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Abstract

For years, the ground truth data for evaluating object

trackers consists of axis-aligned or oriented boxes. This

greatly reduces the workload of labeling the datasets in the

common benchmarks. Nevertheless, boxes are a very coarse

approximation of an object and the approximation by a box

has a large degree of ambiguity. Furthermore, tracking ap-

proaches that are not restricted to boxes cannot be eval-

uated within the benchmarks without adding a penalty to

them. We present a simple extension to the VOT evaluation

procedure that enables to include these approaches. Fur-

thermore, we present upper bounds for trackers restricted to

boxes. Moreover, we present a new measure that captures

how well an approach can cope with scale changes without

the need of frame-wise labels. We present a learning-based

approach which helps to identify frames with heavy occlu-

sion automatically. The framework is tested on the segmen-

tations of the VOT2016 dataset.

1. Introduction

Visual object tracking is a rapidly evolving research

area with dozens of new algorithms being published each

year. To compare the performance of the many different ap-

proaches, a vast amount of evaluation datasets and schemes

are available. The most common are OTB [27] and VOT

[11]. Both benchmarks use axis-aligned or oriented boxes

as ground truth and estimate the accuracy with the Intersec-

tion over Union (IoU) criterion [23, 25].

Unfortunately, using boxes as ground truth has two in-

evitable disadvantages:

1. The approximation of an object by a box is very crude.

Especially articulated objects such as humans or ani-

mals can not be approximated well by boxes and the

choice of the best suitable box is highly ambiguous.

For example, the bag in Fig. 1 (a) has multiple valid

box approximations with the same overlap. Neverthe-

less, the Intersection over Union (IoU) between two of

the valid choices is only 0.71. To counter the ambi-

guity of the boxes to some extent, the objects in the

(a) bag from VOT2016 [11] (b) boat from DAVIS [18]

Figure 1. In image (a), both oriented boxes have an identical IoU

with the ground truth segmentation. Nevertheless, their common

IoU is only 0.71. Restricting the ground truth to boxes may intro-

duce an undesired bias in the evaluation. Furthermore, although

the object detection (green) in image (b) has an overlap of 0.62

with the ground truth segmentation, its IoU with the ground truth

axis-aligned bounding box is only 0.45 and would be considered a

false detection in the standard procedure.

VOT dataset are labeled by multiple annotators to get

an approximation of the box ambiguity.

2. It is difficult to evaluate approaches that are not re-

stricted to oriented or axis-aligned boxes on ground

truth boxes without introducing an unwanted bias in

the evaluation results. For example, the ground truth

segmentation in Fig. 1 (b) only has an IoU of 0.35 with

the red ground truth bounding box but is a perfect ap-

proximation of the object itself.

Especially the later point is of increasing concern. The

recent advances of Fully Convolutional Networks (FCNs)

for semantic segmentation [14, 21] have inspired ap-

proaches capable of tracking dense segmentations through

image sequences in real-time. In One-Shot Video Ob-

ject Segmentation (OSVOS), Caelles et al. [7] approximate

the segmentations by bounding boxes to enable a compari-

son with the state-of-the-art bounding box tracker MDNET

[16]. Furthermore, it is also difficult to evaluate the perfor-

mance gains of approaches that approximate the object by

general affine transformations (and not only through rotated
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boxes) with the current VOT and OTB ground truth data [6].

To address these problems, a number of densely seg-

mented ground truth datasets has started to emerge [13, 18,

26]. Nevertheless, no evaluation protocol that enables a fair

comparison of tracking approaches restricted to boxes and

those which are not exists. We propose to use the IoU of

the object segmentation and the tracker proposal as an ac-

curacy measure. By furthermore calculating the optimal

axis-aligned and oriented box for each segmentation, it is

possible to obtain reliable upper bounds for all approaches

restricted to boxes. The optimal boxes can be efficiently

computed with the approach proposed in [5]. The main con-

tributions of this work include:

• We introduce reliable upper bounds for trackers re-

stricted to axis-aligned and oriented boxes for all

VOT2016 sequences.

• We present a measure which captures how well an ap-

proach can capture scale change without the need of

frame-wise labels. The measure is not correlated to the

current accuracy and robustness measures and tested

on a collection of the trackers submitted to VOT2016.

• We show how heavy occlusion occurring in the VOT

dataset can be detected automatically without the need

of manual annotation.

By proposing to use the segmentations to calculate the ac-

curacy directly, we remove the restriction of the evalua-

tion scheme to approaches restricted to boxes. The code to

generate the theoretical trackers and the upper bounds for

VOT2016 will be made available to the community1.

The rest of the paper is organized as follows. In sec-

tion 2, we examine the existing literature and motivate why

boxes are not sufficient to measure tracker accuracies. In

section 3, we present the upper bounds for VOT, the new

scale measure and the learning-based scheme for detecting

occlusions and our evaluations. Section 4 concludes the pa-

per and gives an outlook on our further work.

2. Related Work

Very recently, a number of approaches have emerged

where the current bounding box groundtruths were not suf-

ficient [4, 6, 7]. Caelles et al. [7] introduce the above

mentioned OSVOS, which essentially tracks a segmentation

through an image sequence. The base of their CNN is pre-

trained on ImageNet for image labeling. The network is

then trained on the binary masks of DAVIS [18], to learn a

generic notion of how to segment objects from their back-

ground. When applied, the network is first fine-tuned on the

first frame of the sequence (annotation mask and image).

Then the network is tested on the successive frames. The

1http://www.mvtec.com/company/research

ΦIoU

VOT2015 0.577

VOT2016 0.651

box-no-scale 0.512

box-axis-aligned 0.722

box-rot 0.760

Table 1. The IoU of the theoretical tracker

box-axis-aligned, box-rot, box-no-scale and

the VOT2016 and VOT2015 ground-truths [11] with the

VOT2016 segmentations [26].

approach allows to weight between accuracy and runtime

and runs at max 10 fps on 480×854 sized images. To com-

pare their approach to a current state-of-the-art tracker, they

computed the bounding box of their segmentation and com-

pared it to the ground-truth. Even though they were able

to outperform the state-of-the-art, the restriction of their re-

sults to a bounding box introduced a negative bias. Simi-

larly, Böttger et al. [6] proposed a sub-pixel precise tracking

scheme which was evaluated on a handful of rigid objects

from the OTB and VOT2016 dataset. Although the visual

results indicate an increase of the accuracy, the bounding

box ground truths were insufficient to show a performance

gain on a quantative scale.

In general, the accuracy of tracking approaches is com-

puted as the Intersection over Union (IoU) of the box

ground truths and the tracker predictions. Many other mea-

sures to compute the accuracy of trackers have been pro-

posed [11, 12, 17, 22, 25, 27]. To unify the evaluation of

trackers, Čehovin et al. [23, 25] provide a highly detailed

theoretical and experimental analysis of the most popular

performance measures and show that many of the above

measures are highly correlated. The appealing property of

the IoU measure is that it accounts for both position and size

of the prediction and ground truth simultaneously. Hence,

all of the common tracking benchmarks [11, 15, 27] use the

Intersection over Union (IoU).

When moving to densely segmented ground truths, the

IoU of the dense segmentations and the tracker predictions

will generally not result in a measure between 0 and 1. To

counter this, very recently, three new theoretical trackers

that deliver upper bounds for approaches restricted to axis-

aligned or oriented bounding boxes on dense segmentations

have been proposed [5]. The authors use the boxes with the

best possible IoU for a segmentation to normalize the IoU.

The optimal boxes are essentially upper bounds for evalu-

ating approaches restricted to boxes on densely segmented

ground truth.

In our paper, we make use of the three theoretical tracker

and show how they can be used to compute reliable upper

bounds for the VOT2016 evaluation scheme. Furthermore,
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they enable the calculation of a new measure which captures

how well an approach can capture scale change. The theo-

retical trackers also enable the detection of frames where

occlusions occur within the dataset and can be used as a

valuable indicator for degenerated ground truths.

3. Evaluation Scheme

We present an extension of the 2016 VOT evaluation

scheme [12]. In a first step, we propose to use dense seg-

mentations as ground truth. A dataset for VOT2016 has

recently been proposed [26]. This removes the ambiguity

of fitting boxes to non-rectangular objects. Furthermore, it

removes the need to label objects by different annotators

to get an estimate of the variation of the respective ground

truth box.

Nevertheless, since a great majority (≈ 95%) of the

current approaches is restricted to axis-aligned bounding

boxes, we propose to incorporate the three theoretical track-

ers from [5] into the evaluation process. The trackers deter-

mine upper bounds for the accuracy of tracking approaches

restricted to axis-aligned, oriented and scale-variant bound-

ing boxes, respectively.

We restrict our complete evaluation to a handful of

VOT2016 tracker which are openly available. We did not

restrict the selection to the top-performing trackers, but tried

to select a diverse set of trackers both in terms of their rank-

ing and their feature selection.

3.1. Upper bounds for VOT

The concept of theoretical trackers was first introduced

by Čehovin et al. [25] as an “excellent interpretation guide

in the graphical representation of results”. In their paper,

they use perfectly robust or accurate theoretical trackers to

create bounds for the comparison of the performance of

different trackers. We propose to use the three theoretical

tracker proposed in [5] to obtain upper bounds for the accu-

racy of trackers that underlie the box-world assumption.

Using the IoU of theoretical trackers Φopt, the relative

Intersection over Union (rIoU) of a box B with a dense seg-

mentation S is computed as,

ΦrIoU (S,B) =
ΦIoU (S,B)

Φopt(S)
, (1)

where ΦIoU is the Intersection over Union (IoU),

ΦIoU (S,B) =
|S ∩ B|

|S ∪ B|
. (2)

Here, Φopt is the best possible IoU a box can achieve for the

segmentation S . In comparison to the usual IoU (ΦIoU ),

the rIoU measure (ΦrIoU ) truly ranges from 0 to 1 for all

possible segmentations. The computation of the box that

achieve an IoU of Φopt is explained in more detail in [5].

The rIoU measure is useful to estimate how well box-

based schemes can do on a given sequence. It should not

be used to compare a segmentation-based scheme to a box-

based scheme. For comparing segmentation-based schemes

to a box-based schemes the IoU of the tracker prediction

and the ground truth segmentation itself is already a valid

measure. Objects are generally not boxes and hence any

approximation a tracking scheme makes is an error which

should be visible in the accuracy measure. Nevertheless,

the rIoU is a useful indicator of how much room for im-

provement any box-based scheme has for the given seg-

mentations. When making the transition from bounding box

to segmentation-based ground truths this is a useful tool to

bring the currently existing approaches into perspective.

By computing Φopt(S) for a complete sequence and

different parameterizations of B, three theoretical track-

ers can be obtained. Given the segmentation S , the

first tracker returns the best possible axis-aligned box

(box-axis-aligned), the second tracker returns the

optimal oriented box (box-rot) and the third tracker

returns the optimal axis-aligned box with a fixed scale

(box-no-scale). The scale is initialized in the

first frame with the scale of the box determined by

box-axis-aligned. While the first two tracker cannot

be efficiently optimized globally, the box-no-scale can

efficiently be computed by exhaustively computing the IoU

at all possible positions.

The theoretical trackers are essentially upper bounds

for the IoU all trackers restricted to boxes can obtain on

densely segmented ground truth. All trackers restricted to

boxes in general can not obtain an IoU higher than that

of box-rot for all possible segmentations. Those track-

ers which are further restricted to axis-aligned boxes can

not exceed box-axis-aligned. Finally, trackers which

cannot capture scale changes, such as the KCF [10] tracker,

are also exceeded by box-no-scale.

The upper bounds are valuable indicators of how much

potential a given tracking approach still has. In Table 1,

the IoU of the VOT box ground truths and the theoretical

tracker are listed to bring them into perspective. As dis-

played, no box-based tracker can obtain an IoU of over 0.76

for the complete dataset. The relative IoU measure is dis-

played for the complete dataset for the VOT2016 ground

truth boxes and a handful of the trackers submitted to the

VOT challenge in 2016 in Table 2. It becomes apparent that

there is still sufficient room for improvement for the exist-

ing trackers.

3.2. Measuring Scale­Changes

To capture how well an approach can cope with scale

changes, we propose a new measure. The measure builds

on the fact that scale changes within a sequence result in a

significant drop in the IoU of the box-no-scale tracker
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ΦIoU ΦrIoU

Φopt 0.72 1.0

VOT2016 0.65 0.89

CCOT [9] 0.41 0.56

ANT [24] 0.26 0.37

DSST [8] 0.24 0.32

L1APG [2] 0.18 0.25

STAPLE [3] 0.33 0.46

DFST [19] 0.27 0.37

DPCF [1] 0.29 0.41

Table 2. Comparison of different tracking approaches and their

average absolute (ΦIoU ) and relative IoU (ΦrIoU ) for the

VOT2016 [11] segmentations. Φopt denotes the theoretical tracker

box-axis-aligned from [5].

curve, while the box-axis-aligned tracker remains

unaffected, as can be seen nicely in Fig. 2. The deriva-

tive of the difference of racing curve (γ) is visualized

in Fig. 3 and is a reliable indicator of the scale-change and

the foundation of the presented scale measure. Whenever it

exceeds a threshold, it is assumed that the scale is changing.

We used a threshold of 0.5× 10−3 to suppress minor scale

changes and to compensate for noise in the segmentations.

Moreover, we smooth all three derivatives with a Gaussian

function with σ = 3.

For the frames that are identified as changing scale, we

calculate the scale score s. For each of these frames, we

compare the change of the size of the tracker predictions

to that of the box-axis-aligned tracker. If both have

the same direction, we assume the tracker is successfully

registering a scale change. To make the approach as inde-

pendent from the accuracy measure as possible, we do not

regard the magnitude of the size changes, but merely their

sign. Please note, the change of the size of the ground truths

boxes or segmentations to estimate the “ground truth” scale

change could equally be used. Nevertheless, we chose to

use the box-axis-aligned tracker to obtain an esti-

mate of the scale score for two reasons. First of all, the

segmentations themselves are very noisy and secondly, by

using the box-axis-aligned scale change, it is possi-

ble to bring the tracker scale scores into relation to the scale

score of the VOT2016 ground truth boxes.

The scale score s for a sequence is computed as

s =
1

n

n
∑

i

δsgn(size(Ti)′),sgn(size(Gi)′), (3)

where Ti is the tracker prediction at frame i, Gi is the ground

truth box, segmentation or one of the scale adaptive the-

oretical tracker (box-axis-aligned and box-rot) at

racing

0 50 100 150
0

0.2
0.4
0.6
0.8
1

Φ
I
o
U

singer3

0 50 100 130
0

0.2
0.4
0.6
0.8
1

Φ
I
o
U

box-no-scale box-rot

box-axis-aligned

Figure 2. racing and singer3 from VOT2016 [11]. The in-

creasing gap between the box-no-scale and the other two the-

oretical trackers indicates a scale change. The best possible IoU

is never above 0.80 for the top sequence and never above 0.90 for

the bottom sequence.

frame i, sgn is the signum function and δi,j is the Kronecker

delta, which is 1 if the variables are equal, and 0 otherwise:

δi,j =

{

0 if i 6= j,

1 if i = j.
(4)

The size of the region R is denoted as size(R) and its

derivative as size(R)′. The derivative is approximated by

central differences.

Trackers that do not estimate the scale have a scale score

of 0 (size(Ti)
′ = 0 ∀ ∈ n) and a perfect scale adaptive

tracker has a score of 1. Please note, no frame-wise labels

are required and the scale score is, by construction, uncor-

related to the accuracy or robustness overlap. We computed

the scale score without reinitialization on tracker failure and

ignored the frames where the tracker had completely failed

(hence ΦIoU = 0).

We evaluated the new measure for all sequences in the

VOT2016 challenge for a handful of top trackers and for

the ground truth themselves. The results are displayed in
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Figure 3. The derivative of the difference between the

box-no-scale and box-axis-aligned tracker from

Fig. 2. The magnitude of the curve is a reliable indicator for scale

change. To suppress minor scale changes and to compensate for

noise in the segmentations, we require the magnitude to exceeds

the fixed threshold of 0.5 × 10
−3 (visualized as the red-dotted

lines).

s

box-axis-aligned 1.0

box-no-scale 0.0

VOT2016 0.81

CCOT [9] 0.54

DSST [8] 0.36

ANT [24] 0.30

L1APG [2] 0.31

STAPLE [3] 0.37

DFST [19] 0.32

DPCF [1] 0.36

Table 3. The scale score (3) of the theoretical tracker

box-axis-aligned, the VOT2016 ground-truths [11] and a

collection of trackers from the literature. Even the top performing

tracker (CCOT) has a relatively low score (e.g. in comparison to

the VOT2016 ground truths).

Table 3. Since all the trackers in the VOT2016 challenge

were restricted to boxes, we use the size change of the

box-axis-aligned tracker to compute sgn(size(Gi)
′).

We retained from using the segmentations of VOT2016 di-

rectly, since they are quite noisy. Nevertheless, the exten-

sion of the scale measure to segmentation-based trackers is

straight-forward.

In general, the scale adaptation appears to be a prob-

lem of current state-of-the-art approaches. The scale score

for all trackers is significantly lower than that of the

VOT2016 ground truths. There are many examples where

the box-no-scale tracker is able to outperform all of the

tested axis-aligned tracker in terms of the IoU. A few strik-

ing examples are displayed in Fig. 4. The scale score s of

the respective sequences is well below 0.3 for all trackers.
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L1APG DFST

STAPLE DPCF

box-no-scale

Figure 4. bmx (top), book (middle) and singer3 (bottom) from

VOT2016 [11]. None of the tested trackers can cope with the scale

change. This becomes apparent since none of them can seriously

outperform the box-no-scale tracker and all fail early on in

the sequences.

3.3. Detecting Label Errors

The manual generation of densely segmented ground

truths is a tedious task. Hence, many datasets use a semi-

supervised approach such as GrabCut [20] or OSVOS [7]

to generate the labels. Nevertheless, it is inevitable that la-

bel errors may be generated by semi-supervised approaches.

To help identify obvious errors automatically, we propose to

use the derivative of the difference of the box-no-scale

tracker and the box-axis-aligned tracker (see Fig. 3).

When ever the magnitude exceeds a certain threshold the

object is either undergoing a very rapid scale change, or

the segmentation is degenerating. Since most tracking se-

quences have a reasonable frame-rate and object deforma-

tion, degenerated labels tend to have a much more extreme

derivative than natural deformation. We applied the ap-

proach to the complete VOT2016 segmentations and where

able to identify all of the extremely degenerated frames.

A collection of the detected degenerations and the deriva-
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tunnel car1 fish3 girl

Figure 5. Detecting label errors on VOT2016 [11] and the respective derivative of the difference between the box-no-scale tracker and

the box-axis-aligned tracker is displayed. In general, a large derivative is a good indicator of a degenerated label. There are a few

false positives though. For example, in the right image, the girl is merely being occluded and the segmentations are good. Nevertheless,

the derivatives are a useful tool for a semi-supervised labeling.

tives of the respective difference of the box-no-scale

and box-axis-aligned IoUs are displayed in Fig. 5.

We also tried to use the derivative of the size of the seg-

mentations itself as a measure to detect degenerations. Nev-

ertheless, since the size also incorporates all size changes

due to natural object deformation (such as a walking pedes-

trian) it is much more noisy than the box approximations

of box-no-scale and box-axis-aligned. Please

note, the small resolution of the VOT dataset makes the

pixel-wise ground truth annotation a very difficult task in

general.

3.4. Detecting Occlusions

In many cases, trackers fail in moments when objects are

occluded. One of the reasons is that the underlying models

cannot be updated to handle the abrupt change of the ob-

ject appearance without loosing robustness in general sit-

uations. Furthermore, the majority of trackers only handle

short-term tracking and thus do not re-detect the object once

it is fully lost. Of course, this behavior influences the IoU

or rIoU measures on a whole sequence a lot. It is therefore

helpful to be aware of occlusions occurring in a sequence to

evaluate tracker performance and failure with more detail.

Here, we present a learning-based approach to detect

frames with occlusions using only the dense segmentations

and the theoretical trackers mentioned above. As is indi-

cated in Fig. 6, frames with occlusions are often character-

ized by significant bumps in both the area of the segmenta-

tion as well as the IoUs of the theoretical trackers.

To learn the occlusions, we use a fully-convolutional

network (FCN) [21] with a simple structure, as depicted

in Fig. 6. As input, we took the derivative of the

smoothed functions of the area of the segmentation and

ReLU conv2 

15 x 1 x 1 

# 10 

conv3 

10 x 1 x 1 

# 2 

ground truth 

prediction conv1 

4 x 1 x 21 

# 15 

ReLU Input 

Figure 6. Scheme of our FCN model for occlusion detection: The

input are 4 time series consisting of area derivatives and IoU val-

ues of segmentations and theoretical tracker outputs (see text for

details). Ground truth is overlayed in red, where values of 1 indi-

cate occlusion. The input values and prediction shown here were

calculated on sequence motorbike of DAVIS [18] (best viewed

in color and digitally with zoom).

the area of box-rot2. We also include the IoU values

of box-axis-aligned and box-rot, normalized to

have zero-mean and standard deviation one. Thus, we use

four time-series as input to the network. We padded all four

smoothed functions constantly by ten frames to the left of

the first frame and the right of the last frame. The first layer

has kernels of shape 4×1×21 (depth × height × width). It

is followed by two 1×1-convolutions that replace the usual

inner-product layers for classification. Between conv1 and

2All area values were divided by the maximum area of the sequence

before 0.5 was subtracted.
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motorbike soccerball bmx-bumps

bus libby rhino

Figure 7. Occlusion prediction on DAVIS [18]. The red line represents the ground truth for occlusion (1 indicates occlusion is present),

the blue line is the prediction of our CNN, where the softmax output was thresholded at 0.5 as indicated by the dashed horizontal line. All

shown sequences are from validation or test set and were not seen during training. In cases, where the occlusions are severe, the results

are good (e.g. motorbike, soccerball). Occlusions with long duration (bmx-bumps, bus), can be detected succesfully only to

some extent. For sequences where the occlusion is present during almost the whole scene or the occlusion is only minor, the results are

less promising (libby, rhino).

girl road soccer1

Figure 8. Occlusion prediction on VOT2016 [11]. The red line represents the ground truth for occlusion (1 indicates occlusion is present),

the blue line is the prediction of our CNN, where the softmax output was thresholded at 0.2 as indicated by the dashed horizontal line. All

shown sequences are from validation or test set and were not seen during training. Heavy occlusions (e.g. girl, road) can be detected

in most cases, partial occlusions as those in soccer1 are more difficult.

conv2, as well as conv2 and conv3, we put a ReLU nonlin-

earity.

We divided the sequences of DAVIS [18] randomly into

training, validation and test splits, assuring that each of

the sets has approximately the same number of sequences

with and without occlusion. We use the DAVIS data since

the ground truths are labeled very accurately and the noise

within the data is significantly lower than for the VOT seg-

mentations. All sequences were manually labeled. The

mean occlusion-rate per sequence is 13.3%, 25.2% and

23.8% for training, validation and test set, respectively. We

trained our model for 150 epochs on the 16 sequences of the

training set and evaluated after each epoch on the validation

set. In each iteration, the data of a whole sequence was put

into the FCN simultaneously. Thus, 16 iterations are one

epoch. We used stochastic gradient descent with a constant

learning rate of 0.01, momentum of 0.9 and weight-decay

of 0.001. To avoid overfitting, we stopped early after 99

epochs to obtain a mean accuracy per sequence of 78.4%

and 76.4% on the validation and test set, respectively.

Although these numbers appear to be low, the model re-

turns a lot more valuable results than a model that always

returns “no occlusion” as result (and would still have a high

test accuracy). Some promising sequences and some fail-

ure cases out of the validation and test set are visualized in

Fig. 7. Generally, severe occlusions can be detected quite

well. Nevertheless, the model has its difficulties for se-

quences with a low number of frames, where the occlusion

is only minor, or where the occlusion is present during al-

most all frames. In sequences with long occlusions, such as

bmx-bumps or bus, the occlusion is only predicted partly.

For the annotator, this still has the benefit that he gets a hint

where to look.

When training the model longer, there was severe over-

fitting to the training sequences, leading to a high num-

ber of false positives in the validation and test sets. This

leads to the assumption that more training data is neces-

sary in order to get a model that generalizes better. Nev-

ertheless, the scheme is a first step towards automatically

obtaining frame-wise occlusion information for sequences

without manually labeling them. Please note, the training

data currently only consists of 16 sequences for DAVIS.

We also trained and evaluated our model on the VOT se-

quences. The hyperparameters of the model and solver set-
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tings were similar. The mean sequence occlusion-rate was

7.8%, 11.0% and 4.8% on the training, validation and test

set, respectively. Each of the sets consisted of 20 sequences,

eight of them containing at least one occlusion. The exten-

sion of the approach to the VOT data is difficult. This is

mainly due to the high level of noise within the VOT seg-

mentations. These are inevitable since the objects within

the VOT dataset are partly very small and the images them-

selves tend to have a very low resolution. Hence, without

smoothing the data, the IoU curves are very noisy, as well.

Early stopping after 71 epochs, we could obtain a mean

accuracy per sequence of 89.1% on the validation sets. Re-

ducing the confidence threshold for an occlusion from 0.5 to

0.2 slightly increased the mean accuracy to 89.2% and lead

to 94.9% mean accuracy per sequence on the test set. This

model rarely predicts occlusion which leads to a relatively

high number of false negatives. In those cases it does pre-

dict occlusions, it is often right. False positives mainly oc-

cur at positions with high object deformation or at positions

of label errors. A few examples are presented in Fig. 8.

4. Conclusion

In this paper, we proposed an extension of the 2016 VOT
evaluation protocol [12]. We used the segmentations of the
scenes to evaluate the accuracy directly. By incorporating
three new theoretical tracker into the evaluation framework,
it was possible to obtain reliable upper bounds for the per-
formance of all trackers that are restricted to a box represen-
tation of the object. We presented a new measure that ranges
from 0 to 1 and evaluates how well a tracker can adapt to
scale changes. The measure does not require any frame-
wise labels. Additionally, the derivatives required to com-
pute the scale measure can be a good indicator for ground
truth label errors. Furthermore, we presented a learning-
based approach to automatically detect occlusions in track-
ing sequences. The method can help to reduce the work-
load of manually labeling the occlusions in new tracking
sequences. In future work, we want to use the increasing
amount of available high-quality segmentations in order to
improve our presented occlusion detection model. Espe-
cially, the problem of automatically detecting partial occlu-
sions or frames where the object is partially outside the im-
age.
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[4] T. Böttger and C. Eisenhofer. Efficiently tracking extremal

regions in multichannel images. In International Conference

on Pattern Recognition Systems (ICPRS), 2017. 2
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