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Abstract

Conventional sampling techniques fall short of draw-
ing descriptive sketches of the data when the data is
grossly corrupted as such corruptions break the low
rank structure required for them to perform satisfacto-
rily. In this paper, we present new sampling algorithms
which can locate the informative columns in presence
of severe data corruptions. In addition, we develop
new scalable randomized designs of the proposed algo-
rithms. The proposed approach is simultaneously ro-
bust to sparse corruption and outliers and substantially
outperforms the state-of-the-art robust sampling algo-
rithms as demonstrated by experiments conducted using
both real and synthetic data.

1. Introduction

Finding an informative or explanatory subset of a
large number of data points is an important task of
numerous machine learning and data analysis appli-
cations, including problems arising in computer vision
[11], image processing [13], bioinformatics [2], and rec-
ommender systems [17]. The compact representation
provided by the informative data points helps sum-
marize the data, understand the underlying interac-
tions, save memory and enable remarkable computa-
tion speedups [14]. Most existing sampling algorithms
assume that the data points can be well approximated
with low-dimensional subspaces. However, much of
the contemporary data comes with remarkable corrup-
tions, outliers and missing values, wherefore a low-
dimensional subspace (or a union of them) may not well
fit the data. This fact calls for robust sampling algo-
rithms, which can identify the informative data points
in presence of all such imperfections. In this paper, we
present an new column sampling approach which can
identify the representative columns when the data is
grossly corrupted and fraught with outliers.

1.1. Summary of contributions

We study the problem of informative column sam-
pling in presence of sparse corruption and outliers. The
key technical contributions of this paper are summa-
rized next: I. We present a new convex algorithm
which locates the informative columns in presence of
sparse corruption with arbitrary magnitudes. II. We
develop a set of randomized algorithms which provide
scalable implementations of the proposed method for
big data applications. We propose and implement a
scalable column/row subspace pursuit algorithm that
enables sampling in a particularly challenging scenario
in which the data is highly structured. III. We develop
a new sampling algorithm that is robust to the simulta-
neous presence of sparse corruption and outlying data
points. The proposed method is shown to outperform
the-state-of-the-art robust (to outliers) sampling algo-
rithms. IV. We propose an iterative solver for the pro-
posed convex optimization problems.

1.2. Notations and data model

Given a matrix L, ‖L‖ denotes its spectral norm,
‖L‖1 its ℓ1-norm given by ‖L‖1 =

∑

i,j

∣

∣L(i, j)
∣

∣, and

‖L‖1,2 its ℓ1,2-norm defined as ‖L‖1,2 =
∑

i

‖li‖2, where
‖li‖2 is the ℓ2-norm of the ith column of L. In an N -
dimensional space, ei is the ith vector of the standard
basis. For a given vector a, ‖a‖p denotes its ℓp-norm.
For a given matrix A, ai and ai are defined as the ith

column and ith row of A, respectively. In this paper, L
represents the low rank (LR) matrix (the clean data)
with compact SVD L = UΣVT , where U ∈ R

N1×r,
Σ ∈ R

r×r and V ∈ R
N2×r and r is the rank of L. Two

linear subspaces L1 and L2 are independent if the di-
mension of their intersection L1 ∩ L2 is equal to zero.
The incoherence condition for the row space of L with
parameter µv states that max

i
‖eTi V‖ ≤ µvr/N2 [7].

The proofs of all the lemmas are provided in the sup-
plementary material. In this paper (except for Section
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5), it is assumed that the given data follows the follow-
ing data model.

Data Model 1. The given data matrix D ∈ R
N1×N2

can be expressed as D = L+S. Matrix S is an element-
wise sparse matrix with arbitrary support. Each ele-
ment of S is non-zero with a small probability ρ.

2. Related Work

The vast majority of existing column sampling algo-
rithms presume that the data lies in a low-dimensional
subspace and look for few data points spanning the
span of the dominant left singular vectors [16,31]. The
column sampling methods based on the low rankness
of the data can be generally categorized into random-
ized [8–10] and deterministic methods [3,12,13,15,20].
In the randomized method, the columns are sampled
based on a carefully chosen probability distribution.
For instance, [9] uses the ℓ2-norm of the columns, and
in [10] the sampling probabilities are proportional to
the norms of the rows of the top right singular vectors
of the data. There are different types of determinis-
tic sampling algorithms, including the rank revealing
QR algorithm [15], and clustering-based algorithms [3].
In [12,13,20,22] , sparse coding is used to leverage the
self-expressiveness property of the columns in low rank
matrices to sample informative columns.

The low rankness of the data is a crucial requirement
for these algorithms. For instance, [10] assumes that
the span of few top right singular vectors approximates
the row space of the data, and [12] presumes that the
data columns admit sparse representations in the rest
of the data, i.e., can be obtained through linear combi-
nations of few columns. However, contemporary data
comes with gross corruption and outliers. [22] focused
on column sampling in presence of outliers. While the
approach in [22] exhibits more robustness to the pres-
ence of outliers than older methods, it still ends up
sampling from the outliers. In addition, it is not robust
to other types of data corruption, especially element-
wise sparse corruption. Element-wise sparse corruption
can completely tear existing linear dependence between
the columns, which is crucial for column sampling al-
gorithms including [22] to perform satisfactorily.

In [29], we proposed a new data sampling tool,
dubbed Spatial Random Sampling (SRS). In contrary
to the other column sampling methods, SRS does not
rely on the low rankness of data and it is guaranteed
to preserve the spatial distribution of data since it per-
forms uniform random sampling in the spatial domain.
In this paper, it is assumed that the sparse corruption
is sever such that it disturbs the spatial distribution of
true data.

3. Shortcoming of Random Column Sam-
pling

As mentioned earlier, there is need for sampling al-
gorithms capable of extracting important features and
patterns in data when the data available is grossly cor-
rupted and/or contains outliers. Existing sampling al-
gorithms are not robust to data corruptions, hence uni-
form random sampling is utilized to sample from cor-
rupted data. In this section, we discuss and study some
of the shortcomings of random sampling in the context
of two important machine learning problems, namely,
data clustering and robust PCA.

Data clustering: Informative column sampling is an
effective tool for data clustering [20]. The representa-
tive columns are used as cluster centers and the data is
clustered with respect to them. However, the columns
sampled through random sampling may not be suit-
able for data clustering. The first problem stems from
the non-uniform distribution of the data points. For in-
stance, if the population in one cluster is notably larger
than the other clusters, random sampling may not ac-
quire data points from the less populated clusters. The
second problem is that random sampling is data inde-
pendent. Hence, even if a data point is sampled from
a given cluster through random sampling, the sampled
point may not necessarily be an important descriptive
data point from that cluster.

Robust PCA: There are many important applica-
tions in which the data follows Data model 1 [4, 6, 7,
18,19,27,30,32–34]. In [7], it was shown that the opti-
mization problem

min
L̇,Ṡ

λ‖Ṡ‖1 + ‖L̇‖∗ s. t. L̇+ Ṡ = D (1)

is guaranteed to yield exact decomposition of D into
its LR and sparse components if the column space (CS)
and the row space (RS) of L are sufficiently incoherent
with the standard basis. However, the decomposition
algorithms directly solving (1) are not scalable as they
need to save the entire data in the working memory
and have O(rN1N2) complexity per iteration.

An effective idea to develop scalable decomposition
algorithms is to exploit the low dimensional structure
of the LR matrix [23–25,28]. The idea is to form a data
sketch by sampling a subset of columns of D whose LR
component can span the CS of L. This sketch is decom-
posed using (1) to learn the CS of L. Similarly, the RS
of L is obtained by decomposing a subset of the rows.
Finally, the LR matrix is recovered using the learned
CS and RS. Thus, in lieu of decomposing the full scale
data, one decomposes small sketches constructed from
subsets of the data columns and rows.
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Since existing sampling algorithms are not robust
to sparse corruption, the scalable decomposition al-
gorithms rely on uniform random sampling for col-
umn/row sampling. However, if the distributions of
the columns/rows of L are highly non-uniform, random
sampling cannot yield concise and descriptive sketches
of the data. For instance, suppose the columns of L
admit a clustering structure as per the following as-
sumption.

Assumption 1. The matrix L can be represented as
L = [U1Q1 ...UnQn]. The CS of {Ui ∈ R

N1×r/n}ni=1

are random r/n-dimensional subspaces in R
N1 . The

RS of {Qi ∈ R
r/n×ni}ni=1 are random r/n-dimensional

subspaces in {Rni}ni=1, respectively,
∑n

i=1 ni = N2, and
min
i

ni ≫ r/n.

The following two lemmas show that the sufficient
number of randomly sampled columns to capture the
CS can be quite large depending on the distribution of
the columns of L.

Lemma 1. Suppose m1 columns are sampled uni-
formly at random with replacement from the matrix L

with rank r. If m1 ≥ 10µvr log
2r
δ , then the selected

columns of the matrix L span the CS of L with proba-
bility at least 1− δ.

Lemma 2. If L follows Assumption 1, the rank of L is
equal to r, r/n ≥ 18 logmax

i
ni and ni ≥ 96 r

n log ni, 1 ≤

i ≤ n, then P

[

µv < 1
n

0.5N2

min
i

ni

]

≤ 2
∑n

i=1 n
−5
i .

According to Lemma 2, the RS coherency parameter µv

is linear in N2

min
i

ni

. The factor N2

min
i

ni

can be quite large

depending on the distribution of the columns. Thus,
according to Lemma 1 and Lemma 2, we may need to
sample too many columns to capture the CS if the dis-
tribution of the columns is highly non-uniform. As an
example, consider L = [L1 L2], the rank of L = 60
and N1 = 500. The matrix L1 follows Assumption 1
with r = 30, n = 30 and {ni}30i=1 = 5. The matrix
L2 follows Assumption 1 with r = 30, n = 30 and
{ni}30i=1 = 200. Thus, the columns of L ∈ R

500×6150

lie in a union of 60 1-dimensional subspaces. Fig. 1
shows the rank of randomly sampled columns of L ver-
sus the number of sampled columns. Evidently, we
need to sample more than half of the data to span the
CS. As such, we cannot evade high-dimensionality with
uniform random column/row sampling.

4. Column Sampling from Sparsely Cor-
rupted Data

In this section, the proposed robust sampling algo-
rithm is presented. It is assumed that the data fol-
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Figure 1. The rank of randomly sampled columns.

lows Data model 1. Consider the following optimiza-
tion problem

min
a

‖di −D−ia‖0 subject to ‖a‖0 = r, (2)

where di is the ith column of D and D−i is equal to
D with the ith column removed. If the CS of L does
not contain sparse vectors, the optimal point of (2) is
equivalent to the optimal point of

min
a

‖si − S−ia‖0
subject to li = L−ia and ‖a‖0 = r ,

(3)

where li is the LR component of di and L−i is the LR
component of D−i ( similarly, si and S−i are the sparse
component). To clarify, (2) samples r columns of D−i

whose LR component cancels out the LR component
of di and the linear combination si −S−ia is as sparse
as possible.

This idea can be extended by searching for a set of
columns whose LR component can cancel out the LR
component of all the columns. Thus, we modify (2) as

min
A

‖D−DA‖0 s. t. ‖AT ‖0,2 = r, (4)

where ‖AT ‖0,2 is the number of non-zero rows of A.
The constraint in (4) forces A to sample r columns.
Both the objective function and the constraint in (4)
are non-convex. We propose the following convex re-
laxation

min
A

‖D−DA‖1 + γ‖AT ‖1,2 , (5)

where γ is a regularization parameter. DefineA∗ as the
optimal point of (5) and define the vector p ∈ R

N2×1

with entries p(i) = ‖a∗i‖2, where p(i) and a∗i are the
ith element of p and the ith row of A∗, respectively.
The non-zero elements of p identify the representative
columns. For instance, suppose D ∈ R

100×400 follows
Data model 1 with ρ = 0.02. The matrix L with rank
r = 12 can be expressed as L = [L1 L2 L3 L4] where
the ranks of {Lj ∈ R

100×100}4j=1 are equal to 5, 1, 5,
and 1, respectively. Fig. 2 shows the output of the pro-
posed method and the algorithm presented in [12]. As
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shown, the proposed method samples a sufficient num-
ber of columns from each cluster. Since the algorithm
presented in [12] requires strong linear dependence be-
tween the columns of D, the presence of the sparse cor-
ruption matrix S seriously degrades its performance.

Figure 2. The elements of the vector p. Te left plot corre-
sponds to (5) and the right plot corresponds to [12].

4.1. Robust column sampling from Big data

The complexity of solving (5) is O(N3
2 +N1N

2
2 ). In

this section, we present a randomized scalable approach
which yields a scalable implementation of the proposed
method for high dimensional data reducing complexity
to O(r3 + r2N2). We further assume that the RS of
L can be captured using a small random subset of the
rows of L, an assumption that will be relaxed in Section
4.1.1. The following lemma shows that the RS can be
captured using few randomly sampled rows even if the
distribution of the columns is highly non-uniform.

Lemma 3. Suppose L follows Assumption 1 and m2

rows of L are sampled uniformly at random with re-
placement. If the rank of L is equal to r and

m2 ≥ 10 c rϕ log
2r

δ
, (6)

then the sampled rows span the row space of L

with probability at least 1 − δ − 2N−3
1 , where ϕ =

max(r,logN1)
r .

The sufficient number of sampled rows for the setup
of Lemma 3 is roughly O(r), and is thus independent
of the distribution of the columns. Let Dr denote the
matrix of randomly sampled rows of D and Lr its LR
component. Suppose the rank of Lr is equal to r. Since
the RS of Lr is equal to the RS of L, if a set of the
columns of Lr span its CS, the corresponding columns
of L will span the CS of L. Accordingly, we rewrite (5)
as

min
A

‖Dr −DrA‖1 + γ‖AT ‖1,2 . (7)

Note that we still have an N2 × N2 dimensional op-
timization problem and the complexity of solving (7)
is roughly O(N3

2 + N2
2 r). In this section, we propose

an iterative randomized method which solves (7) with

complexity O(r3 + N2r
2). Algorithm 1 presents the

proposed solver. It starts the iteration with few ran-
domly sampled columns of Dr and refines the sampled
columns in each iteration.

Remark 1. In both (7) and (8), we use the same sym-
bol A to designate the optimization variable. However,
in (7) A ∈ R

N2×N2 , while in (8) A ∈ R
m×N2 , where

m of order O(r) is the number of columns of Ds
r.

Here we provide a brief explanation of the different
steps of Algorithm 1:

Steps 2.1 and 2.2: The matrix Ds
r is the sampled

columns of Dr. In steps 2.1 and 2.2, the redundant
columns of Ds

r are removed.

Steps 2.3 and 2.4: Define Ls
r as the LR component of

Ds
r. Steps 2.3 and 2.4 aim at finding the columns of Lr

which do not lie in the CS of Ls
r. Define dri as the ith

column of Dr. For a given i, if lri (the LR component
of dri) lies in the CS of Ls

r, the ith column of F =
Dr−Ds

rA
∗ will be a sparse vector. Thus, if we remove

a small portion of the elements of the ith column of F
with the largest magnitudes, the ith column of F will
approach the zero vector. Thus, by removing a small
portion of the elements with largest magnitudes of each
column of F, step 2.3 aims to locate the columns of Lr

that do not lie in the CS of Ls
r, namely, the columns of

Lr corresponding to the columns of F with the largest
ℓ2-norms. Therefore, in step 2.5, these columns are
added to the matrix of sampled columns Ds

r.
As an example, suppose D = [L1 L2] + S follows

Data model 1 where the CS of L1 ∈ R
50×180 is inde-

pendent of the CS of L2 ∈ R
50×20. In addition, assume

Dr = D and that all the columns of Ds
r happen to be

sampled from the first 180 columns of Dr, i.e., all sam-
pled columns belong to L1. Thus, the LR component
of the last 20 columns of Dr do not lie in the CS of Ls

r.
Fig. 3 shows F = Dr −Ds

rA
∗. One can observe that

the algorithm will automatically sample the columns
corresponding to L2 because if few elements (with the
largest absolute values) of each column are eliminated,
only the last 20 columns will be non-zero.

Remark 2. The approach proposed in Algorithm 1 is
not limited to the proposed method. The same idea
can be used to enable more scalable versions of exist-
ing algorithms. For instance, the complexities of [12]
and [22] can be reduced from roughly N3

2 to N2r, which
is a remarkable speedup for high dimensional data.

4.1.1 Sampling from highly structured Big

data

Algorithm 1 presumes that the rows of L are well
distributed such that c1r̂ randomly sampled rows of L
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Figure 3. Matrix F in step 2.3 of Algorithm 1.

Algorithm 1 Scalable Randomized Solver for (7)
1. Initialization

1.1 Set c1, c2, and kmax equal to integers greater than 0. Set
τ equal to a positive integer less than 50. r̂ is a known upper
bound on r.
1.2 Form Dr ∈ R

m2×N2 by sampling m2 = c1r̂ rows of D

randomly.
1.3 Form Ds

r ∈ R
m2×c2r̂ by sampling c2r̂ columns of Dr ran-

domly.

2. For k from 1 to kmax

2.1 Locate informative columns: Define A∗ as the optimal
point of

min
A

‖Dr −Ds
rA‖1 + γ‖AT ‖1,2 . (8)

2.2 Remove redundant columns: Remove the zero rows
of A∗ (or the rows with ℓ2-norms close to 0) and remove the
columns of Ds

r corresponding to these zero rows.
2.3 Remove sparse residuals: Define F = Dr − Ds

rA
∗. For

each column of F, remove the τ percent elements with largest
absolute values.
2.4 Locate new informative columns: Define Dn

r ∈ R
m2×2r̂

as the columns of Dr which are corresponding to the columns of
F with maximum ℓ2-norms.
2.5 Update sampled columns: Ds

r = [Ds
r Dn

r ].
2. End For

Output: Construct Dc as the columns of D corresponding to

the sampled columns from Dr (which form Ds
r). The columns

of Dc are the sampled columns.

span its RS. This may be true in many settings where
the clustering structure is only along one direction (ei-
ther the rows or columns), in which case Algorithm

1 can successfully locate the informative columns. If,
however, both the columns and the rows exhibit clus-
tering structures and their distribution is highly non-
uniform, neither the CS nor the RS can be captured
concisely using random sampling. As such, in this sec-
tion we address the scenario in which the rank of Lr

may not be equal to r. We present an iterative CS-RS
pursuit approach which converges to the CS and RS of
L in few iterations.

The table of Algorithm 2, Fig. 4 and its caption
provide the details of the proposed sampling approach
along with the definitions of the used matrices. We

Algorithm 2 Column/Row Subspace Pursuit Algo-
rithm
Initialization: Set Dw equal to c1r̂ randomly sampled rows of
D. Set X equal to c2r̂ randomly sampled columns of Dw and
set kmax equal to an integer greater than 0.

For j from 1 to jmax do

1. Column Sampling

1.1 Locating informative columns: Apply Algorithm 1 with-
out the initialization step to Dw as follows: set Dr equal to Dw,
set Ds

r equal to X, and set kmax = 1.
1.2 Update sub-matrix X: Set sub-matrix X equal to Ds

r,
the output of Step 2.5 of Algorithm 1.
1.3 Sample the columns: Form matrix Dc using the columns
of D corresponding to the columns of Dw which were used to
form X.

2. Row Sampling

2.1 Locating informative rows: Apply Algorithm 1 without
the initialization step to DT

c as follows: set Dr equal to DT
c , set

Ds
r equal to XT , and set kmax = 1.

2.2 Update sub-matrix X: Set sub-matrix XT equal to Ds
r,

the output of step 2.5 of Algorithm 1.
2.3 Sample the rows: Form matrix Dw using the rows of D
corresponding to the rows of Dc which were used to form X.

End For

Output: The matrices Dc and Dw are the sampled columns

and rows, respectively.

start the cycle from the position marked I in Fig. 4.
The matrix X is the informative columns of Dw. Thus,
the rank of XL (the LR component of X) is equal to
the rank of Lw (the LR component of Dw). The rows
of XL are a subset of the rows of Lc (the LR com-
ponent of Dc). If the rows of L exhibit a clustering
structure, it is likely that rank(XL) < rank(Lc). Thus,
rank(Lw) < rank(Lc). We continue one cycle of the
algorithm by going through steps II and 1 of Fig. 4 to
update Dw. Using a similar argument, we see that the
rank of an updated Lw will be greater than the rank
of Lc. Thus, if we run more cycles of the algorithm
– each time updating Dw and Dc – the rank of Lw

and Lc will increase. While there is no guarantee that
the rank of Lw will converge to r (it can converge to
a value smaller than r), our investigations have shown
that Algorithm 2 performs quite well and the RS of
Lw (CS of Lc) converges to the RS of L (CS of L) in
very few iterations.

4.2. Solving the convex optimization problems

The optimization problem (8) can be rewritten as

min
Q,A,B

‖Q‖1 + γ‖BT ‖1,2

subject to A = B and Q = Dr −Ds
rA ,

(9)

43251822



Figure 4. Visualization of Algorithm 2. I: Matrix Dc is
obtained as the columns of D corresponding to the columns
which form X. II: Algorithm 1 is applied to Matrix Dc to
update X (the sampled rows of Dc). 1: Matrix Dw is
obtained as the rows of D corresponding to the rows which
form X. 2: Algorithm 1 is applied to matrix Dw to update
X (the sampled columns of Dw).

which is equivalent to

min
Q,A,B

‖Q‖1 + γ‖BT ‖1,2 +
µ

2
‖A−B‖2F

+
µ

2
‖Q−Dr +Ds

rA‖2F
subject to A = B and Q = Dr −Ds

rA ,

(10)

where µ is the tuning parameter. The optimization
problem (10) can be efficiently solved using the Alter-
nating Direction Method of Multipliers (ADMM) [5].
Due to space constraints, we defer the details of the
iterative solver to the supplementary material. The
optimization problem (5) can be solved using the same
techniques as well, where we would just need to sub-
stitute Dr and Ds

r with D.

5. Robustness to Outlying Data Points

In this section, we extend the proposed sampling al-
gorithm (5) to make it robust to both sparse corruption
and outlying data points. Suppose the given data can
be expressed as

D = L+C+ S , (11)

where L and S follow Data model 1. The matrix C

has some non-zero columns modeling the outliers. The
outlying columns do not lie in the column space of L
and they cannot be decomposed into columns of L plus
sparse corruption. Below, we provide two scenarios
motivating the model (11).

I. Facial images with different illuminations were
shown to lie in a low dimensional subspace [1]. Now
suppose we have a dataset consisting of some sparsely

corrupted face images along with few images of ran-
dom objects (e.g., building, cars, cities, ...). The im-
ages from random objects cannot be modeled as face
images with sparse corruption. We seek a sampling al-
gorithm which can find informative face images while
ignoring the presence of the random images to identify
the different human subjects in the dataset.

II. A users rating matrix in recommender systems
can be modeled as a LR matrix owing to the simi-
larity between people’s preferences for different prod-
ucts. To account for natural variability in user pro-
files, the LR plus sparse matrix model can better model
the data. However, profile-injection attacks, captured
by the matrix C, may introduce outliers in the user
rating databases to promote or suppress certain prod-
ucts. The model (11) captures both element-wise and
column-wise abnormal ratings.

The objective is to develop a column sampling al-
gorithm which is simultaneously robust to sparse cor-
ruption and outlying columns. To this end, we propose
the following optimization problem extending (5)

min
A

‖D−DA+E‖1 + γ‖AT ‖1,2 + λ‖E‖1,2
subject to diag(A) = 0 .

(12)

The matrix E cancels out the effect of the outlying
columns in the residual matrix D−DA. Thus, the reg-
ularization term corresponding to E uses an ℓ1,2-norm
which promotes column sparsity. Since the outlying
columns do not follow low dimensional structures, an
outlier cannot be obtained as a linear combination of
few data columns. The constraint plays an important
role as it prevents the scenario where an outlying col-
umn is sampled by A to cancel itself.

The sampling algorithm (12) can locate the repre-
sentative columns in presence of sparse corruption and
outlying columns. For instance, suppose N1 = 50,
L = [L1 L2], where L1 ∈ R

50×100 and L2 ∈ R
50×250.

The ranks of L1 and L2 are equal to 5 and 2, respec-
tively, and their column spaces are independent. The
matrix S follows Data model 1 with ρ = 0.01 and the
last 50 columns of C are non-zero. The elements of the
last 50 columns of C are sampled independently from
a zero mean normal distribution. Fig. 5 compares the
output of (12) with the state-of-the-art robust sam-
pling algorithms in [22, 26]. In the first row of Fig. 5,
D = L + S + C, and in the second row, D = L + C.
Even if S = 0, the robust column sampling algorithm
(12) substantially outperforms [22, 26]. As shown, the
proposed method samples correctly from each cluster
(at least 5 columns from the first cluster and at least 2
columns from the second), and unlike [22,26], does not
sample from the outliers.
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Figure 5. Comparing the performance of (12) with the al-
gorithm in [22,26]. In the first row, D = L+C+S. In the
second row, D = L+C. The last 50 columns of D are the
outliers.

Figure 6. Left: Subspace recovery error versus the number
of randomly sampled columns. Right: The rank of sampled
columns through the iterations of Algorithm 1.

6. Experimental Results

In this section, we apply the proposed sampling
methods to both real and synthetic data and the per-
formance is compared to the-state-of-the-art.

6.1. Shortcomings of random sampling

In the first experiment, it is shown that random sam-
pling uses too many columns from D to correctly learn
the CS of L. Suppose the given data follows Data
model 1 with ρ = 0.01. In this experiment, D is a
2000 × 6300 matrix. The LR component is generated
as L = [L1 ... L60] . For 1 ≤ i ≤ 30, Li = UiQi , where
Ui ∈ R

2000×1, Qi ∈ R
1×200 and the elements of Ui

and Qi are sampled independently from N (0, 1). For
31 ≤ i ≤ 60, Li =

√
10UiQi , where Ui ∈ R

2000×1,
Qi ∈ R

1×10. Thus, with high probability the columns
of L lie in a union of 60 independent 1-dimensional
linear subspaces.

We apply Algorithm 1 to D. The matrix Dr is
formed using 100 randomly sampled rows of D. Since
the rows of L do not follow a clustering structure, the
rank of Lr (the LR component of Dr) is equal to 60
with overwhelming probability. The right plot of Fig.
6 shows the rank of the LR component of sampled
columns (the rank of Ls

r) after each iteration of Al-

gorithm 1. Each point is obtained by averaging over
20 independent runs. One can observe that 2 iterations
suffice to locate the descriptive columns. We run Al-

gorithm 1 with kmax = 3. It samples 255 columns on

average.
We apply the decomposition algorithm to the sam-

pled columns. Define the recovery error as ‖L −
ÛÛTL‖F /‖L‖F , where Û is the basis for the CS
learned by decomposing the sampled columns. If we
learn the CS using the columns sampled byAlgorithm

1, the recovery error in 0.02 on average. On the other
hand, the left plot of Fig. 6 shows the recovery er-
ror based on columns sampled using uniform random
sampling. As shown, if we sample 2000 columns ran-
domly, we cannot outperform the performance enabled
by the informative column sampling algorithm (which
here samples 255 columns on average).

6.2. Face sampling and video summarization with
corrupted data

In this experiment, we use the face images in the
Yale Face Database B [21]. This dataset consists of
face images from 38 human subjects. For each sub-
ject, there is 64 images with different illuminations.
We construct a data matrix with images from 6 human
subjects (384 images in total with D ∈ R

32256×384 con-
taining the vectorized images). The left panel of Fig.
8 shows the selected subjects. It has been observed
that the images in the Yale dataset follow the LR plus
sparse matrix model [6]. In addition, we randomly re-
place 2 percent of the pixels of each image with ran-
dom pixel values, i.e., we add a synthetic sparse matrix
(with ρ = 0.02) to the images to increase the corrup-
tion. The sampling algorithm (5) is then applied to
D. The right panel of Fig. 8 displays the images cor-
responding to the sampled columns. Clearly, the algo-
rithm chooses at least one image from each subject.

Informative column sampling algorithms can be uti-
lized for video summarization [11, 12]. In this exper-
iment, we cut 1500 consecutive frames of a cartoon
movie, each with 320 × 432 resolution. The data ma-
trix is formed by adding a sparse matrix with ρ = 0.02
to the vectorized frames. The sampling algorithm
(7) is then applied to find the representative columns
(frames). The matrix Dw is constructed using 5000
randomly sampled rows of the data. The algorithm
samples 52 frames which represent almost all the im-
portant instances of the video. Fig. 7 shows some of
the sampled frames (designated in color) along with
neighboring frames in the video. The algorithm judi-
ciously samples one frame from frames that are highly
similar.

6.3. Sampling from highly structured data

Suppose L1 ∈ R
2000×6300 and L2 ∈ R

2000×6300 are
generated independently similar to the way L was con-
structed in Section 6.1. Set V equal to the first 60

43271824



Figure 7. Few frames of the video file. The frames in color are sampled by the robust column sampling algorithm.

Figure 8. Left: 6 images from the 6 human subjects form-
ing the dataset. Right: 8 images corresponding to the
columns sampled from the face data matrix.

right singular vectors of L1, U equal to the first 60
right singular vectors of L2, and set L = UVT . Thus,
the columns/rows of L ∈ R

6300 lie in a union of 60 1-
dimensional subspaces and their distribution is highly
non-uniform. Define rw and rc as the rank of Lw and
Lc, respectively. Table 1 shows rw and rc through the
iterations of Algorithm 2. The values are obtained as
the average of 10 independent runs with each average
value fixed to the nearest integer. Initially, rw is equal
to 34. Thus, Algorithm 1 is not applicable in this
case since the rows of the initial Lw do not span the
RS of L. According to Table 1, the rank of the sam-
pled columns/rows increases through the iterations and
converge to the rank of L in 3 iterations.

Table 1. Rank of columns/rows sampled by Algorithm 2

Iteration Number 0 1 2 3
rc - 45 55 60
rw 34 50 58 60

6.4. Robustness to outliers

In this experiment, the performance of the sampling
algorithm (12) is compared to the state of the art ro-
bust sampling algorithm presented in [22, 26]. Since
the existing algorithms are not robust to sparse cor-
ruption, in this experiment matrix S is set equal to
zero. The data can be represented as D = [Dl Dc].
The matrix Dl ∈ R

50×100 contain the inliers, the rank
of Dl is equal to 5 and the columns of Dl are dis-
tributed randomly within the CS of Dl. The columns
of Do ∈ R

50×no are the outliers, the elements of Dc are
sampled from N (0, 1) and no is the number of outliers.
We perform 10 independent runs. Define pa as the
average of the 10 vectors p. Fig. 9 compares the out-

put of the algorithms for different number of outliers.
One can observe that the existing algorithm fails not
to sample from outliers. Interestingly, eve if no = 300,
the proposed method does not sample from the out-
liers. However, if we increase no to 600, the proposed
method starts to sample from the outliers.

Figure 9. Comparing the performance of (12) with [22,26].
The blues are the sampled points from inliers and blacks
are sampled points from outliers.
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