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Abstract

Training triplet networks with large-scale data is chal-

lenging in face recognition. Due to the number of possi-

ble triplets explodes with the number of samples, previous

studies adopt the online hard negative mining(OHNM) to

handle it. However, as the number of identities becomes ex-

tremely large, the training will suffer from bad local minima

because effective hard triplets are difficult to be found. To

solve the problem, in this paper, we propose training triplet

networks with subspace learning, which splits the space of

all identities into subspaces consisting of only similar iden-

tities. Combined with the batch OHNM, hard triplets can

be found much easier. Experiments on the large-scale MS-

Celeb-1M challenge with 100K identities demonstrate that

the proposed method can largely improve the performance.

In addition, to deal with heavy noise and large-scale re-

trieval, we also make some efforts on robust noise removing

and efficient image retrieval, which are used jointly with

the subspace learning to obtain the state-of-the-art perfor-

mance on the MS-Celeb-1M competition (without external

data in Challenge1).

1. Introduction

Triplet loss is a metric learning method that has been

widely used in many applications, e.g., face recognition

[10,11], image retrieval [12,14] and person re-identification

[1,4]. A triplet usually consists of three samples: an anchor

sample, a positive one with the same class to the anchor,

and a negative one with the different class. The objective of

triplet loss is to learn a metric that pushes the positive pairs

closer while pulls the negative pairs away, thus the samples

within the same class can be nearest to each other.

One question is why we need the triplet loss? Actually,

there are some alternatives such as the softmax loss, which

is also popular. However, as the number of classes becomes

extremely large, the fully-connected layer that connects to

softmax loss will also become extremely large, thus the G-

PU memory cost will be unbearable with an usual batchsize,
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Figure 1. The LFW accuracy of the models trained with softmax

and triplet loss with the number of samples in each class set to be

2, 5 and 10. The model is trained on MS-Celeb-1M [2] with 100K

identities, and the evaluation is given by LFW [6].

while the small batchsize will take too long to train. Anoth-

er reason is that if only a few samples are available in each

class, training with softmax loss is difficult, and Fig.1 shows

its influence on softmax and triplet loss with 100K identi-

ties. The triplet performs much better when the number of

samples in each class is small(n = 2).

Though the advantage is clear, there are some challenges

to use it. One big challenge is how to train triplet models

effectively with large-scale data, e.g., 100K and 1M iden-

tities are common cases in face recognition. The difficulty

of scaling triplet is that the number of possible triplets is

cubic in the number of samples, and most triplets are too

easy that cannot help training. To reduce searching space,

some researchers transferred the triplet loss into softmax

loss [5, 9, 15], while some proposed the Online Hard Nega-

tive Mining(OHNM) [7, 10, 13] or batch OHNM [4]. Most

studies focused on the small-scale case, while FaceNet [10]

used an extremely large number of identities(8M ), but it

suffered from long training time(a few months).

In the above methods, all of them consider all identities

to sample the batch. It is widely accepted that hard triplet-

s can help training because they can reduce the ambiguity

of recognizing similar identities, and it indicates these hard

triplets should better come from similar identities. Howev-

er, sampling from all the identities cannot guarantee to in-
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clude the similar ones, thus it will fail in generating effective

hard triplets. Especially, in the large-scale face recognition

with 100K or 1M identities, the probability of sampling

similar identities with an usual batchsize is very tiny, e.g.,

the batch with the size of 1800 is randomly sampled from

8M identities in FaceNet [10]. Therefore, how to find the

similar identities is the key to improve the training of triplet

networks with large-scale data.

In this paper, we consider the case of large-scale face

recognition, and propose to train triplet networks with sub-

space learning. The basic idea is to generate a represen-

tation for each identity, and apply clustering on all the i-

dentities to generate clusters or subspaces, wherein identi-

ties are similar in each subspace. With the batch OHNM

applied in each subspace iteratively, the proposed method

can easily generate more effective hard triplets. Evalua-

tions on the large-scale MS-Celeb-1M dataset with 100K
identities [2] show that the proposed method can largely

improve performance and get more robust triplet models.

Particularly, our single triplet network obtains the LFW [6]

accuracy of 99.48%, which can be competitive to FaceNet’s

99.63% [10] with 8M identities.

This subspace learning with batch OHNM is our main

contribution. In addition, given the fact that the MS-Celeb-

1M dataset is noisy, we also design a noise removing trick

to clean the training data at the beginning, and experiments

show that it is able to handle different number of noises.

Furthermore, consider that the number of training images

is about 5M after the cleaning, we use a two-layer hier-

archical trick to retrieve a test image accurately and effi-

ciently. Combined with the proposed triplet network, we

have achieved the state-of-the-art performance on the MS-

Celeb-1M competition, i.e., Challenge1 without external

data. The recall of the random and hard set is 75% and

60.6% respectively, in which 75% has achieved the upper

limit on the random set.

2. Related Work

In this part, we introduce some previous studies on how

to accelerate the training of triplet networks. One big diffi-

culty is that the number of possible triplets scales cubical-

ly with the number of training samples. To avoid directly

searching the whole space, some researchers [5, 9, 15] con-

vert the triplet loss into a form of softmax loss. Sankara-

narayanan et al. [9] propose to transfer the Euclidean dis-

tance between positive and negative pairs into probabilis-

tic similarity, and they use low-dimensional embedding for

fast retrieval. Similar to [9], Zhuang et al. [15] convert

the retrieval problem into a multi-label classification prob-

lem with binary codes, which is optimized by the binary

quadratic algorithm to achieve faster retrieval. To simpli-

fy the optimization, Hoffer et al. [5] propose a Siamese-

like triplet network by transferring the retrieval problem

into a 2-class classification problem. These methods have

shown promising speedup, but no hard triplets are consid-

ered, which will result in inferior performance.

Inspired by the efficiency of classification, some stud-

ies [1,7,10,13] combine the advantages of classification and

hard triplets. Wang et al. [13] use a pretrained classification

model to select possible hard triplets offline, but the offline

selection is fixed as the classification model will not be up-

dated. To achieve faster training and handle variant triplets,

Parkhi et al. [7] train a classification network that is further

fine-tuned with triplet loss. They use the Online Hard Nega-

tive Mining(OHNM), wherein only the triplets violating the

margin constraint are considered as the hard ones for learn-

ing. Instead of fine-tuning with only triplet loss, Chen et

al. [1] propose to train networks jointly with softmax and

triplet loss to preserve both inter-class and intra-class in-

formation, and they also adopt OHNM in training. To ap-

ply OHNM in large-scale data, Schroff et al. propose the

FaceNet [10] that trains triplet networks with 8M identities,

and it takes a few months to finish with a large batchsize of

1800. One limitation of OHNM is that triplets are prede-

fined in the batch, and this will miss possible hard negative

samples that contained in the batch.

To make full use of the batch, some studies [4] gener-

ate hard triplets online within the batch. Hermans et al. [4]

propose the batch OHNM, in which negative samples are

searched within the batch based on their distance to the an-

chor, and the top nearest ones are considered as candidate

hard negative samples. In this way, more hard triplets can

be found easily, and the best performance is obtained in per-

son re-identification with 1500 identities. Due to their smal-

l scale, the probability of sampling similar identities with

an usual batchsize(128 or 256) is large. However, in the

large-scale case, randomly sampling similar identities will

be much more difficult, thus the batch OHNM will fail. In

this paper, we focus on how to find effective hard triplets in

large-scale face recognition.

3. Method

In this part, we will introduce how to train triplet net-

works with large-scale data. We first review the Online

Hard Negative Mining(OHNM) and batch OHNM in train-

ing the triplet network, then we elaborate how to improve

the training with subspace learning.

Let x be an image. Similar to FaceNet [10], we map

the sample x to a d-dimensional embedding with L2-

normalization, as shown in Fig.2(a), and this gives the rep-

resentation f (x) ∈ R
d that satisfies ‖f (x)‖

2
= 1. Let

xa
i , xp

i and xn
i be the anchor sample, positive sample and

negative sample respectively, in which xa
i and xp

i have the

same identity, while xa
i and xn

i come from different identi-

ties, i.e., I (xa
i ) = I (xp

i ) and I (xa
i ) �= I (xn

i ), wherein I (x)
denotes the identity of x.
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Figure 2. The pipeline of training triplet networks with three methods. (a) Triplet with OHNM; (b) Triplet with batch OHNM; (c) Triplet

with batch OHNM and subspace learning.

3.1. Triplet with OHNM

Online Hard Negative Mining(OHNM) [1, 7, 10, 13] is

proposed to only focus on hard triplets for training, and the

triplet loss with OHNM can be formulated as minimizing

the following loss

∑|B|

i=1

[

‖f (xa
i )− f (xp

i )‖
2
− ‖f (xa

i )− f (xn
i )‖

2
+ α

]

+

∀xa
i , x

p
i , x

n
i ∈ T

,

(1)

wherein |B| is the batchsize, B is the batch with 3 |B| im-

ages sampled from the image space T , and α denotes the

margin enforced between positive and negative pairs. In

Eqn.1, hard triplets are the ones that violate the margin con-

straint. However, due to xn
i is randomly sampled from all

identities, it is difficult to generate effective hard triplets.

Fig.2(a) gives an illustration, where most sampled xn
i (light

blue circles) are far away from the positive pairs. Though

the hard negative ones are in the batch, they cannot be se-

lected, e.g., some dark blue circles.

3.2. Triplet with Batch OHNM

To fully exploit the batch, some researchers propose the

batch OHNM [4] to explore more negative samples. Instead

of sampling xn
i from the whole image space T , batch OHN-

M finds xn
i in the batch, and the loss with batch OHNM is

minimized as follows

∑|B|

i=1

[

‖f (xa
i )− f (xp

i )‖
2
− ‖f (xa

i )− f (xn
i )‖

2
+ α

]

+

s.t. xn
i = argmin

x

‖f (xa
i )− f (x)‖

2
, I (xa

i ) �= I (x)

∀xa
i , x

p
i ∈ T, x ∈ B

.

(2)

Different from Eqn.1, xn
i is selected with respect to the Eu-

clidean distance to each anchor xa
i . In training, we ran-

domly sample |B| different identities, wherein xa
i and xp

i

are also randomly sampled in each identity, thus there are

2 |B|−2 possible xn
i for each xa

i . Batch OHNM is more ad-

vantageous not only for the harder negatives, but also more

triplets can be used for training as xn
i is no longer the in-

put. Similar to FaceNet [10], we consider several nearest

xn
i but not the most nearest one, because it might lead to

poor training as mislabelled and poorly imaged faces would

dominate xn
i . Fig.2(b) gives an illustration, in which some

xn
i are much closer to positive pairs, and more hard triplets

can be used to accelerate training, e.g., 6 triplets in Fig.2(b)

compared to 4 triplets in Fig.2(a).

3.3. Triplet with Subspace Learning

The effectiveness of hard negative mining comes from

its ability to handle ambiguity in recognizing similar iden-

tities, and this indicates the hard triplets should better be

generated from similar identities. However, in OHNM and

batch OHNM, all identities are used to randomly sample the

batch, which cannot be guaranteed to include similar identi-

ties. Especially in the large-scale case with 100K identities,

sampling similar identities with an usual batchsize such as

128 or 256 can be rather difficult.

To find similar identities, the basic idea is to get iden-

tity representation and cluster on all identities to generate

subspaces, wherein identities can be similar. We achieve

this with a classification model, which can be pretrained on

a subset of the whole training set. Let xc
i (∀i = 1, ..., Nc)

be an image with the identity c, and Nc is the number of

images in that identity. Then, the representation of xc
i ex-

tracted by the classification model is denoted as g (xc
i ), and

the identity representation g (c) is given by
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g (c) =
∑Nc

i=1
g (xc

i )

/

Nc, ∀c = 1, ..., C. (3)

Then, we apply k-means clustering on all the identity rep-

resentation [g (1) , ..., g (C)] to generate M subspaces, and

each subspace is denoted as Tm (∀m = 1, ...,M), as the

dotted circles shown in Fig2(c).

To accelerate training, we refer to [7] that uses the pre-

trained classification model as initialization. With batch

OHNM applied in each subspace iteratively, the triplet loss

with subspace learning can be minimized as

∑|B|

i=1

[

‖f (xa
i )− f (xp

i )‖
2
− ‖f (xa

i )− f (xn
i )‖

2
+ α

]

+

s.t. xn
i = argmin

x

‖f (xa
i )− f (x)‖

2
, I (xa

i ) �= I (x)

∀x ∈ B, xa
i , x

p
i ∈ Tm, m = 1, ...,M

.

(4)

Different from the single batch OHNM, the batch is ran-

domly sampled in Tm with similar identities, thus the se-

lected xn
i can be much harder to generate more effective

hard triplets. Fig.2(c) illustrates this process, wherein hard

negative samples are very close to the positive pairs in a sub-

space(dotted circle). Though some time is cost in feature

extraction and clustering, the subspace learning can largely

reduce the searching space and training time. Particularly,

similar to batch OHNM, several nearest xn
i are considered

to avoid bad local minima.

3.4. Some Discussions

In the subspace learning, the selection of identity repre-

sentation and the number of subspaces are important. In this

part, we give some discussions on them.

For the selection of g (c) in Eqn.3, we use the average of

all image representation in that identity as the identity rep-

resentation. Due to the large variations in viewpoint, illu-

mination and expression, the average operation can remove

the individual difference and extract the common character-

istics of an identity. Actually, g (c) can be considered as a

cluster center in the k-means clustering, but with only one

center in each identity.

For the number of subspaces M , it cannot be too large

or too small, i.e., each subspace should contain a moder-

ate number of identities. If M is too small, the whole im-

age space only has a rough division, thus many dissimilar

identities will belong to one subspace and not enough hard

triplets can be found. If M is too large, many small sub-

spaces that contain only a few identities will be generated.

However, the similarity cannot be guaranteed to be effective

as the identity representation is only given by the pretrained

classification model, which is not reliable enough to deter-

mine the similarity. As a result, the fine space division will

lead to the over-fitting, which will also give inferior perfor-

mance. In our experiments, we validate that each subspace

having about 10k identities is appropriate.

4. Cleaning and Retrieval

Except for the triplet network, how to deal with noisy

data and large-scale retrieval are also challenging problems.

In this part, we propose two tricks to handle them, and use

the tricks on the MS-Celeb-1M competition. Finally, we

give the algorithm pipeline as a short summary.

4.1. Noise Removing

In Challenge1 of the MS-Celeb-1M competition [2],

there are many mislabelled images throughout the dataset.

We observe that except for some identities that are very

noisy, most identities only have a small number of noisy

faces. As clean data dominates, Sukhbaatar et al. [8] show

that CNN can be robust to a small number of noise. Based

on the evidence, we propose to clean the data with three

steps as follows: (1) we use all the data to train an initial

classification model; (2) the initial model is used as fea-

ture extractor to remove the noise; (3) a new classification

model is re-trained with the clean data. For the removing

step, we adopt a simple trick that only keeps the images

with the same predicted identity and labeled identity. Fig.3

illustrates the removing with three steps.

Deep Netǁork Softŵax
Loss

Deep Netǁork Softŵax
Loss

Stageϭ:TraiŶiŶg Stage2:ReŵoǀiŶg Stageϯ:Re-TraiŶiŶg

Figure 3. An illustration of the noise removing with three steps.

4.2. Large-Scale Retrieval

As the number of training samples is reduced from 8.4M
to 5M after the cleaning, retrieving a test sample is still

challenging. Suppose there are C identities with N sam-

ples in the training set. Directly computing the Euclidean

distance to all the training samples gives the complexity of

O (N), but this is infeasible as N is extremely large, and it

will take long even with GPU computation. To retrieve ef-

ficiently, we propose a two-layer hierarchical retrieval with

the help of identity representation.

Given a test sample, the basic idea is to determine it-

s identity at first, then the training images in that identity

are used for retrieval, as shown in Fig.4. In this way, the

complexity can be reduced to only O (C +N/C), where-

in N/C is the average number of samples in each identity.

Since there are about 100K identities, i.e., C ≪ N , this
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Figure 4. An illustration of the proposed two-layer hierarchical

retrieval process with identity representation.

hierarchical trick can largely accelerate the retrieval. Dif-

ferent from the identity representation in Eqn.3 that uses a

pretrained classification model, we adopt the triplet network

for representation, which is given by

f (c) =
∑Nc

i=1
f (xc

i )

/

Nc, ∀c = 1, ..., C. (5)

4.3. Algorithm Pipeline

As a short summary, we give the pipeline of the triplet

with subspace learning in Alg.1. The pipeline mainly con-

tains three parts: (1) Initialization, which is also the noise

removing process; (2) Training, which trains triplet net-

works with subspace learning; (3) Testing, which is the two-

layer hierarchical retrieval.

Algorithm 1 The pipeline of triplet with subspace learning.

Initilization:

1: Set the margin α and the number of subspaces M ;

2: Train an initial classification model on all data or subset;

3: Remove noisy images by the initial model;

4: Re-train a classification network on clean data;

Training:

5: Extract image representation g
(

xc

i

)

by the new classification model;

6: Generate identity representation g (c) for all identities;

7: Generate M subspaces on all identities with k-means clustering;

8: Train triplet networks with subspace learning and batch OHNM;

Testing:

9: Extract image representation f
(

xc

i

)

for all images;

10: Generate identity representation f (c) for all identities;

11: Given a test sample, use the two-layer hierarchical retrieval;

5. Experimental Evaluation

In this section, we give the evaluation of the proposed

method. We first introduce the experimental setup in detail,

then show the main results of training triplet networks, data

cleaning and large-scale retrieval.

5.1. Experimental Settings

Database: We use two datasets in experiments, includ-

ing MS-Celeb-1M [2] and LFW [6]. The MS-Celeb-1M

consists of three parts: training set, development set and

test set. Firstly, in the training set, there are 99891 identi-

ties with about 8.4M images, while data cleaning reduces

the number to 5M . Then, in the development set, there are

two subsets based on different recognition difficulty: ran-

dom set(easy samples) and hard set(hard samples), each of

which has 500 images for model selection. Finally, in the

test set, there are 50K images with only 75% identities con-

tained in the training set, and it is used for final evaluation.

For fair comparison with other methods, we also give results

on LFW, wherein the test set has 6000 image pairs with each

pair having the same identity or not.

Evaluation: For the evaluation of MS-Celeb-1M [2], as-

sume there are N images in the development or test set. If

an algorithm recognizes M images among which C images

are correct, the precision and coverage will be calculated as

Precision = C/M and Coverage = M/N respective-

ly. By varying the confidence threshold, the coverage when

precision = 0.95 or 0.99 can be determined. For the eval-

uation of LFW [6], the accuracy is given by how many pairs

are correct in the 6000 pairs.

Pre-processing: In training, we use the same pre-

processing in all the networks. Given an training image, we

first resize it to 256×256, then a sub-image with 224×224
is randomly cropped and flipped. Particularly, we use no

mean subtraction or image whitening, as we put a batch

normalization layer right after the input data to learn the

normalization parameters. In the testing phase, both train-

ing and testing images are resized to 224× 224 and flipped,

then the average of the original and flipped image represen-

tation is considered as the final representation.

Network and Training: To learn the large number of i-

dentities, we use the popular ResNet-50 [3] network, which

is deep enough to handle our problem. We use a single ma-

chine with 4 Titan X in training, and the batchsize is set

to be 336 and 160 in the classification and triplet network

respectively. Particularly, the Nesterov Accelerated Gradi-

ent(NAG) is adopted for optimization, which is found to

converge much quickly than SGD.

Parameter Setup: For the learning rate, 0.1 is used for

the classification network that is trained from scratch; while

for the triplet network, 0.01 is used to fine-tune the classifi-

cation model. The training of both networks ends with the

rate of 0.0001, and 20 epochs are used in each rate to fully

converge. Then, for the number of subspaces(M in Eqn.4),

we set M = 10 to include about 10K identities in each sub-

space. Finally, we set the margin α by cross-validation, i.e.,

α = 0.4 throughout the experiments.

5.2. Results of Triplet

In this part, we give an evaluation of the triplet network

with subspace learning and batch OHNM. Table.5.2 shows

the LFW accuracy of the networks trained with softmax

43251911



loss and triplet loss. Particularly, all the triplet networks are

initialized with the pretrained classification model, and the

ones with “+Softmax” are fine-tuned jointly with softmax

loss and triplet loss.

Method LFW Acc(%)

Softmax (Baseline, 100K) 99.36

Triplet+Batch OHNM (100K) 98.98

Triplet+Batch OHNM+Random-Subspace (100K) 99.08

Triplet+Batch OHNM+Subspace-5 (100K) 99.25

Triplet+Batch OHNM+Subspace-10 (100K) 99.38

Triplet+Batch OHNM+Subspace-20 (100K) 99.33

Triplet+Batch OHNM + Softmax (100K) 99.33

Triplet+Batch OHNM+Random-Subspace + Softmax (100K) 99.35

Triplet+Batch OHNM+Subspace-5 + Softmax (100K) 99.38

Triplet+Batch OHNM+Subspace-10 + Softmax (100K) 99.48

Triplet+Batch OHNM+Subspace-20 + Softmax (100K) 99.41

FaceNet [10] (Triplet+OHNM, 8M ) 99.63

Table 1. The LFW accuracy of the baseline classification network

and different triplet networks.

We have five main observations. Firstly, compared to

the classification model, the performance of the triplet net-

work with OHNM has decreased a lot, e.g., from 99.36%
to 98.98%. Due to our single machine can only hold smal-

l batchsize, the chance of sampling similar identities from

100K identities with batch OHNM is very tiny. As a result,

the network cannot generate enough hard triplets, and it will

be trained to fit the semi-hard triplets, which will result in

the drop of performance.

Secondly, the performance of the triplet network with

subspace learning increases a little, e.g., from 99.36% to

99.38%. With enough hard triplets generated, the model

is able to overcome the ambiguity in recognizing similar i-

dentities. However, the improvement is not obvious as we

observe the softmax loss increases a lot in training, which

indicates that training with only triplet loss will harm the

identity information.

Thirdly, we also compare the triplet network with ran-

dom subspace, named as Triplet+Batch OHNM+Random-

Subspace, which divides the whole image space random-

ly. Table.5.2 shows that Random-Subspace has obtained

a slight improvement over the single Batch OHNM, e.g.,

from 98.98% to 99.08%, but it is still far below the sub-

space learning. This result implies that some similar or

semi-similar identities may be luckily put together, and the

searching space can be reduced a little. However, com-

pared to the cluster based subspace learning, not enough

hard triplets can be generated.

Fourthly, we evaluate the influence of the number of sub-

spaces M . Three values are tested: 5, 10 and 20, and their

corresponding models are denoted as Subspace− 5/10/20
respectively. Table.5.2 shows that setting M = 10 achieves

the best performance, i.e., 99.38% for Triplet+Batch

Figure 5. The performance of single classification or triplet mod-

els on the random set, which belongs to the development set of

Challenge1 without external data. Best viewed in color.

Figure 6. The performance of single classification or triplet mod-

els on the hard set, which belongs to the development set of

Challenge1 without external data. Best viewed in color.

OHNM+Subspace-10, and this result is just as expected.

As analyzed in Sec.3.4, small M can only give rough sub-

spaces, each of which contains many dissimilar identities;

large M will give too fine division, but this division is only

given by the baseline Softmax that is not reliable enough,

thus over-fitting may happen.

Finally, compared to the networks trained with only

triplet loss, the one trained with additional softmax loss ob-

tains promising improvements, e.g., 99.38% to 99.48% in

subspace learning, which can be competitive to FaceNet’s

99.63% [10] with 8M identities. The joint training with

softmax and triplet loss is more advantageous because soft-

max loss can preserve inter-class information while triplet

loss can preserve intra-class information, thus the jointly

trained model can be more robust.

Fig.5 and Fig.6 show the performance of classification

and triplet networks on the random and hard set respective-

ly, and the performance is given by the coverage under the

precision of 0.95 and 0.99. It can be observed that Triplet-

Subspace+Softmax obtains a large improvement over the

one with only batch OHNM, especially the coverage under

the precision of 0.99, e.g., from 0.148 to 0.602 in the ran-

dom set and from 0.036 to 0.236 in the hard set. Besides,

the performance in the random set is much higher than the

one in the hard set, and this is reasonable as the samples in

the hard set are more difficult.
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5.3. Results of Multi-Model

To give the best performance, we use two mod-

els for evaluation: the baseline classification mod-

el(Softmax in Table.5.2), and the jointly trained triplet mod-

el (Triplet+Softmax in Table.5.2). We adopt a simple com-

bination that averages the image representation of both

models, thus the final representation for the image and i-

dentity is given as

g (xc
i ) + f (xc

i )

2
,

g (c) + f (c)

2
. (6)

Fig.7 and Fig.8 show the performance of multi-models

on the random and hard set respectively, and the perfor-

mance is given by the coverage under the precision of 0.95
and 0.99. Particularly, Multi-Batch OHNM is the combina-

tion of Softmax and Triplet+Batch OHNM+Softmax, while

Multi-Subspace consists of Softmax and Triplet+Batch

OHNM+Subspace-10+Softmax.

Figure 7. The performance of multi-models on the random set,

which belongs to the development set of Challenge1 without ex-

ternal data. Best viewed in color.

Figure 8. The performance of multi-models on the hard set, which

belongs to the development set of Challenge1 without external

data. Best viewed in color.

It can be observed that Multi-Subspace has improved a

lot over the single models in Fig.5, e.g., the coverage in-

creases from 0.602 to 0.654 in the random set and from

0.236 to 0.298 in the hard set under the precision of 0.99.

This demonstrates that the inter-class and intra-class infor-

mation learned in the classification and triplet network re-

spectively can be complementary to enhance the recogni-

tion ability. However, we do not see the same improvement

for Multi-Batch OHNM.

Compared to the single models in Fig.5, the performance

of Multi-Batch OHNM has decreased a lot, e.g., the cov-

erage decreases from the baseline 0.414 to 0.01 under the

precision of 0.99 in the random set, while the coverage in

the hard set remains basically the same. In Fig.5, the cov-

erage of Softmax has dropped a lot as the confidence score

increases, which implies that the classification model is not

confident to differentiate similar identities, while it is more

confident to recognize semi-similar identities as precision is

high when the coverage ranges from 0.2 ∼ 0.6. This comes

from the fact that Softmax focuses more on the inter-class

information, but misses details in similar identities. Com-

pared to Softmax, Triple-Batch OHNM+Softmax performs

much more confident as high precision can be achieved un-

der a high confidence score, but the precision is lower than

Softmax when the converge ranges from 0.2 ∼ 0.6, and this

may be caused by the fact that the triplet network with batch

OHNM focuses more on the hard triplets. As a result, the

average of the two models increases the precision in low

coverage and decreases the precision in mid-level coverage,

which results in the large drop of performance under the

precision of 0.99.

TeamName Data Cov@P=0.95 TeamName Data Cov@P=0.95

Orion Aligned 0.75 Orion Aligned 0.606

DRNfLSR Aligned 0.734 CIGIT NLPR Aligned 0.534

ITRC-SARI Aligned 0.707 DRNfLSR Aligned 0.486

CIGIT NLPR Aligned 0.684 faceman Aligned 0.33

ms3rz Aligned 0.646 ms3rz Aligned 0.26

1510 Aligned 0.57 FaceAll Aligned 0.254

FaceAll Aligned 0.554 BUPT PRIS Aligned 0.21

faceman Aligned 0.461 IMMRSB3RZ Aligned 0.042

BUPT PRIS Aligned 0.421 BUPT MCPRL Cropped 0.04

IMMRSB3RZ Aligned 0.171 CIIDIP Aligned 0.02

CIIDIP Aligned 0.154 ITRC-SARI Aligned 0.004

BUPT MCPRL Cropped 0.064 DS NFS Aligned 0.001

NII-UIT-KAORI Aligned 0.001 1510 Aligned 0.001

DS NFS Aligned - Paparazzi Aligned -

Paparazzi Aligned - NII-UIT-KAORI Aligned -

Table 2. The final results on the random set(left) and hard set(right)

in Challenge1 without using external data. The performance is

given by the coverage under the precision of 0.95.

For the final evaluation, we adopt the Multi-Subspace for

result submission. Table.5.3 shows the final results of our

method(Orion) and other teams on the random set(left) and

hard set(right) in Challenge1 without using external data,

and the performance is given by the coverage under the pre-

cision of 0.95. It can be clearly observed that our method

has achieved the state-of-the-art performance in both the

random set and hard set, and the coverage in the hard set

has improved a lot over other teams, e.g., from 0.534 by

CIGIT NLPR to our 0.606. Particularly, in the random set,
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we have obtained the coverage of 0.75, which is the up-

per limit in Challenge1 without using external data as only

75% training identities are included in the test set. This re-

sult is surprising because we have obtained 100% recall on

the training identities under the precision of 0.95. Table.5.3

also shows the final results on the random and hard sets us-

ing the external data. Even though no external data is used

in our method, we can achieve competitive performance to

some teams, e.g., the SmileLab.

External Team Name Data Cov@P=0.95 Random Cov@P=0.95 Hard

Yes Panasonic-NUS Aligned 0.875 0.791

Yes Turtle Aligned 0.862 0.73

Yes SmileLab Aligned 0.792 0.61

No Orion Aligned 0.75 0.606

Yes D** Cropped 0.745 0.454

Yes BMTV Cropped 0.724 0.409

Yes FaceSecret Aligned 0.641 0.002

Table 3. The final results on the random set and hard set in

Challenge1 with external data. The performance is given by the

coverage under the precision of 0.95.

5.4. Results of Cleaning

In this part, we give an evaluation of the noise remov-

ing method. Table.5.4 shows the LFW accuracy of three

different noisy removing methods on MS-Celeb-1M, and a

classification model with softmax loss is used to remove

noise. Original Data uses all the data in training; while

Fixed Ratio uses other clean datasets to train a model as fea-

ture extractor, which keeps a fixed ratio of images in each

identity, and this is used in last year’s competition. It can be

observed that our removing method obtains the LFW accu-

racy of 99.36%, which is much higher than other methods,

and Fig.3 shows an example. Besides, we see that directly

using all the data in training is even better than Fixed Ra-

tio, and this indicates CNN can be robust to a small number

of noises, as demonstrated in [8]. Based on our observation,

different identities have different number of noises. As a re-

sult, Fixed Ratio will remove many clean samples for clean

identities and keep many noisy samples in noisy identities,

thus it may fail.

Method Original Data Fixed Ratio Ours

LFW Acc(%) 98.96 98.85 99.36

Table 4. The LFW accuracy based on three different noisy remov-

ing methods on the training set of MS-Celeb-1M.

5.5. Results of Retrieval

In this part, we give an evaluation of the retrieval ef-

ficiency. In testing, we have 99891 identities with about

5.04M images in the retrieval set, and the objective is to

determine the identity for a given test image. Table.5.5

Figure 9. Results of noise removing in two identities. The images

in the green dotted rectangles are noise faces.

gives the time cost(s) of retrieving one image with differ-

ent retrieval methods. All directly calculates the Euclidean

distance to all samples, 2 − Hierarchy denotes our two-

layer hierarchical retrieval trick, and CPU/GPU are the d-

ifferent hardware implementations. It can be observed that

with the CPU implementation, our trick can largely accel-

erate the retrieval by 69×. This is as expected as All needs

5.04M multiplications, while 2 − Hierarchy only needs

99891+50 multiplications, which can save a lot of time. To

further accelerate the retrieval, we implement matrix multi-

plication by GPU and the time is reduced to only 0.052s
for each image, which is very efficient. In the final eval-

uation, we adopt 2 − Hierarchy with GPU to finish the

testing with 50K images in about 1 hour(including feature

extraction and retrieval).

Method CPU Time(s) GPU Time(s)

All 32.09 4.646

2-Hierarchy 0.464 0.052

Table 5. The time cost(s) of retrieving one image with different

retrieval methods and CPU/GPU implementations.

6. Conclusion

In this paper, we take face recognition as a breaking point

and study how to train triplet networks with large-scale da-

ta. Firstly, to find similar identities for more effective hard

triplets, we have proposed the triplet with subspace learn-

ing, and this is our major contribution. Then, to handle

noisy faces and large-scale retrieval, we propose two tricks

that use a three-step noise removing trick and a two-layer

hierarchical retrieval trick. Combined with the subspace

learning, we have achieved the state-of-the-art performance

on the MS-Celeb-1M Challenge1 without external data. In

our future work, we will study triplet in a larger scale, e.g.,

1M or 10M identities.
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