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Abstract

For years, the ground truth data for evaluating object
trackers consists of axis-aligned or oriented boxes. This
greatly reduces the workload of labeling the datasets in the
common benchmarks. Nevertheless, boxes are a very coarse
approximation of an object and the approximation by a box
has a large degree of ambiguity. Furthermore, tracking ap-
proaches that are not restricted to boxes cannot be eval-
uated within the benchmarks without adding a penalty to
them. We present a simple extension to the VOT evaluation
procedure that enables to include these approaches. Fur-
thermore, we present upper bounds for trackers restricted to
boxes. Moreover, we present a new measure that captures
how well an approach can cope with scale changes without
the need of frame-wise labels. We present a learning-based
approach which helps to identify frames with heavy occlu-
sion automatically. The framework is tested on the segmen-
tations of the VOT2016 dataset.

1. Introduction

Visual object tracking is a rapidly evolving research
area with dozens of new algorithms being published each
year. To compare the performance of the many different ap-
proaches, a vast amount of evaluation datasets and schemes
are available. The most common are OTB [27] and VOT
[11]. Both benchmarks use axis-aligned or oriented boxes
as ground truth and estimate the accuracy with the Intersec-
tion over Union (IoU) criterion [23, 25].

Unfortunately, using boxes as ground truth has two in-
evitable disadvantages:

1. The approximation of an object by a box is very crude.
Especially articulated objects such as humans or ani-
mals can not be approximated well by boxes and the
choice of the best suitable box is highly ambiguous.
For example, the bag in Fig. | (a) has multiple valid
box approximations with the same overlap. Neverthe-
less, the Intersection over Union (IoU) between two of
the valid choices is only 0.71. To counter the ambi-
guity of the boxes to some extent, the objects in the

(a) bag from VOT2016 [11] (b) boat from DAVIS [18]
Figure 1. In image (a), both oriented boxes have an identical IoU
with the ground truth segmentation. Nevertheless, their common
IoU is only 0.71. Restricting the ground truth to boxes may intro-
duce an undesired bias in the evaluation. Furthermore, although
the object detection (green) in image (b) has an overlap of 0.62
with the ground truth segmentation, its IoU with the ground truth
axis-aligned bounding box is only 0.45 and would be considered a
false detection in the standard procedure.

VOT dataset are labeled by multiple annotators to get
an approximation of the box ambiguity.

2. It is difficult to evaluate approaches that are not re-
stricted to oriented or axis-aligned boxes on ground
truth boxes without introducing an unwanted bias in
the evaluation results. For example, the ground truth
segmentation in Fig. 1 (b) only has an IoU of 0.35 with
the red ground truth bounding box but is a perfect ap-
proximation of the object itself.

Especially the later point is of increasing concern. The
recent advances of Fully Convolutional Networks (FCNs)
for semantic segmentation [l4, 21] have inspired ap-
proaches capable of tracking dense segmentations through
image sequences in real-time. In One-Shot Video Ob-
ject Segmentation (OSVOS), Caelles et al. [7] approximate
the segmentations by bounding boxes to enable a compari-
son with the state-of-the-art bounding box tracker MDNET
[16]. Furthermore, it is also difficult to evaluate the perfor-
mance gains of approaches that approximate the object by
general affine transformations (and not only through rotated
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boxes) with the current VOT and OTB ground truth data [6].

To address these problems, a number of densely seg-
mented ground truth datasets has started to emerge [13, 18,

]. Nevertheless, no evaluation protocol that enables a fair
comparison of tracking approaches restricted to boxes and
those which are not exists. We propose to use the IoU of
the object segmentation and the tracker proposal as an ac-
curacy measure. By furthermore calculating the optimal
axis-aligned and oriented box for each segmentation, it is
possible to obtain reliable upper bounds for all approaches
restricted to boxes. The optimal boxes can be efficiently
computed with the approach proposed in [5]. The main con-
tributions of this work include:

e We introduce reliable upper bounds for trackers re-
stricted to axis-aligned and oriented boxes for all
VOT2016 sequences.

e We present a measure which captures how well an ap-
proach can capture scale change without the need of
frame-wise labels. The measure is not correlated to the
current accuracy and robustness measures and tested
on a collection of the trackers submitted to VOT2016.

e We show how heavy occlusion occurring in the VOT
dataset can be detected automatically without the need
of manual annotation.

By proposing to use the segmentations to calculate the ac-
curacy directly, we remove the restriction of the evalua-
tion scheme to approaches restricted to boxes. The code to
generate the theoretical trackers and the upper bounds for
VOT2016 will be made available to the community'.

The rest of the paper is organized as follows. In sec-
tion 2, we examine the existing literature and motivate why
boxes are not sufficient to measure tracker accuracies. In
section 3, we present the upper bounds for VOT, the new
scale measure and the learning-based scheme for detecting
occlusions and our evaluations. Section 4 concludes the pa-
per and gives an outlook on our further work.

2. Related Work

Very recently, a number of approaches have emerged
where the current bounding box groundtruths were not suf-
ficient [4, 6, 7]. Caelles et al. [7] introduce the above
mentioned OSVOS, which essentially tracks a segmentation
through an image sequence. The base of their CNN is pre-
trained on ImageNet for image labeling. The network is
then trained on the binary masks of DAVIS [ 18], to learn a
generic notion of how to segment objects from their back-
ground. When applied, the network is first fine-tuned on the
first frame of the sequence (annotation mask and image).
Then the network is tested on the successive frames. The
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@ rou
VOT2015 0.577
VOT2016 0.651
box-no-scale 0.512
box—-axis-aligned 0.722
box-rot 0.760

Table 1. The IoU of the theoretical tracker

box-axis—-aligned, box-rot, box-no-scale and
the VOT2016 and VOT2015 ground-truths [I11] with the
VOT2016 segmentations [26].

approach allows to weight between accuracy and runtime
and runs at max 10 fps on 480 x 854 sized images. To com-
pare their approach to a current state-of-the-art tracker, they
computed the bounding box of their segmentation and com-
pared it to the ground-truth. Even though they were able
to outperform the state-of-the-art, the restriction of their re-
sults to a bounding box introduced a negative bias. Simi-
larly, Bottger et al. [6] proposed a sub-pixel precise tracking
scheme which was evaluated on a handful of rigid objects
from the OTB and VOT2016 dataset. Although the visual
results indicate an increase of the accuracy, the bounding
box ground truths were insufficient to show a performance
gain on a quantative scale.

In general, the accuracy of tracking approaches is com-
puted as the Intersection over Union (IoU) of the box
ground truths and the tracker predictions. Many other mea-
sures to compute the accuracy of trackers have been pro-
posed [11, 12, 17,22, 25, 27]. To unify the evaluation of
trackers, Cehovin ef al. [23, 25] provide a highly detailed
theoretical and experimental analysis of the most popular
performance measures and show that many of the above
measures are highly correlated. The appealing property of
the IoU measure is that it accounts for both position and size
of the prediction and ground truth simultaneously. Hence,
all of the common tracking benchmarks [1 1, 15, 27] use the
Intersection over Union (IoU).

When moving to densely segmented ground truths, the
IoU of the dense segmentations and the tracker predictions
will generally not result in a measure between 0 and 1. To
counter this, very recently, three new theoretical trackers
that deliver upper bounds for approaches restricted to axis-
aligned or oriented bounding boxes on dense segmentations
have been proposed [5]. The authors use the boxes with the
best possible IoU for a segmentation to normalize the IoU.
The optimal boxes are essentially upper bounds for evalu-
ating approaches restricted to boxes on densely segmented
ground truth.

In our paper, we make use of the three theoretical tracker
and show how they can be used to compute reliable upper
bounds for the VOT2016 evaluation scheme. Furthermore,
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they enable the calculation of a new measure which captures
how well an approach can capture scale change. The theo-
retical trackers also enable the detection of frames where
occlusions occur within the dataset and can be used as a
valuable indicator for degenerated ground truths.

3. Evaluation Scheme

We present an extension of the 2016 VOT evaluation
scheme [12]. In a first step, we propose to use dense seg-
mentations as ground truth. A dataset for VOT2016 has
recently been proposed [26]. This removes the ambiguity
of fitting boxes to non-rectangular objects. Furthermore, it
removes the need to label objects by different annotators
to get an estimate of the variation of the respective ground
truth box.

Nevertheless, since a great majority (=~ 95%) of the
current approaches is restricted to axis-aligned bounding
boxes, we propose to incorporate the three theoretical track-
ers from [5] into the evaluation process. The trackers deter-
mine upper bounds for the accuracy of tracking approaches
restricted to axis-aligned, oriented and scale-variant bound-
ing boxes, respectively.

We restrict our complete evaluation to a handful of
VOT2016 tracker which are openly available. We did not
restrict the selection to the top-performing trackers, but tried
to select a diverse set of trackers both in terms of their rank-
ing and their feature selection.

3.1. Upper bounds for VOT

The concept of theoretical trackers was first introduced
by Cehovin et al. [25] as an “excellent interpretation guide
in the graphical representation of results”. In their paper,
they use perfectly robust or accurate theoretical trackers to
create bounds for the comparison of the performance of
different trackers. We propose to use the three theoretical
tracker proposed in [5] to obtain upper bounds for the accu-
racy of trackers that underlie the box-world assumption.

Using the IoU of theoretical trackers ®,,;, the relative
Intersection over Union (rloU) of a box 13 with a dense seg-
mentation S is computed as,

q)IoU (Sa B)
D00 (S, B) = ———, 1
10U (S, B) Do (S) (1
where @,y is the Intersection over Union (IoU),
IS N B
®, ,B) = . 2

Here, ®,,, is the best possible IoU a box can achieve for the
segmentation S. In comparison to the usual IoU (®;,y),
the rloU measure (®,.;,¢) truly ranges from O to 1 for all
possible segmentations. The computation of the box that
achieve an IoU of ®,,, is explained in more detail in [5].

The rloU measure is useful to estimate how well box-
based schemes can do on a given sequence. It should not
be used to compare a segmentation-based scheme to a box-
based scheme. For comparing segmentation-based schemes
to a box-based schemes the IoU of the tracker prediction
and the ground truth segmentation itself is already a valid
measure. Objects are generally not boxes and hence any
approximation a tracking scheme makes is an error which
should be visible in the accuracy measure. Nevertheless,
the rloU is a useful indicator of how much room for im-
provement any box-based scheme has for the given seg-
mentations. When making the transition from bounding box
to segmentation-based ground truths this is a useful tool to
bring the currently existing approaches into perspective.

By computing ®,,,(S) for a complete sequence and
different parameterizations of B, three theoretical track-
ers can be obtained. Given the segmentation S, the
first tracker returns the best possible axis-aligned box
(box—-axis—aligned), the second tracker returns the
optimal oriented box (box-rot) and the third tracker
returns the optimal axis-aligned box with a fixed scale
(box—no-scale). The scale is initialized in the
first frame with the scale of the box determined by
box—-axis—aligned. While the first two tracker cannot
be efficiently optimized globally, the box—no-scale can
efficiently be computed by exhaustively computing the IoU
at all possible positions.

The theoretical trackers are essentially upper bounds
for the IoU all trackers restricted to boxes can obtain on
densely segmented ground truth. All trackers restricted to
boxes in general can not obtain an IoU higher than that
of box—rot for all possible segmentations. Those track-
ers which are further restricted to axis-aligned boxes can
not exceed box—axis-aligned. Finally, trackers which
cannot capture scale changes, such as the KCF [10] tracker,
are also exceeded by box-no-scale.

The upper bounds are valuable indicators of how much
potential a given tracking approach still has. In Table 1,
the IoU of the VOT box ground truths and the theoretical
tracker are listed to bring them into perspective. As dis-
played, no box-based tracker can obtain an IoU of over 0.76
for the complete dataset. The relative IoU measure is dis-
played for the complete dataset for the VOT2016 ground
truth boxes and a handful of the trackers submitted to the
VOT challenge in 2016 in Table 2. It becomes apparent that
there is still sufficient room for improvement for the exist-
ing trackers.

3.2. Measuring Scale-Changes

To capture how well an approach can cope with scale
changes, we propose a new measure. The measure builds
on the fact that scale changes within a sequence result in a
significant drop in the IoU of the box—-no-scale tracker
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@ rou D, 10U
B opt 0.72 1.0
VOT2016 0.65 0.89
CCOT [9] 0.41 0.56
ANT [24] 0.26 0.37
DSST [8] 0.24 0.32
L1APG [2] 0.18 0.25
STAPLE [3] 0.33 0.46
DEST [19] 0.27 0.37
DPCF [1] 0.29 0.41

Table 2. Comparison of different tracking approaches and their
average absolute (®roy) and relative IoU (®,rov) for the
VOT2016 [11] segmentations. ®,: denotes the theoretical tracker
box—-axis-aligned from [5].

curve, while the box—-axis—aligned tracker remains
unaffected, as can be seen nicely in Fig.2. The deriva-
tive of the difference of racing curve (v) is visualized
in Fig. 3 and is a reliable indicator of the scale-change and
the foundation of the presented scale measure. Whenever it
exceeds a threshold, it is assumed that the scale is changing.
We used a threshold of 0.5 x 1072 to suppress minor scale
changes and to compensate for noise in the segmentations.
Moreover, we smooth all three derivatives with a Gaussian
function with o = 3.

For the frames that are identified as changing scale, we
calculate the scale score s. For each of these frames, we
compare the change of the size of the tracker predictions
to that of the box—axis—-aligned tracker. If both have
the same direction, we assume the tracker is successfully
registering a scale change. To make the approach as inde-
pendent from the accuracy measure as possible, we do not
regard the magnitude of the size changes, but merely their
sign. Please note, the change of the size of the ground truths
boxes or segmentations to estimate the “ground truth” scale
change could equally be used. Nevertheless, we chose to
use the box—axis—-aligned tracker to obtain an esti-
mate of the scale score for two reasons. First of all, the
segmentations themselves are very noisy and secondly, by
using the box-axis—aligned scale change, it is possi-
ble to bring the tracker scale scores into relation to the scale
score of the VOT2016 ground truth boxes.

The scale score s for a sequence is computed as

1
§= E Z 6sgn(size(7’i)’),sgn(size(gi)’)a 3

where 7; is the tracker prediction at frame 4, G; is the ground
truth box, segmentation or one of the scale adaptive the-
oretical tracker (box—axis—-aligned and box—rot) at

racing

—

50 100 130

— box—-no-scale
— box-axis—-aligned

Figure 2. racing and singer3 from VOT2016 [11]. The in-
creasing gap between the box-no-scale and the other two the-
oretical trackers indicates a scale change. The best possible IoU
is never above 0.80 for the top sequence and never above 0.90 for
the bottom sequence.

frame 7, sgn is the signum function and 5i7 4 1s the Kronecker
delta, which is 1 if the variables are equal, and O otherwise:

i
5, =40 Ti# 4
’ 1ifi=7.

The size of the region R is denoted as size(R) and its
derivative as size(R)’. The derivative is approximated by
central differences.

Trackers that do not estimate the scale have a scale score
of 0 (size(7;)’ = 0 V € n) and a perfect scale adaptive
tracker has a score of 1. Please note, no frame-wise labels
are required and the scale score is, by construction, uncor-
related to the accuracy or robustness overlap. We computed
the scale score without reinitialization on tracker failure and
ignored the frames where the tracker had completely failed
(hence @7,y = 0).

We evaluated the new measure for all sequences in the
VOT2016 challenge for a handful of top trackers and for
the ground truth themselves. The results are displayed in
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racing

100 150
Figure 3. The derivative of the difference between the
box-no-scale and box-axis-aligned tracker from
Fig. 2. The magnitude of the curve is a reliable indicator for scale
change. To suppress minor scale changes and to compensate for
noise in the segmentations, we require the magnitude to exceeds
the fixed threshold of 0.5 x 10~2 (visualized as the red-dotted
lines).

s
box-axis-aligned 1.0
box-no-scale 0.0
VOT2016 0.81
CCOT [9] 0.54
DSST [8] 0.36
ANT [24] 0.30
LI1APG [2] 0.31
STAPLE [3] 0.37
DFST [19] 0.32
DPCF [1] 0.36

Table 3. The scale score (3) of the theoretical tracker
box-axis-aligned, the VOT2016 ground-truths [11] and a
collection of trackers from the literature. Even the top performing
tracker (CCOT) has a relatively low score (e.g. in comparison to
the VOT2016 ground truths).

Table 3. Since all the trackers in the VOT2016 challenge
were restricted to boxes, we use the size change of the
box—-axis—-aligned tracker to compute sgn(size(G;)’).
We retained from using the segmentations of VOT2016 di-
rectly, since they are quite noisy. Nevertheless, the exten-
sion of the scale measure to segmentation-based trackers is
straight-forward.

In general, the scale adaptation appears to be a prob-
lem of current state-of-the-art approaches. The scale score
for all trackers is significantly lower than that of the
VOT2016 ground truths. There are many examples where
the box—no-scale tracker is able to outperform all of the
tested axis-aligned tracker in terms of the IoU. A few strik-
ing examples are displayed in Fig. 4. The scale score s of
the respective sequences is well below 0.3 for all trackers.

bmx

20 30 40 50 60
singer3
1 .
0.8
306
0.4
= 0.2
0+ + 1 +
0 10 20 30 40 50
— box-axis-aligned DSST
CCOT ANT
LIAPG — DFST
—_— STAPLE - DPCF

—o— box—-no-scale

Figure 4. bmx (top), book (middle) and singer3 (bottom) from
VOT2016 [11]. None of the tested trackers can cope with the scale
change. This becomes apparent since none of them can seriously
outperform the box-no-scale tracker and all fail early on in
the sequences.

3.3. Detecting Label Errors

The manual generation of densely segmented ground
truths is a tedious task. Hence, many datasets use a semi-
supervised approach such as GrabCut [20] or OSVOS [7]
to generate the labels. Nevertheless, it is inevitable that la-
bel errors may be generated by semi-supervised approaches.
To help identify obvious errors automatically, we propose to
use the derivative of the difference of the box—-no-scale
tracker and the box—axis—aligned tracker (see Fig. 3).
When ever the magnitude exceeds a certain threshold the
object is either undergoing a very rapid scale change, or
the segmentation is degenerating. Since most tracking se-
quences have a reasonable frame-rate and object deforma-
tion, degenerated labels tend to have a much more extreme
derivative than natural deformation. We applied the ap-
proach to the complete VOT2016 segmentations and where
able to identify all of the extremely degenerated frames.
A collection of the detected degenerations and the deriva-
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Figure 5. Detecting label errors on VOT2016 [1 1] and the respective derivative of the difference between the box-no-scale tracker and
the box-axis-aligned tracker is displayed. In general, a large derivative is a good indicator of a degenerated label. There are a few
false positives though. For example, in the right image, the girl is merely being occluded and the segmentations are good. Nevertheless,

the derivatives are a useful tool for a semi-supervised labeling.

tives of the respective difference of the box—-no-scale
and box—-axis—aligned loUs are displayed in Fig. 5.

We also tried to use the derivative of the size of the seg-
mentations itself as a measure to detect degenerations. Nev-
ertheless, since the size also incorporates all size changes
due to natural object deformation (such as a walking pedes-
trian) it is much more noisy than the box approximations
of box-no-scale and box-axis—-aligned. Please
note, the small resolution of the VOT dataset makes the
pixel-wise ground truth annotation a very difficult task in
general.

3.4. Detecting Occlusions

In many cases, trackers fail in moments when objects are
occluded. One of the reasons is that the underlying models
cannot be updated to handle the abrupt change of the ob-
ject appearance without loosing robustness in general sit-
uations. Furthermore, the majority of trackers only handle
short-term tracking and thus do not re-detect the object once
it is fully lost. Of course, this behavior influences the IoU
or rloU measures on a whole sequence a lot. It is therefore
helpful to be aware of occlusions occurring in a sequence to
evaluate tracker performance and failure with more detail.

Here, we present a learning-based approach to detect
frames with occlusions using only the dense segmentations
and the theoretical trackers mentioned above. As is indi-
cated in Fig. 6, frames with occlusions are often character-
ized by significant bumps in both the area of the segmenta-
tion as well as the IoUs of the theoretical trackers.

To learn the occlusions, we use a fully-convolutional
network (FCN) [21] with a simple structure, as depicted
in Fig.6. As input, we took the derivative of the
smoothed functions of the area of the segmentation and

B p ground truth

Input —> convl —> RelU —> conv2 —>RelU —> conv3 —> prediction
4x1x21 15x1x1 10x1x1
#15 #10 #2
Figure 6. Scheme of our FCN model for occlusion detection: The
input are 4 time series consisting of area derivatives and IoU val-
ues of segmentations and theoretical tracker outputs (see text for
details). Ground truth is overlayed in red, where values of 1 indi-
cate occlusion. The input values and prediction shown here were
calculated on sequence motorbike of DAVIS [18] (best viewed
in color and digitally with zoom).

the area of box-rot?. We also include the ToU values
of box—-axis—-aligned and box—-rot, normalized to
have zero-mean and standard deviation one. Thus, we use
four time-series as input to the network. We padded all four
smoothed functions constantly by ten frames to the left of
the first frame and the right of the last frame. The first layer
has kernels of shape 4 x 1 x 21 (depth x height x width). It
is followed by two 1 x 1-convolutions that replace the usual
inner-product layers for classification. Between convl and

2 All area values were divided by the maximum area of the sequence
before 0.5 was subtracted.
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motorbike soccerball bmx-bumps

rhino

bus 1ibby

Figure 7. Occlusion prediction on DAVIS [18]. The red line represents the ground truth for occlusion (1 indicates occlusion is present),
the blue line is the prediction of our CNN, where the softmax output was thresholded at 0.5 as indicated by the dashed horizontal line. All
shown sequences are from validation or test set and were not seen during training. In cases, where the occlusions are severe, the results
are good (e.g. motorbike, soccerball). Occlusions with long duration (bmx-bumps, bus), can be detected succesfully only to
some extent. For sequences where the occlusion is present during almost the whole scene or the occlusion is only minor, the results are
less promising (1ibby, rhino).

soccerl

road

girl

Figure 8. Occlusion prediction on VOT2016 [ 1 1]. The red line represents the ground truth for occlusion (1 indicates occlusion is present),
the blue line is the prediction of our CNN, where the softmax output was thresholded at 0.2 as indicated by the dashed horizontal line. All
shown sequences are from validation or test set and were not seen during training. Heavy occlusions (e.g. girl, road) can be detected

in most cases, partial occlusions as those in soccerl are more difficult.

conv2, as well as conv2 and conv3, we put a ReLLU nonlin-
earity.

We divided the sequences of DAVIS [18] randomly into
training, validation and test splits, assuring that each of
the sets has approximately the same number of sequences
with and without occlusion. We use the DAVIS data since
the ground truths are labeled very accurately and the noise
within the data is significantly lower than for the VOT seg-
mentations. All sequences were manually labeled. The
mean occlusion-rate per sequence is 13.3%, 25.2% and
23.8% for training, validation and test set, respectively. We
trained our model for 150 epochs on the 16 sequences of the
training set and evaluated after each epoch on the validation
set. In each iteration, the data of a whole sequence was put
into the FCN simultaneously. Thus, 16 iterations are one
epoch. We used stochastic gradient descent with a constant
learning rate of 0.01, momentum of 0.9 and weight-decay
of 0.001. To avoid overfitting, we stopped early after 99
epochs to obtain a mean accuracy per sequence of 78.4%
and 76.4% on the validation and test set, respectively.

Although these numbers appear to be low, the model re-
turns a lot more valuable results than a model that always

returns “no occlusion” as result (and would still have a high
test accuracy). Some promising sequences and some fail-
ure cases out of the validation and test set are visualized in
Fig. 7. Generally, severe occlusions can be detected quite
well. Nevertheless, the model has its difficulties for se-
quences with a low number of frames, where the occlusion
is only minor, or where the occlusion is present during al-
most all frames. In sequences with long occlusions, such as
bmx-bumps or bus, the occlusion is only predicted partly.
For the annotator, this still has the benefit that he gets a hint
where to look.

When training the model longer, there was severe over-
fitting to the training sequences, leading to a high num-
ber of false positives in the validation and test sets. This
leads to the assumption that more training data is neces-
sary in order to get a model that generalizes better. Nev-
ertheless, the scheme is a first step towards automatically
obtaining frame-wise occlusion information for sequences
without manually labeling them. Please note, the training
data currently only consists of 16 sequences for DAVIS.

We also trained and evaluated our model on the VOT se-
quences. The hyperparameters of the model and solver set-
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tings were similar. The mean sequence occlusion-rate was
7.8%, 11.0% and 4.8% on the training, validation and test
set, respectively. Each of the sets consisted of 20 sequences,
eight of them containing at least one occlusion. The exten-
sion of the approach to the VOT data is difficult. This is
mainly due to the high level of noise within the VOT seg-
mentations. These are inevitable since the objects within
the VOT dataset are partly very small and the images them-
selves tend to have a very low resolution. Hence, without
smoothing the data, the IoU curves are very noisy, as well.

Early stopping after 71 epochs, we could obtain a mean
accuracy per sequence of 89.1% on the validation sets. Re-
ducing the confidence threshold for an occlusion from 0.5 to
0.2 slightly increased the mean accuracy to 89.2% and lead
to 94.9% mean accuracy per sequence on the test set. This
model rarely predicts occlusion which leads to a relatively
high number of false negatives. In those cases it does pre-
dict occlusions, it is often right. False positives mainly oc-
cur at positions with high object deformation or at positions
of label errors. A few examples are presented in Fig. 8.

4. Conclusion

In this paper, we proposed an extension of the 2016 VOT
evaluation protocol [12]. We used the segmentations of the
scenes to evaluate the accuracy directly. By incorporating
three new theoretical tracker into the evaluation framework,
it was possible to obtain reliable upper bounds for the per-
formance of all trackers that are restricted to a box represen-
tation of the object. We presented a new measure that ranges
from O to 1 and evaluates how well a tracker can adapt to
scale changes. The measure does not require any frame-
wise labels. Additionally, the derivatives required to com-
pute the scale measure can be a good indicator for ground
truth label errors. Furthermore, we presented a learning-
based approach to automatically detect occlusions in track-
ing sequences. The method can help to reduce the work-
load of manually labeling the occlusions in new tracking
sequences. In future work, we want to use the increasing
amount of available high-quality segmentations in order to
improve our presented occlusion detection model. Espe-
cially, the problem of automatically detecting partial occlu-
sions or frames where the object is partially outside the im-
age.
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