisfying

Ei(F i) = 0, the orthogonal-projection-based data reduc-

tion

F̂i = U⊤F iV (5)

is performed by maximising

J2(U ,V ) = Ei

(

|UF̂ iV
⊤|2F

)

with respect to the conditions U⊤U = Im and V ⊤V =
In. The solutions are the minimiser of the Euler-Lagrange

equation

J22(U ,V ) = E
(

|UF̂ iV
⊤|2F

)

+〈(Im −U⊤U),Σ〉+ 〈(In − V ⊤V ),Λ〉 (6)

for diagonal matrices Λ and Σ.

Setting

1

N

N
∑

i=1

F⊤
i F i = M ,

1

N

N
∑

i=1

F iF
⊤
i = N , (7)

U and V are the solutions of the eigendecomposition prob-

lems

MV = V Λ, NU = UΣ, (8)

where Σ ∈ R
m×m and Λ ∈ R

n×n are diagonal matrices

satisfying the relationships λi = σi for

Σ = diag(σ1, σ2, . . . , σK , 0, . . . , 0), (9)

Λ = diag(λ1, λ2, . . . , λK , 0, . . . , 0). (10)

2.3. Data Analysis of ThreeWay Array Data[18, 12]

For the triplet of positive integers I1, I2 and I3, the

third-order tensor RI1×I2×I3 is expressed as X = ((xijk))
Indices i, j and k are called the 1-mode, 2-mode and 3-

mode of X , respectively. The tensor space R
I1×I2×I3 is in-

terpreted as the Kronecker product of three vector spaces

R
I1 , R

I2 and R
I3 such that R

I1 ⊗ R
I2 ⊗ R

I3 . We set

I = max(I1, I2, I3).
Samples Sf(∆z) of f(x) for z ∈ Z

3 and |z|∞ ≤ I
defines an I × I × I three-way array F. To preserve the

multi-linearity of the function f(x), we deal with the array

F as a third-order tensor F . The operation vecF derives a

vector f ∈ R
I123 for I123 = I2 · I2 · I3. We can reconstruct

f from F using an interpolation procedure.

For X , the n-mode vectors, n = 1, 2, 3, are defined as

the In-dimensional vectors obtained from X by varying this

index in while fixing all the other indices.

The unfolding of X along the n-mode vectors of X is

defined as matrices such that

X(1) ∈ R
I1×I23 , X(2) ∈ R

I2×I13 , X(3) ∈ R
I3×I12 (11)
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for I12 = I1 · I2, I23 = I2 · I3 and I13 = I1 · I3, where

the column vectors of X(j) are the j-mode vectors of X
for i = 1, 2, 3. We express the j-mode unfolding of Xi as

Xi,(j).

For matrices

U = ((uii′)) ∈ R
I1×I1 ,

V = ((vjj′)) ∈ R
I2×I2 , (12)

W = ((wkk′)) ∈ R
I3×I3 ,

the n-mode products for n = 1, 2, 3 of a tensor X are the

tensors with entries

(X ×1 U)ijk =

I1
∑

i′=1

xi′jkui′i,

(X ×2 V )ijk =

I2
∑

j′=1

xij′kvj′j , (13)

(X ×3 W )ijk =

I3
∑

k′=1

xijk′wk′k,

where (X )ijk = xijk is the ijk-th element of the tensor X .

The inner product of two tensors X and Y in R
I1×I2×I3 is

〈X ,Y〉 =

I1
∑

i=1

I2
∑

j=1

I3
∑

k=1

xijkyijk. (14)

Using this inner product, we have the Frobenius norm of a

tensor X as |X |F =
√

〈X ,X〉. The Frobenius norm |X |F
of the tensor X satisfies the relation |X |F = |f |2, where

|f |2 is the Euclidean norm of the vector f .

3. PCA of Three-Way Array Data

To project a tensor X in R
I1×I2×I3 to the tensor Y

in a lower-dimensional tensor space R
P1×P2×P3 , where

Pn ≤ In, three projection matrices {U (n)}3n=1, for U (n) ∈
R

In×Pn are required for n = 1, 2, 3. Using these three pro-

jection matrices, we have the tensor orthogonal projection

Y = X ×1 U
(1)⊤ ×2 U

(2)⊤ ×3 U
(3)⊤. (15)

This projection is established in three steps, where in each

step, each n-mode vector is projected to a Pn-dimensional

space by U (n) for n = 1, 2, 3.

Using the three projection matrices U (i) for i = 1, 2, 3,

we have the tensor orthogonal projection for a third-order

tensor as

Y = X ×1 U
(1)⊤ ×2 U

(2)⊤ ×3 U
(3)⊤. (16)

For a collection {Xk}
m
k=1 of third-order tensors, the

orthogonal-projection-based dimension reduction proce-

dure is achieved by maximising the criterion

J3 = Ek(|Xk ×1 U
(1) ×2 U

(2) ×3 U
(3)|2F ) (17)

with respect to the conditions U (i)⊤U (i) = I for i =
1, 2, 3. The Euler-Lagrange equation of this conditional op-

timisation problem is

J33(U
(1),U (2),U (3))

= Ek(|Xk ×1 U
(1) ×2 U

(2) ×3 U
(3)|2F )

+

3
∑

i=1

〈(I −U (i)⊤U (i)),Λ(i)〉. (18)

This minimisation problem is solved by an iteration proce-

dure [12].

Setting P (j) to be an orthogonal projection in the linear

space L({u
(j)
i }

Ij
i=1) spanned by the column vectors of U (j),

the data reduction is computed by

Y = X ×1 P
(1)U (1) ×2 P

(2)U (2) ×3 P
(3)U (3). (19)

This expression is equivalent to the vector form

vecY = (P (3)⊗P (2)⊗P (1))(U (3)⊗U (2)⊗U (1))vecX ,
(20)

The two-dimensional analogue of the problem has a closed

form for the solution as a system of eigenvalue problems.

The optimisation criterion is, however, trilinear, The three-

dimensional problem has no closed form for its solution,

although it is a convex optimisation problem. An efficient

method to solve the three-dimensional problem is an alter-

native optimisation of the triplet of the matrices. Since, in

each step of the iteration, singular value decomposition is

achieved on each mode of a tensor, the total time complexity

of the alternative optimisation is O(K×3×m3) = O(m3),
where K is the total number of iteration for convergence of

the solutions and m is the dimennsion of the array.

4. Approximate Karhunen-Loève Transform

4.1. NonIteration Relaxation [19]

The non-iteration relaxation algorithm proposed in ref.

[19] is achieved by solving the system of optimisation prob-

lems

Jj = E(|U (j)⊤Xi,(j)U
(j)|2F ) + 〈(U (j)⊤U (j) − Ij),Λ

(j)〉
(21)

for i = 1, 2, 3, where Xi,(j) is the ith column vector of the

unfolding matrix X(j). These optimisation problems derive

a system of eigenmatrix problems

M (j)U (j) = U (j)
Λ

(j), M (j) =
1

N

N
∑

i=1

Xi,(j)X
⊤
i,(j)

(22)

for j = 1, 2, 3. This system of equations decomposes the

minimisation problem for PCA of three-way array data to

the triplet of singular value decomposition for two-way ar-

ray data. Therefore, we have an approximate closed form
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approximation for PCA of three-way array data. More-

over, the total time complexity of this relaxed method is

O(3 × m3) = O(m3), where m is the dimennsion of the

array.

4.2. DCT Relaxation

For data observed from a first-order Markov model in

a vector space, DCT-II matrix efficiently approximates

Karhunen-Loéve transform (KLT) [11, 5]. This property

implies that among the DCT-matrix, KLT matrix U , which

is derived by PCA, and an orthogonal projection PN to a

linear subspace spanned by an appropriate number of col-

umn vectors of U , the relation

Ei|PNΦfi − PNUfi|
2 ≪ ε (23)

is satisfied for a sufficiently small positive number ε, where

Ei(φ(xi)) is the value of φ(xi) for {xi}
n
i=1 in a data space.

Equation (23) suggests that the triplet of the DCT-II ma-

trices [20] are acceptable relaxed solutions for tensor PCA

to derive the KLT. Therefore, the dimension reduction by

PCA is relaxed to the process using the DCT as

fn
ijk =

N−1
∑

i′j′k′=0

ai′j′k′ϕi′iϕj′jϕk′k, (24)

aijk =
n−1
∑

i′j′k′=0

fi′j′k′ϕii′ϕjj′ϕkk′ (25)

for n ≤ N , where

Φ(n) =

((

ǫ cos
(2j + 1)i

2πn

))

= ((ϕij)), (26)

ǫ =

{

1 if j = 0
1√
2

otherwise

is the DCT-II matrix of order N . If we apply the fast cosine

transform to the computation of the 3D-DCT-II matrix, the

computational complexity is O(3m logm), where m is the

dimennsion of the array.

Since

vec(u ◦ v ◦w) = u⊗ v ⊗w (27)

the outer products of vectors redescribes the DCT-based

transform as

F =

n−1
∑

i,j,k=0

aijkϕi ◦ϕj ◦ϕk, aijk = 〈F , (ϕi ◦ϕj ◦ϕk)〉,

(28)

where

Φ(n) =
(

ϕ0,ϕ1, · · · ,ϕN−1

)

. (29)

Property 1 DCT-based Karhunen-Loève transform is the

orthogonal projection from L({ϕi ◦ ϕj ◦ ϕ⊤
j }

N−1
i,j,k=0) to

L({ϕi ◦ϕj ◦ϕk}
n−1
i,j,k=0).

The DCT matrix Φ(n) is the eigenmatrix of the discrete

Laplacian with the Neumann boundary condition. We can

define the order of the column vectors of DCT matrix using

the order of the eigenvalue {λi}
n−1
i=0 of the discrete Lapla-

cian. Since λiλjλk derives the semi-order

λiλjλk ≥ λi+1λjλk,

λiλjλk ≥ λiλj+1λk, (30)

λiλjλk ≥ λiλjλk+1,

we define the order for the outer product of the column vec-

tors {ϕn−1
i=0 }

ϕi ◦ϕj ◦ϕk ≻ ϕi+1 ◦ϕj ◦ϕk,

ϕi ◦ϕj ◦ϕk ≻ ϕi ◦ϕj+1 ◦ϕk, (31)

ϕi ◦ϕj ◦ϕk ≻ ϕi ◦ϕj ◦ϕk+1.

This order is used for the definition of the dimension of sub-

space for the relaxed PCA with DCT. On this order, the kth

elements lies on the surface of the oct-sphere of the radius

k − 1 with the l1-distance. Therefore, this order defines the

low-pass filter of which path window is the oct-diamond in

discrete space.

Regarding the selection of the dimension of the tensor

subspace, the semi-order implies the following theorem.

Theorem 1 The dimension of the subspace of the tensor

space for data compression is 1
6N(N + 1)(N + 2) if we

select N principal components in each mode of three-way

array data.

(Proof) For a positive integer N , the number sN of eigen-

values λiλjλk is

sN =
N−1
∑

i+j+k=0,i,j,k≥0

(i+ j + k)

=
1

6
N(N + 1)(N + 2). (32)

If N = 1, 2, 3, 4, we have N = 1, 4, 10, 20, respectively,

for tensors X = ((xijk)) in R
I×I×I .

5. PCA vs. Pyramid Transform

Setting w±1 = 1
4 and w0 = 1

2 , for the sampled function

fij = f(i, j, k), the pyramid transform for the three-way

array is

Rfkmn =

1
∑

p,q,r=−1

wpwqwrf2k−p 2m−q 2n−p, (33)
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where the summation is achieved for
(k−p)

2 ,
(m−q)

2 and
(n−r)

2 being integers. This operation involve the reduction

image sizes. This process in each step is achieved by a

weighted average of the image values in a finite small re-

gion, which is called the window for the operation. There-

fore, image features are extracted in the higher-layer images

of the pyramid transform.

Using the second-order differential matrix D with the

Neumann boundary condition, we define

W =
1

4
(D + 4I)

=















3 1 0 0 · · · 0 0
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 3















. (34)

The eigenvalues of W is θi = 1 + 1
4λi where λi =

−4 sin2(πi/n) is an eigenvalue of D. Furthermore, the

eigenmatrix of W is that of D.

The downsampling operation [21] is expressed as S =
(I ⊗ e⊤2 ), where e2 = (0, 1)⊤. Since the Gaussian pyra-

mid transform is achieved by applying downsampling to the

result of the Gaussian convolution for the image array, we

have the next lemma.

Lemma 1 The matrix forms of the pyramid transform is

R = SW for discrete signal.

Setting the discrete three-way array to be

F = ((fijk)), 0 ≤ i, j, k ≤ 2n − 1, (35)

the pyramid transform is expressed as

F̂ = F ×1 R×2 R×3 R, (36)

where F̂ = ((f̂ijk)) for 0 ≤ i, j, k ≤ 2n/2 − 1, that is,

vecF̂ = (R⊗R⊗R)vecF , (37)

Moreover, since the pyramid transform is expressed as

Rfijk =

n
2
−1

∑

i′j′k′=0

σijka2i′2j′2k′ϕ2i′2iϕ2j′2jϕ2k′2k,

aijk =

n−1
∑

i′j′k′=0

fi′j′k′ϕii′ϕjj′ϕkk′ , (38)

for σijk = θ2i′θ2j′θ2k′ using the column vectors of Φ(n)

and Φ(n
2
), we have the following property.

Property 2 For three-way array, the Gaussian pyramid

transform is a linear transform from L({ϕi ◦ ϕj ◦

ϕ⊤
j }

2n−1
i,j,k=0) to L({ϕ2i ◦ϕ2j ◦ϕ2k}

2n−1−1
i,j,k=0 ).

This property allows us to compute the pyramid transform

using DCT-II. Furthermore, this property shows that the

pyramid transform is a lowpass filtering operation.

Although, the PCA-based data compression controls di-

mension of the reduced data using minimisation criterions

of eq. (23) and lemma 1, the pyramid transform reduces

the data to the pre-defined dimension based on the trans-

formation. Since the dimension is pre-defined in the pyra-

mid transform, the transform involves filtering operation to

enhance leading major components and to suppress minor

components.

6. Numerical Examples and Evaluation

The perforamces of tensor principal component analy-

sis (TPCA), the three-dimensional discrete cosine transform

(3D-DCT) and the pyramid transform (PT) are compared

for the approximation of volumetric data. The volumetric

data of human livers in computational anatomy dataset and

of human left ventricles in cardiac MRI dataset [22] are

used for comparisions. Table 1 summarises the numbers

and sizes of the volumetric data. Figures 1 and 2 illustrate

the original and approximated volumetric data. Figure 3

summarises the reconstruction errors of the three methods

in terms of the compression ratio.

Figures 1 and 2 illustrate that, in terms of appearance,

the DCT efficiently approximates the KLT derived by as re-

laxed tensor PCA for three-way array data. The pyramid

transform for volumetric grey-valued images is an accept-

able approximation of the KLT in low-compression late.

Since the pyramid transform is a convolution operation, the

time complexity of the transform is O(n log2 n). However,

for high-compression ratio, the pyramid transform looses

details of interior texture, although the transform preserves

the appearance of outline shapes of the three-way array

data.

Figure 4 shows dependencies of reconstruction error and

cumulative contribution ratio to the dimensions of the space

for reconstruction by using 3D-DCT (3DDCT) as a relaxed

tenor PCA. In Fig. 4(a), we have 85, 93 and 71 nonzero

eigenvalues for mode 1, 2 and 3, respectively. In Fig. 4

(b), we have 77, 70 and 63 nonzero eigenvalues for mode 1,

2 and 3, respectively. The reconstruction error and the cu-

mulative contribution ratio, respectively, decreases and in-

creases as the number of dimensions of the linear subspace

increases.

Figures 4(a) and 4(b) show that reconstruction errors

and cumulative contribution ratios by using the 3D-DCT

(3DDCT), the pyramid transform (PT) as a relaxed tenor

PCA (TPCA). are similar properties for the compression

ratios are 1/4 and 1/2. This property means the 3D-DCT

processes the same compression properties with Karhunen-

Loéve transform. Therefore, DCT is an acceptable relaxed

form to KLT.
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Table 1. Size and number of volumetric data. ♯data represents the number of volumetric data. The data size is the original size of the

volumetric data. The reduced data size is the size of the volumetric data after tensor-representation-based dimension reduction.

♯data data size [voxel] reduced data size [voxel]

CA dataset 32 89× 97× 76 32× 32× 32
Cardiac MRI dataset 340 81× 81× 63 16× 16× 16

(a) Original (b) TPCA (c) DCT (d) PT

(e) Original (f) TPCA (g) DCT (h) PT

Figure 1. Original and reconstructed volumetric data of a human liver. The left column illustrates the original volumetric data. The other

three columns illustrate reconstructed volumetric data from the data compressed by the tensor PCA(TPCA), the three-dimensional DCT

(DCT) and the pyramid transform (PT). (a)-(d) show the volume rendering of the volumetric images. (e)-(h) show the 30th axial slice of

the volumetric images. The size of the reduced volumetric data is 32× 32× 32. The compression ratio is 0.05, that is, the size is 5.0 % of

the original size of 89× 97× 76.

7. Conclusions

In this paper, we first showed that the PCA-based aver-

age computation for three-way data leads to tensor PCA.

Secondly, we numerically showed that the triplet of DCT-II

matrices are acceptable relaxed solutions for tensor PCA for

the third order tensor. Moreover, we expressed the pyramid

transform of volumetric data as the mode decomposition of

tensor. This mathematical properties of the pyramid trans-

form allow us to geometrically compare data reduction by

the pyramid transform with tensor PCA for data compres-

sion and reduction using functional analysis.

In traditional method in medical image analysis, outline

shapes of objects such as organs and statistical properties

of interior textures are independently extracted using sep-

arate methods. However, tensor PCA for volumetric data

allows us to simultaneously extract both the outline shapes

of volumetric objects and the statistical properties of inte-

rior textures of volumetric data from data projected onto a

low-dimensional linear subspace spanned by tensors.
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Appendix:Alternative Projection Method

The Euler-Lagrange equation

J33(U
(1),U (2),U (3))

= Ek(|Xk ×1 U
(1) ×2 U

(2) ×3 U
(3)|2F )

+

3
∑

i=1

|(I −U (i)⊤U (i))Λ(i)|2F .

is solved by the following iteration procedure.

1: U
(i)
0 := Q(i) such that Q(i)⊤Q(i) = I and α = 0.

2: U
(1)
(α+1) = argmin J33(U

(1),U
(2)
(α),U

(3)
(α)).

3: U
(2)
(α+1) = argmin J33(U

(1)
(α+1),U

(2),U
(3)
(α)).

4: U
(3)
(α+1) = argmin J33(U

(1)
(α+1),U

(2)
(α+1),U

(3)).

5: if |U
(i)
(α+1) −U

(i)
(α)|F ≤ ε, then stop, else α := α + 1

and go to step 2.
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