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Abstract

The Visual Object Tracking challenge VOT2017 is the

fifth annual tracker benchmarking activity organized by the

VOT initiative. Results of 51 trackers are presented; many

are state-of-the-art published at major computer vision con-

ferences or journals in recent years. The evaluation in-

cluded the standard VOT and other popular methodologies

and a new “real-time” experiment simulating a situation

where a tracker processes images as if provided by a con-

tinuously running sensor. Performance of the tested track-

ers typically by far exceeds standard baselines. The source

code for most of the trackers is publicly available from the

VOT page. The VOT2017 goes beyond its predecessors by

(i) improving the VOT public dataset and introducing a sep-

arate VOT2017 sequestered dataset, (ii) introducing a real-

time tracking experiment and (iii) releasing a redesigned

toolkit that supports complex experiments. The dataset, the

evaluation kit and the results are publicly available at the

challenge website1.

1. Introduction

Visual tracking is a popular research area with over

forty papers published annually at major conferences.

Over the years, several initiatives have been established

to consolidate performance measures and evaluation pro-

tocols in different tracking subfields. The longest last-

ing PETS [78] proposed evaluation frameworks motivated

mainly by surveillance applications. Other evaluation

methodologies focus on event detection, (e.g., CAVIAR2,

i-LIDS 3, ETISEO4), change detection [22], sports analyt-

ics (e.g., CVBASE5), faces (e.g. FERET [50] and [28]),

long-term tracking 6 and multiple target tracking [35, 61]7.

Recently, workshops focusing on performance evaluation

issues in computer vision 8 have been organized and an ini-

tiative covering several video challenges has emerged 9.

In 2013, VOT — the Visual Object Tracking initiative

— was started to address performance evaluation of short-

term visual object trackers. The primary goal of VOT

is establishing datasets, evaluation measures and toolkits

as well as creating a platform for discussing evaluation-

related issues. Since 2013, four challenges have taken

place in conjunction with ICCV2013 (VOT2013 [32]),

ECCV2014 (VOT2014 [33]), ICCV2015 (VOT2015 [30])

1http://votchallenge.net
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
4http://www-sop.inria.fr/orion/ETISEO
5http://vision.fe.uni-lj.si/cvbase06/
6http://www.micc.unifi.it/LTDT2014/
7https://motchallenge.net
8https://hci.iwr.uni-heidelberg.de/eccv16ws-datasets
9http://videonet.team

and ECCV2016 (VOT2016 [29]) respectively.

Due to the growing interest in (thermal) infrared (TIR)

imaging, a new sub-challenge on tracking in TIR sequences

was launched and run in 2015 (VOT-TIR2015 [19]) and

2016 (VOT-TIR2016 [20]). In 2017, the TIR challenge re-

sults are reported alongside the RGB results.

This paper presents the VOT2017 challenge, organized

in conjunction with the ICCV2017 Visual Object Track-

ing workshop, and the results obtained. Like VOT2013,

VOT2014, VOT2015 and VOT2016, the VOT2017 chal-

lenge considers single-camera, single-target, model-free,

causal trackers, applied to short-term tracking. The model-

free property means that the only training information pro-

vided is the bounding box in the first frame. The short-term

tracking means that trackers are assumed not to be capa-

ble of performing successful re-detection after the target is

lost and they are therefore reset after such event. Causal-

ity requires that the tracker does not use any future frames,

or frames prior to re-initialization, to infer the object posi-

tion in the current frame. In the following, we overview the

most closely related work and point out the contributions of

VOT2017.

1.1. Related work

Performance evaluation of short-term visual object

trackers has received significant attention in the last five

years [32, 33, 30, 31, 29, 68, 60, 77, 39, 40, 45, 41].

The currently most widely used methodologies developed

from three benchmark papers: the “Visual Object Track-

ing challenge” (VOT) [32], the “Online Tracking Bench-

mark” (OTB) [77] and the “Amsterdam Library of Ordi-

nary Videos” (ALOV) [60]. The benchmarks differ in the

adopted performance measures, evaluation protocols and

datasets. In the following we briefly overview these dif-

ferences.

1.1.1 Performance measures

The OTB- and ALOV-related methodologies, like [77, 60,

39, 40], evaluate a tracker by initializing it on the first frame

and letting it run until the end of the sequence, while the

VOT-related methodologies [32, 33, 30, 68, 31] reset the

tracker once it drifts of the target. ALOV [60] defines track-

ing performance as the F-measure at 0.5 overlap threshold

between the ground truth and the bounding boxes predicted

by the tracker. OTB [77] generates a plot showing the per-

centage of frames where the overlap exceeds a threshold,

for different threshold values. The primary measure is the

area under the curve, which was recently shown [68] to be

equivalent to the average overlap (AO) between the ground

truth and predicted bounding boxes over all test sequences.

The strength of AO is in its simplicity and ease of inter-

pretation. A downside is that, due to lack of resets, this is a
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biased estimation of average overlap with a potentially large

variance. In contrast, the bias and variance are reduced in

reset-based estimators [31].

Čehovin et al. [67, 68] analyzed the correlation between

popular performance measures and identified accuracy and

robustness as two weakly-correlated measures with high

interpretability. The accuracy is the average overlap dur-

ing successful tracking periods and the robustness measures

how many times the tracker drifted from the target and had

to be reset. The VOT2013 [32] adopted these as the core

performance measures. To promote the notion that some

trackers might perform equally well, a ranking methodol-

ogy was introduced, in which trackers are merged into the

same rank based on statistical tests on performance differ-

ence. In VOT2014 [33], the notion of practical difference

was introduced into rank merging as well to address the

noise in the ground truth annotation. For the different rank

generation strategies please see [31]. Accuracy-robustness

ranking plots were proposed to visualize the results [32].

A drawback of the AR-rank plots is that they do not show

the absolute performance. To address this, VOT2015 [30]

adopted AR-raw plots from [68] to show the absolute aver-

age performance.

The VOT2013 [32] and VOT2014 [33] selected the win-

ner of the challenge by averaging the accuracy and ro-

bustness ranks, meaning that the accuracy and robustness

were treated as equally important “competitions”. But since

ranks lose the absolute performance difference between

trackers, and are meaningful only in the context of a fixed

set of evaluated trackers, the rank averaging was abandoned

in later challenges.

Since VOT2015 [30], the primary measure is the ex-

pected average overlap (EAO) that combines the raw values

of per-frame accuracies and failures in a principled manner

and has a clear practical interpretation. The EAO measures

the expected no-reset overlap of a tracker run on a short-

term sequence. The EAO reflects the same property as the

AO [77] measure, but, since it is computed from the VOT

reset-based experiment, it does not suffer from the large

variance and has a clear relation to the definition of short-

term tracking.

In VOT2016 [29] the experiments indicated that EAO

is stricter than AO in penalizing a tracker for poor perfor-

mance on a subset of sequences. The reason is that a tracker

is more often reset on sequences that are most challenging

to track, which reduces the EAO. On the other hand the AO

does not use resets which makes poor performance on a part

of a dataset difficult to detect. Nevertheless, since the AO

measure is still widely used in the tracking community, this

measure and the corresponding no-reinitialization experi-

ment was included in the VOT challenges since 2016 [29].

VOT2014 [33] recognized speed as an important factor

in many applications and introduced a measure called the

equivalent filter operations (EFO) that partially accounts for

the speed of a computer used for tracker analysis. While this

measure at least partially normalizes speed measurements

obtained over different machines, it cannot completely ad-

dress hardware issues. In VOT2016 [29] it was reported

that significant EFO errors could be expected for very fast

MatLab trackers due to the MatLab start-up overhead.

The VOT2015 committee pointed out that published pa-

pers more often than not reported presented trackers as scor-

ing top performance on a standard benchmark. However,

a detailed inspection of the papers showed that sometimes

the results were reported only on a part of the benchmarks

or that the top performing method on the benchmark were

excluded from the comparison. This significantly skews the

perspective on the current state-of-the-art and tends to force

researchers into maximizing a single performance score, al-

beit only virtually by manipulating the presentation of the

experiments. In response, the VOT has started to promote

the approach that it should be sufficient to show a good-

enough performance on benchmarks and that the authors (as

well as reviewers) should focus on the novelty and the qual-

ity of the theory underpinning the tracker. VOT2015 [30]

thus introduced a notion of state-of-the-art bound. This

value is computed as the average performance of the track-

ers participating in the challenge that were published at

top recent conferences. Any tracker exceeding this perfor-

mance on the VOT benchmark is considered state-of-the-art

according to the VOT standards.

For TIR sequences, two main challenges have been or-

ganized in the past. Within the series of workshops on Per-

formance Evaluation of Tracking and Surveillance (PETS)

[78], thermal infrared challenges have taken place twice,

in 2005 and 2015. PETS challenges addressed multiple

research areas such as detection, multi-camera/long-term

tracking, and behavior (threat) analysis.

In contrast, the VOT-TIR2015 and 2016 challenges have

focused on the problem of short-term tracking [19, 20].

The 2015 challenge has been based on a specifically com-

piled LTIR dataset [3], as available datasets for evaluation

of tracking in thermal infrared had become outdated. The

lack of an accepted evaluation dataset often leads to com-

parisons on proprietary datasets. Together with inconsistent

performance measures it made it difficult to systematically

assess the progress of the field. VOT-TIR2015 and 2016

adopted the well-established VOT methodology.

In 2016, the dataset for the VOT-TIR challenge was up-

dated with more difficult sequences, since the 2015 chal-

lenge was close to saturated, i.e., near perfect performance

was reported for top trackers [20]. Since the best perform-

ing method from 2015, based on the SRDCF [15], was

not significantly outperformed in the 2016 challenge, VOT-

TIR2016 has been re-opened in conjunction with VOT2017,

and since no methodological changes have been made, the
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results are reported as part of this paper instead of a sepa-

rate one. For all technical details of the TIR challenge, the

reader is referred to [20].

1.1.2 Datasets

Most tracking datasets [77, 39, 60, 40, 45] have partially fol-

lowed the trend in computer vision of increasing the num-

ber of sequences. This resulted in impressive collections

of annotated datasets, which have played an important role

in tracker development and consistent evaluation over the

last five years. Much less attention has being paid to the

diversity of the data nd the quality of the content and anno-

tation. For example, some datasets disproportionally repre-

sent grayscale or color sequences and in most datasets an

attribute (e.g., occlusion) is assigned to the entire sequence

even if it occupies only a fragment of the sequence. We

have noticed several issues with bounding box annotation in

commonly used datasets. Many datasets, however, assume

the errors will average out on a large set of sequences and

adopt the assumption that the dataset quality is correlated

with its size.

In contrast, the VOT [31] has argued that large datasets

do not necessarily imply diversity or richness in attributes.

Over the last four years, VOT [32, 33, 30, 31, 29] has

focused on developing a methodology for automatic con-

struction and annotation of moderately large datasets from

a large pool of sequences. This methodology is unique

in that it optimizes diversity in visual attributes while fo-

cusing on sequences which are difficult to track. In addi-

tion, the VOT [32] introduced per-frame annotation with at-

tributes, since global attribute annotation amplifies attribute

crosstalk in performance evaluation [41] and biases perfor-

mance toward the dominant attribute [31]. To account for

ground truth annotation errors, VOT2014 [33] introduced

the notion of practical difference, which is a performance

difference under which two trackers cannot be considered

as performing differently. VOT2016 [29] proposed an auto-

matic ground truth bounding box annotation from per-frame

segmentation masks, which requires semi-supervised seg-

mentation of all frames. Their approach automatically esti-

mates the practical difference values for each sequence.

Most closely related to the work described in this

paper are the recent VOT2013 [32], VOT2014 [33],

VOT2015 [30] and VOT2016 [29] challenges. Several nov-

elties in benchmarking short-term trackers were introduced

through these challenges. They provide a cross-platform

evaluation kit with tracker-toolkit communication proto-

col [9], allowing easy integration with third-party track-

ers, per-frame annotated datasets and state-of-the-art perfor-

mance evaluation methodology for in-depth tracker analysis

from several performance aspects. The results were pub-

lished in joint papers [32], [33], [30] and [29] with more

than 140 coauthors.

The most recent challenge contains 70 trackers evalu-

ated on primary VOT measures as well as the widely used

OTB [77] measure. To promote reproducibility of results

and foster advances in tracker development, the VOT2016

invited participants to make their trackers publicly avail-

able. Currently 38 state-of-the-art trackers along with their

source code are available at the VOT site10. These contri-

butions by and for the community make the VOT2016 the

largest and most advanced benchmark. The evaluation kit,

the dataset, the tracking outputs and the code to reproduce

all the results are made freely-available from the VOT ini-

tiative homepage11. The advances proposed by VOT have

arguably influenced the development of related methodolo-

gies and benchmark papers and have facilitated develop-

ment of modern trackers by helping tease out promising

tracking methodologies.

1.2. The VOT2017 challenge

VOT2017 follows the VOT2016 challenge and consid-

ers the same class of trackers. The dataset and evalua-

tion toolkit are provided by the VOT2017 organizers. The

evaluation kit records the output bounding boxes from the

tracker, and if it detects tracking failure, re-initializes the

tracker. The authors participating in the challenge were

required to integrate their tracker into the VOT2017 eval-

uation kit, which automatically performed a standardized

experiment. The results were analyzed according to the

VOT2017 evaluation methodology. The toolkit conducted

the main OTB [77] experiment in which a tracker is initial-

ized in the first frame and left to track until the end of the

sequence without resetting.

Participants were expected to submit a single set of re-

sults per tracker. Changes in the parameters did not consti-

tute a different tracker. The tracker was required to run with

fixed parameters in all experiments. The tracking method

itself was allowed to internally change specific parameters,

but these had to be set automatically by the tracker, e.g.,

from the image size and the initial size of the bounding box,

and were not to be set by detecting a specific test sequence

and then selecting the parameters that were hand-tuned to

this sequence. The organizers of VOT2017 were allowed

to participate in the challenge, but did not compete for the

winner of the VOT2017 challenge title. Further details are

available from the challenge homepage12.

The novelties of VOT2017 with respect to VOT2013,

VOT2014, VOT2015 and VOT2016 are the following: (i)

The dataset from VOT2016 has been updated. As in previ-

ous years, sequences that were least challenging were re-

placed by new sequences while maintaining the attribute

10http://www.votchallenge.net/vot2016/trackers.html
11http://www.votchallenge.net
12http://www.votchallenge.net/vot2017/participation.html
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distribution. The ground truth annotation has been re-

examined and corrected in the entire dataset. We call the set

of sequences “the VOT2017 public dataset”. (ii) A separate

sequestered dataset was constructed with similar statistics

to the public VOT2017 dataset. This dataset was not dis-

closed and was used to identify the winners of the VOT2017

challenge. (iii) A new experiment dedicated to evaluating

real-time performance has been introduced. (iv) The VOT

toolkit has been re-designed to allow the real-time experi-

ment. Transition to the latest toolkit was a precondition for

participation. (iv) The VOT-TIR2016 subchallenge, which

deals with tracking in infrared and thermal imagery [19] has

been reopened as VOT-TIR2017.

2. The VOT2017 datasets

Results of VOT2016 showed that the dataset was not

saturated, but that some sequences have been successfully

tracked by most trackers. In the VOT2017 public dataset

the least challenging sequences in VOT2016 were replaced.

The VOT committee acquired 10 pairs of new challenging

sequences (i.e. 20 new sequences), which had not been part

of existing tracking benchmarks. Each pair consists of two

roughly equally challenging sequences similar in content.

Ten sequences, one of each pair, were used to replace the

ten least challenging sequences in VOT2016 (see Figure 2).

The level of difficulty was estimated using the VOT2016

results [29].

In response to yearly panel discussions at VOT work-

shops, it was decided to construct another dataset, which

will not be disclosed to the community, but will be used to

identify the VOT2017 winners. This is called the VOT2017

sequestered dataset and was constructed to be close in at-

tribute distribution to the VOT2017 public dataset with the

same number of sequences (sixty).

Ten remaining sequences of the pairs added to the

VOT2017 public dataset were included to the sequestered

dataset. The remaining fifty sequences in the sequestered

dataset were sampled from a large pool of sequences col-

lected over the years by VOT (approximately 390 se-

quences) as follows. Distances between sequences in

VOT2017 public dataset and sequences in the pool were

computed. The distance was defined as Euclidean dis-

tance in the 11-dimensional global attribute space typi-

cally used in the VOT sequence clustering protocol [29].

For each sequence in the VOT2017 public dataset, all se-

quences in the pool with distance smaller than three times

the minimal distance were identified. Among these, a se-

quence with the highest difficulty level estimated by the

VOT2016 methodology [29] was selected for the VOT2017

sequestered dataset. The selected sequence was removed

from the pool and the process was repeated for the remain-

ing forty-nine sequences.

A semi-automatic segmentation approach by Vojı́r̃ and

Matas [72] was applied to segment the target in all frames

and bounding boxes were fitted to the segmentation masks

according to the VOT2016 methodology [29]. All bound-

ing boxes were manually inspected. The boxes that were

incorrectly placed by the automatic algorithm were man-

ually repositioned. Figure 1 shows the practical difference

thresholds on the VOT2017 dataset estimated by the bound-

ing box fitting methodology [29].

Following the protocol introduced in VOT2013 [32], all

sequences in the VOT2017 public dataset are per-frame

annotated by the following visual attributes: (i) occlu-

sion, (ii) illumination change, (iii) motion change, (iv) size

change, (v) camera motion. Frames that did not correspond

to any of the five attributes were denoted as (vi) unassigned.

Figure 1. Practical difference plots for all sequences in the

VOT2017 public dataset. For each sequence a distribution of over-

lap values between bounding boxes, which equally well fit the

potentially noisy object segmentations are shown. The practical

difference thresholds are denoted in red.

3. Performance evaluation methodology

Since VOT2015 [30], three primary measures are used

to analyze tracking performance: accuracy (A), robust-

ness (R) and expected average overlap (AEO). In the fol-

lowing, these are briefly overviewed and we refer to [30,

31, 68] for further details.

The VOT challenges apply a reset-based methodology.

Whenever a tracker predicts a bounding box with zero over-

lap with the ground truth, a failure is detected and the

1954



Figure 2. Images from the VOT2016 sequences (left column) that

were replaced by new sequences in VOT2017 (right column).

tracker is re-initialized five frames after the failure. Accu-

racy and robustness [68] are the primary measures used to

probe tracker performance in the reset-based experiments.

The accuracy is the average overlap between the predicted

and ground truth bounding boxes during successful track-

ing periods. The robustness measures how many times the

tracker loses the target (fails) during tracking. The potential

bias due to resets is reduced by ignoring ten frames after

re-initialization in the accuracy measure, which is quite a

conservative margin [31].

Stochastic trackers are run 15 times on each sequence

to reduce the variance of their results. Per-frame accuracy

is obtained as an average over these runs. Averaging per-

frame accuracies gives per-sequence accuracy, while per-

sequence robustness is computed by averaging failure rates

over different runs.

The third primary measure, called the expected average

overlap (EAO), is an estimator of the average overlap a

tracker is expected to attain on a large collection of short-

term sequences with the same visual properties as the given

dataset. This measure addresses the problem of increased

variance and bias of AO [77] measure due to variable se-

quence lengths. Please see [30] for further details on the

average expected overlap measure.

VOT2016 argued that raw accuracy and robustness val-

ues should be preferred to their ranked counterparts. The

ranking is appropriate to test whether performance differ-

ence is consistently in favor of one tracker over the others,

but has been abandoned for ranking large numbers of track-

ers since averaging ranks ignores the absolute differences.

In addition to the standard reset-based VOT experiment,

the VOT2017 toolkit carried out the OTB [77] no-reset ex-

periment. The tracking performance on this experiment was

evaluated by the primary OTB measure, the average overlap

(AO).

3.1. The VOT2017 real-time experiment

The VOT has been promoting the importance of speed

in tracking since the introduction of the EFO speed mea-

surement unit in VOT2014. But these results do not reflect

a realistic performance in real-time applications. In these

applications, the tracker is required to report the bounding

box for each frame at frequency higher than or equal to the

video frame rate. The existing toolkits and evaluation sys-

tems do not support such advanced experiments, therefore

the VOT toolkit has been re-designed.

The basic real-time experiment has been included in the

VOT2017 challenge and was conducted as follows. The

toolkit initializes the tracker in the first frame and waits for

the bounding box response from the tracker (responding to

each frame individually is possible due to the interactive

communication between the tracker and the toolkit [9]). If a

new frame becomes available before the tracker responds, a

zero-order hold model is used, i.e., the last reported bound-

ing box is assumed as the reported tracker output at the

available frame.

The toolkit applies the reset-based VOT evaluation pro-

tocol by resetting the tracker whenever the tracker bounding

box does not overlap with the ground truth. The VOT frame

skipping is applied as well to reduce the correlation between

resets.

The predictive power of his experiment is limited by fact

that the tracking speed depends on the type of hardware

used and the programming effort and skill, which is ex-

pected to vary significantly among the submissions. Never-

theless, this is the first published attempt to evaluate trackers

in a simulated real-time setup.

3.2. VOT2017 winner identification protocol

The VOT2017 challenge winner was identified as fol-

lows. Trackers were ranked with respect to the EAO mea-

sure on the VOT2017 public dataset. The top 10 track-

ers were then run on a high performance cluster using the

VOT2017 sequestered dataset and again ranked with respect

to the EAO measure. The top-performing tracker that was

not submitted by organizers was identified as the VOT2017

challenge winner. An additional requirement was that the

authors have to make the tracker source code available to

the tracking community.

Due to limited resources, the VOT2017 real-time win-

ner was not identified on the sequestered dataset, but based

on the results obtained on the VO2017 public dataset. The

EAO measure was used to rank the tracker results from the

real-time experiment. The same authorship and open source

requirements as in the VOT2017 challenge winner protocol

were applied.
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4. VOT2017 analysis and results

4.1. Trackers submitted

In all, 38 valid entries were submitted to the VOT2017

challenge. Each submission included the binaries or source

code that allowed verification of the results if required.

The VOT2017 committee and associates additionally con-

tributed 13 baseline trackers. For these, the default param-

eters were selected, or, when not available, were set to rea-

sonable values. Thus in total 51 trackers were tested on the

VOT2017 challenge. In the following we briefly overview

the entries and provide the references to original papers in

the Appendix A where available.

Of all participating trackers, 67% applied generative

and 33% applied discriminative models. Most trackers –

73% – used holistic model, while 27% of the participat-

ing trackers used part-based models. Most trackers ap-

plied either a locally uniform dynamic model 13 (53%), a

nearly-constant-velocity (20%), or a random walk dynamic

model (22%), while a few trackers applied a higher order

dynamic model (6%).

The trackers were based on various tracking prin-

ciples: 17 trackers (31%) were based on CNN match-

ing (ATLAS (A.26), CFWCR (A.14), CRT (A.2),

DLST (A.15), ECO (A.30), CCOT (A.36), FSTC (A.33),

GMD (A.29), GMDNetN (A.9), gnet (A.16),

LSART (A.24), MCCT (A.4), MCPF (A.18), RCPF (A.34),

SiamDCF (A.23), SiamFC (A.21) and UCT (A.19)),

25 trackers (49 %) applied discriminative correlation

filters (ANT (A.1), CFCF (A.10), CFWCR (A.14),

DPRF (A.27), ECO (A.30), ECOhc (A.31), gnet (A.16),

KCF (A.8), KFebT (A.12), LDES (A.32), MCCT (A.4),

MCPF (A.18), MOSSE CA (A.35), RCPF (A.34),

SiamDCF (A.23), SSKCF (A.25), Staple (A.20),

UCT (A.19), CSRDCF (A.38), CSRDCFf (A.39),

CSRDCF++ (A.40), dpt (A.41), SRDCF (A.50),

DSST (A.42) and CCOT (A.36)), two (4%) trackers

(BST (A.17) and Struck2011 (A.51)) were based on

structured SVM, 5 trackers (10%) were based on Mean

Shift (ASMS (A.6), KFebT (A.12), SAPKLTF (A.13),

SSKCF (A.25) and MSSA (A.49)), 5 trackers (10%) applied

optical flow (ANT (A.1), FoT (A.7), HMMTxD (A.11),

FragTrack (A.43) and CMT (A.37)), one tracker was based

on line segments matching (LTFLO (A.5)), one on a gen-

eralized Hough transform (CHT (A.28)) and three trackers

(HMMTxD (A.11), KFEbT (A.12) and SPCT (A.22)) were

based on tracker combination.

13The target was sought in a window centered at its estimated position

in the previous frame. This is the simplest dynamic model that assumes all

positions within a search region contain the target have equal prior proba-

bility.

4.2. The baseline experiment

The results are summarized in the AR-raw plots and

EAO curves in Figure 3 and the expected average overlap

plots in Figure 4. The values are also reported in Table 1.

The top ten trackers according to the primary EAO

measure (Figure 4) are LSART (A.24), CFWCR (A.14),

CFCF (A.10), ECO (A.30), gnet (A.16), MCCT (A.4),

CCOT (A.36), CSRDCF (A.38), SiamDCF (A.23),

MCPF (A.18). All these trackers apply a discriminatively

trained correlation filter on top of multidimensional fea-

tures. In most trackers, the correlation filter is trained in

a standard form via circular shifts, except in LSART (A.24)

and CRT (A.2) that treat the filter as a fully-connected layer

and train it by a gradient descent.

The top ten trackers vary significantly in features. Apart

from CSRDCF (A.38) that applies only HOG [47] and

color-names [65], the trackers apply CNN features, which

are in some cases combined with hand-crafted features. In

almost all cases the CNN is a standard pre-trained CNN for

object class detection except in the case of CFCF (A.10)

and SiamDCF (A.23) which use feature training. Both of

these trackers train their CNN representations on a tracking

task from many videos to learn features that maximize dis-

criminative correlation filter response using the approaches

from [23], [75] and [5]. The CFCF (A.10) uses the first,

fifth and sixth convolutional layers of VGG-M-2048 fine-

tuned on the tracking task in combination with HOG [47]

and Colour Names (CN) [65].

The top performer on public dataset LSART (A.24) de-

composes the target into patches and applies a weighted

combination of patch-wise similarities into a kernelized

ridge regression formulated as a convolutional network.

Spatial constraints are used to force channels in specializ-

ing to different parts of the target. A distance transform

pooling is used to merge the channels. The network uses

pre-learned VGG16 [59] layers 4-3, HoG [47] and colour

names as low-level filters.

The top trackers in EAO are also among the most ro-

bust trackers, which means that they are able to track

longer without failing. The top trackers in robustness (Fig-

ure 3) are LSART (A.24), CFWCR (A.14), ECO (A.30) and

gnet (A.16). On the other hand, the top performers in ac-

curacy are SSKCF (A.25), Staple (A.20) and MCCT (A.4).

The SSKCF and Staple are quite similar in design and apply

a discriminative correlation filter on hand-crafted features

combined with color histogram back-projection.

The trackers which have been considered as baselines

even five years ago, i.e., MIL (A.48), and IVT (A.44) are

positioned at the lower part of the AR-plots and at the

tail of the EAO rank list. It is striking that even trackers

which are often considered as baselines in recent papers,

e.g., Struck [24] and KCF [26] are positioned in the lower

quarter of the EAO ranks. This speaks of the significant
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ANT∗ ASMS ATLAS BST CCOT CFCF

CFWCR CGS CHT CMT CRT CSRDCF

CSRDCF++ CSRDCFf DLST dprf dpt DSST

ECO ECOhc FoT FragTrack FSTC GMD

GMDnetN Gnet HMMTxD IVT KCF KFebT

L1APG LDES LGT∗ LSART LTFLO MCCT

MCPF MEEM MIL MOSSEca MSSA RCPF

SAPKLTF SiamDCF SiamFC SPCT SRDCF SSKCF

Staple struck2011 UCT

Figure 3. The AR-raw plots generated by sequence pooling (left)

and EAO curves (right).

Figure 4. Expected average overlap curve (left) and expected

average overlap graph (right) with trackers ranked from right to

left. The right-most tracker is the top-performing according to the

VOT2017 expected average overlap values. The dashed horizontal

line denotes the average performance of ten state-of-the-art track-

ers published in 2016 and 2017 at major computer vision venues.

These trackers are denoted by gray circle in the bottom part of the

graph.

quality of the trackers submitted to VOT2017. In fact, ten

tested trackers have been recently (2016 or later) published

at major computer vision conferences and journals. These

trackers are indicated in Figure 4, along with their aver-

age performance, which constitutes a very strict VOT2017

state-of-the-art bound. Over 35% of submitted trackers ex-

ceed this bound.

The number of failures with respect to the visual at-

tributes is shown in Figure 5. LSART (A.24) fails least of-

ten among all trackers on camera motion, motion change,

unassigned and scores second-best on illumination change.

The top performer on illumination change is CFCF (A.10)

and scores second best on size change attribute. The top

performer on size change and occlusion is MCCT (A.4),

ANT∗ ASMS ATLAS BST CCOT CFCF

CFWCR CGS CHT CMT CRT CSRDCF

CSRDCF++ CSRDCFf DLST dprf dpt DSST

ECO ECOhc FoT FragTrack FSTC GMD

GMDnetN Gnet HMMTxD IVT KCF KFebT

L1APG LDES LGT∗ LSART LTFLO MCCT

MCPF MEEM MIL MOSSEca MSSA RCPF

SAPKLTF SiamDCF SiamFC SPCT SRDCF SSKCF

Staple struck2011 UCT

Figure 5. Failure rate with respect to the visual attributes.

which also scores as second-best on motion change.

We have evaluated the difficulty level of each attribute by

computing the median of robustness and accuracy over each

attribute. According to the results in Table 2, the most chal-

lenging attributes in terms of failures are occlusion, illumi-

nation change and motion change, followed by camera mo-

tion and scale change. The occlusion and motion change are

the most difficult attributes for tracking accuracy as well.

In addition to the baseline reset-based VOT experiment,

the VOT2016 toolkit also performed the OTB [77] no-reset

(OPE) experiment. Figure 6 shows the OPE plots, while

the AO overall measure is given in Table 1. According

to the AO measure, the three top performing trackers are

MCPF (A.18), LSART (A.24) and RCPF (A.34). Two of

these trackers are among top 10 in EAO as well, i.e, LSART

(ranked first) and MCPF (ranked tenth). The RCPF is a par-

ticle filter that applies a discriminative correlation filter for

visual model, uses hand-crafted and deep features and ap-

plies a long-short-term adaptation. The adaptation strategy

most likely aids in target re-localization after failure, which

explains the high AO score.

4.2.1 The VOT2017 winner identification

The baseline experiment with the top 10 trackers from Ta-

ble 1 was repeated on a sequestered dataset. The scores are

shown in Table 3. The top tracker according to the EAO is

CCOT (A.36), but this tracker is co-authored by the VOT or-

ganizers. According to the VOT winner rules, the VOT2017

challenge winner is therefore the CFCF tracker (A.10).

4.3. The realtime experiment

The EAO scores and AR-raw plots for the real-time ex-

periment are shown in Figure 7 and Figure 8.

The top eleven real-time trackers are
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baseline realtime unsupervised

Tracker EAO A R EAO A R AO Implementation

1. LSART 0.323 1 0.493 0.218 1 0.055 0.386 1.971 0.437 2 S M G

2. CFWCR 0.303 2 0.484 0.267 2 0.062 0.393 1.864 0.370 D M C

3. CFCF 0.286 3 0.509 0.281 0.059 0.339 1.723 0.380 D M G

4. ECO 0.280 0.483 0.276 3 0.078 0.449 1.466 0.402 D M G

5. Gnet 0.274 0.502 0.276 3 0.060 0.353 1.836 0.419 D M C

6. MCCT 0.270 0.525 3 0.323 0.060 0.353 1.775 0.428 D M C

7. CCOT 0.267 0.494 0.318 0.058 0.326 1.461 0.390 D M G

8. CSRDCF 0.256 0.491 0.356 0.099 0.477 1.054 0.342 D M G

9. SiamDCF 0.249 0.500 0.473 0.135 0.503 3 0.988 0.340 D M G

10. MCPF 0.248 0.510 0.427 0.060 0.325 1.489 0.443 1 S M G

11. CRT 0.244 0.463 0.337 0.068 0.400 1.569 0.370 S P G

12. ECOhc 0.238 0.494 0.435 0.177 3 0.494 0.571 2 0.335 D M C

13. DLST 0.233 0.506 0.396 0.057 0.381 2.018 0.406 S M G

14. CSRDCF++ 0.229 0.453 0.370 0.212 1 0.459 0.398 1 0.298 D C G

15. CSRDCFf 0.227 0.479 0.384 0.158 0.475 0.646 0.327 D C G

16. RCPF 0.215 0.501 0.458 0.078 0.334 1.002 0.435 3 S M G

17. UCT 0.206 0.490 0.482 0.145 0.490 0.777 0.375 D M G

18. SPCT 0.204 0.472 0.548 0.069 0.374 1.831 0.333 D M C

19. ATLAS 0.195 0.488 0.595 0.117 0.455 1.035 0.341 D C G

20. MEEM 0.192 0.463 0.534 0.072 0.407 1.592 0.328 S M C

21. FSTC 0.188 0.480 0.534 0.051 0.389 2.365 0.334 D M G

22. SiamFC 0.188 0.502 0.585 0.182 2 0.502 0.604 3 0.345 D M G

23. SAPKLTF 0.184 0.482 0.581 0.126 0.470 0.922 0.334 D C C

24. Staple 0.169 0.530 2 0.688 0.170 0.530 2 0.688 0.335 S M C

25. ASMS 0.169 0.494 0.623 0.168 0.489 0.627 0.337 S C C

26. ANT 0.168 0.464 0.632 0.059 0.403 1.737 0.279 D M C

27. KFebT 0.168 0.450 0.688 0.169 0.451 0.684 0.296 D C C

28. HMMTxD 0.168 0.506 0.815 0.074 0.404 1.653 0.330 D C C

29. MSSA 0.167 0.413 0.538 0.124 0.422 0.749 0.327 D C C

30. SSKCF 0.166 0.533 1 0.651 0.164 0.530 1 0.656 0.383 D C C

31. DPT 0.158 0.486 0.721 0.126 0.483 0.899 0.315 D C C

32. GMDnetN 0.157 0.513 0.696 0.079 0.312 0.946 0.402 S M C

33. LGT 0.144 0.409 0.742 0.059 0.349 1.714 0.225 S M C

34. MOSSEca 0.141 0.400 0.805 0.139 0.400 0.810 0.240 D M C

35. CGS 0.140 0.504 0.806 0.075 0.290 0.988 0.338 S M C

36. KCF 0.135 0.447 0.773 0.134 0.445 0.782 0.267 S C C

37. GMD 0.130 0.453 0.878 0.076 0.416 1.672 0.252 S C G

38. FoT 0.130 0.393 1.030 0.130 0.393 1.030 0.143 S C C

39. CHT 0.122 0.418 0.960 0.123 0.417 0.937 0.246 D C C

40. SRDCF 0.119 0.490 0.974 0.058 0.377 1.999 0.246 S M C

41. MIL 0.118 0.393 1.011 0.069 0.376 1.775 0.180 S C C

42. BST 0.115 0.269 0.883 0.052 0.267 1.662 0.146 S C C

43. DPRF 0.114 0.470 1.021 - - - 0.258 D M C

44. LDES 0.111 0.471 1.044 0.113 0.471 1.030 0.225 D M C

45. CMT 0.098 0.318 0.492 0.079 0.327 0.642 0.125 S P C

46. Struck2011 0.097 0.418 1.297 0.093 0.419 1.367 0.197 D C C

47. DSST 0.079 0.395 1.452 0.077 0.396 1.480 0.172 S C C

48. LTFLO 0.078 0.372 1.770 0.054 0.303 1.995 0.118 D C C

49. IVT 0.076 0.400 1.639 0.065 0.386 1.854 0.130 S M C

50. L1APG 0.069 0.432 2.013 0.062 0.351 1.831 0.159 S M C

51. FragTrack 0.068 0.390 1.868 0.068 0.316 1.480 0.180 S C C

Table 1. The table shows expected average overlap (EAO), as well as accuracy and robustness raw values (A,R) for the baseline and

the realtime experiments. For the unsupervised experiment the no-reset average overlap AO [76] is used. The last column contains

implementation details (first letter: (D)eterministic or (S)tohastic, second letter: tracker implemented in (M)atlab, (C)++, or (P)ython, third

letter: tracker is using (G)PU or only (C)PU). A dash ”-” indicates that the realtime experiment was performed using an outdated version

of the toolkit and that the results are invalid.

CSRDCF++ (A.40), SiamFC (A.21), ECOhc (A.31),

Staple (A.20), KFebT (A.12), ASMS (A.6), SSKCF (A.25),

CSRDCFf (A.39), UCT (A.19), MOSSE CA (A.35) and

SiamDCF (A.23). All trackers except ASMS (A.6), which

is scale adaptive mean shift tracker, apply discriminative

correlation filters in a wide sense of the term. Among these,
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cam. mot. ill. ch. mot. ch. occl. scal. ch.

Accuracy 0.48 0.46 0.45 3 0.39 1 0.41 2

Robustness 0.84 1.16 2 0.97 3 1.19 1 0.69

Table 2. Tracking difficulty with respect to the following visual

attributes: camera motion (cam. mot.), illumination change (ill.

ch.), motion change (mot. ch.), occlusion (occl.) and size change

(scal. ch.) .

Figure 6. The OPE no-reset plots.

Tracker EAO A R

1. CCOT 0.203 1 0.575 0.444 1

2. CFCF 0.202 2 0.587 2 0.458 2

3. ECO 0.196 3 0.586 3 0.473

4. Gnet 0.196 0.549 0.444 1

5. CFWCR 0.187 0.575 0.478

6. LSART 0.185 0.535 0.460 3

7. MCCT 0.179 0.597 1 0.532

8. MCPF 0.165 0.543 0.596

9. SiamDCF 0.160 0.555 0.685

10. CSRDCF 0.150 0.522 0.631
Table 3. The top 10 trackers from Table 1 re-ranked on the

VOT2017 sequestered dataset.

all but UCT (A.19) and SiamFC (A.21) apply the standard

circular shift filter learning with FFT.

Most of the top trackers apply hand-crafted fea-

tures except the SiamFC (A.21), SiamDCF (A.23) and

UCT (A.19). The only tracker that applies a motion

model is KFebT (A.12) which also combines ASMS [71],

KCF [26] and NCC trackers.

The top-performer, CSRDCF++ (A.40), is a C++ imple-

mentation of the CSRDCF (A.38) tracker which runs on

a single CPU. This is a correlation filter that learns a spa-

tially constrained filter. The learning process implicitly ad-

dresses the problem of boundary effects in correlation circu-

lar shifts, learns from a wide neighborhood and makes the

Figure 7. The AR plot (left) and the EAO curves (right) for the

VOT2017 realtime experiment.

Figure 8. The EAO plot (right) for the realtime experiment.

filter robust to visual distractors. The second-best tracker,

SiamFC (A.21), is conceptually similar in that it performs

correlation for object localization over a number of feature

channels. In contrast to CSRDCF++ (A.40), it does not ap-

ply any learning during tracking. Target is localized by di-

rectly correlating a multi-channel template extracted in the

first frame with a search region. The features are trained on

a large number of videos to maximize target discrimination

even in presence of visual distractors. This tracker is cast as

a system of convolutions (CNN) and leverages the GPU for

intensive computations.

The best performing real-time trackers is

CSRDCF++ (A.40), but this tracker is co-authored by

the VOT organizers. According to the VOT winner

rules, the winning real-time tracker of the VOT2017 is

SiamFC (A.21).

5. VOT-TIR2017 analysis and results

5.1. Trackers submitted

The re-opening of the VOT-TIR2016 challenge [20] at-

tracted 7 new submissions with binaries/source code in-

cluded that allowed results verification: LTFLO (B.1),

KFebT (B.2), DSLT (B.3), BST (B.4), UCT (B.5),

SPCT (B.6), and MOSSE CA (B.7, where only DSLT

has not been submitted to the VOT2017 challenge. The

VOT2017 committee and associates additionally con-
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Figure 9. The AR-raw plots generated by sequence pooling (left)

and EAO curves (right).

tributed 3 baseline trackers: ECO (B.8), EBT (B.9) (winner

VOT-TIR2016), and SRDCFir (B.10) (top-performer VOT-

TIR2015).

Thus in total 10 trackers were compared on the VOT-

TIR2017 challenge. In the following we briefly overview

the entries and provide the references to original papers in

the Appendix B where available.

The trackers were based on various tracking principles:

two trackers (ECO (B.8) and UCT (B.5)) were based on

CNN matching, 5 trackers applied discriminative correla-

tion filters (ECO (B.8), KFebT (B.2), MOSSE CA (B.7),

UCT (B.5), and SRDCFir (B.10)), one tracker (BST (B.4))

was based on structured SVM, one tracker was based on

Mean Shift (KFebT (B.2)), one tracker (DSLT (B.3)) ap-

plied optical flow, one tracker was based on line segments

matching (LTFLO (B.1)), two trackers (KFebT (B.2) and

SPCT (B.6)) were based on tracker combinations, and one

tracker (EBT (B.9)) was based on object proposals.

5.2. Results

The results are summarized in the AR-raw plots and

EAO curves in Figure 9 and the expected average overlap

plots in Figure 10. The values are also reported in Table 4.

The top three trackers according to the primary EAO

measure (Figure 10) are DSLT (B.3), EBT (B.9), and SRD-

CFir (B.10). These trackers are very diverse in the tracking

approach and in contrast to the RGB-case no dominating

methodology can be identified.

The top trackers in EAO are also among the most ro-

bust trackers, which means that they are able to track longer

without failing. The top trackers in robustness (Figure 9) are

EBT (B.9), DSLT (B.3) and SRDCFir (B.10). On the other

hand, the top performers in accuracy are SRDCFir (B.10),

ECO (B.8), and DSLT (B.3).

According to the EAO measure, the overall winner of the

VOT-TIR2017 challenge is DSLT (B.3).
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See Figure 9 for legend.

Tracker EAO A R

1. DSLT 0.3990 1 0.59 3 0.92 2

2. EBT 0.3678 2 0.39 0.93 1

3. SRDCFir 0.3566 3 0.62 1 0.88 3

4. MOSSE CA 0.2713 0.56 0.86

5. ECO 0.2363 0.60 2 0.84

6. KFebT 0.1964 0.49 0.79

7. UCT 0.1694 0.52 0.80

8. SPCT 0.1680 0.51 0.76

9. BST 0.1482 0.36 0.66

10. LTFLO 0.1356 0.37 0.65
Table 4. Numerical results of VOT-TIR2017 challenge.

6. Online resources

To facilitate advances in the field of tracking, the VOT

initiative offers the code developed by the VOT committee

for the challenge as well as the results from the VOT2017

page 14. The page will be updated after publication of this

paper with the following content:

1. The raw results of the baseline experiment.

2. The raw results of the real-time experiment.

3. The OTB [77] main OPE experiment.

4. Links to the source code of many trackers submitted to

the challenge, already integrated with the new toolkit.

5. All results generated in the VOT-TIR2017 challenge.

6. The links to the new toolkit and toolboxes developed

by the VOT committee.

7. Conclusion

Results of both the VOT2017 and VOT-TIR2017 chal-

lenges were presented. As already indicated by the last two

14http://www.votchallenge.net/vot2017
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challenges, the popularity of discriminative correlation fil-

ters as means of target localization and CNNs as feature ex-

tractors is increasing. A large subset of trackers submitted

to VOT2017 exploit these.

The top performer of the VOT2017 sequestered dataset

is the CCOT (A.36), which is a continuous correlation filter

utilizing standard pre-trained CNN features. The winner

of the VOT2017 challenge, however, is the CFCF (A.10),

which is a correlation filter that uses a standard CNN fine-

tuned for correlation-based target localization.

The top performer of the VOT017 real-time challenge

is CSRDCF++ (A.40), which uses a robust learning of dis-

criminative correlation filter, applies hand-crafted features,

running in real-time on a CPU. Since CSRDCF++ is co-

authored by VOT organizers, the winner of the VOT2017

realtime challenge is the SiamFC (A.21), which is a fully

convolutional tracker that does not apply learning during

tracking and runs on GPU.

The top performer and the winner of the VOT-TIR2017

challenge is DSLT (B.3), combining very good accuracy

and robustness using high-dimensional features. The ap-

proach is simple, i.e., does not adapt to scale, nor explicitly

addresses object occlusion, but applies complex features:

non-normalized HOG features and motion features.

The VOT aims to be platform for discussion of tracking

performance evaluation and it contributes to the tracking

community with verified annotated datasets, performance

measures and evaluation toolkits. The VOT2017 was a fifth

effort toward this, following the very successful VOT2013,

VOT2014, VOT2015 and VOT2016.
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A. Submitted trackers VOT2017 challenge

In this appendix we provide a short summary of all track-

ers that were considered in the VOT2017 challenge.

A.1. ANT (ANT)

L. Čehovin Zajc

luka.cehovin@fri.uni-lj.si

The ANT tracker is a conceptual increment to the idea

of multi-layer appearance representation that is first de-

scribed in [66]. The tracker addresses the problem of self-

supervised estimation of a large number of parameters by

introducing controlled graduation in estimation of the free

parameters. The appearance of the object is decomposed

into several sub-models, each describing the target at a dif-

ferent level of detail. The sub models interact during target

localization and, depending on the visual uncertainty, serve

for cross-sub-model supervised updating. The reader is re-

ferred to [69] for details.

A.2. Convolutional regression for visual track-
ing (CRT)

K. Chen, W. Tao

chkap@hust.edu.cn, wenbingtao@hust.edu.cn

CRT learns a linear regression model by training a sin-

gle convolution layer via gradient descent. The samples for

training and predicting are densely clipped by setting the

kernel size of the convolution layer to the size of the object

patch. A novel objective function is also proposed to im-

prove the running speed and accuracy. For more detailed

information on this tracker, please see [11].

A.3. Constrained Graph Seeking based
Tracker (CGS)

D. Du, Q. Huang, S. Lyu, W. Li, L. Wen, X. Bian

dawei.du@vipl.ict.ac.cn, {slyu, wli20}@albany.edu,

qmhuang@ict.ac.cn, {longyin.wen, xiao.bian}@ge.com

CGS is a new object tracking method based on con-

strained graph seeking, which integrates target part selec-

tion, part matching, and state estimation using a unified en-

ergy minimization framework to address two major draw-

backs: (1) inaccurate part selection which leads to perfor-

mance deterioration of part matching and state estimation

and; (2) insufficient effective global constraints for local

part selection and matching. CGS tracker also incorpo-

rates structural information in local part variations using the

global constraint. To minimize the energy function, an al-

ternative iteration scheme is used.

A.4. Multi-Cue Correlation Tracker (MCCT)

N. Wang, W. Zhou, H. Li

wn6149@mail.ustc.edu.cn, {zhwg, lihq}@ustc.edu.cn

The multi-cue correlation tracker (MCCT) is based on

the discriminative correlation filter framework. By com-

bining different types of features, our approach constructs

multiple experts and each of them tracks the target indepen-

dently. With the proposed robustness evaluation strategy,

the suitable expert is selected for tracking in each frame.

Furthermore, the divergence of multiple experts reveals the

reliability of the current tracking, which helps update the

experts adaptively to keep them from corruption.
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A.5. Long Term FeatureLess Object tracker (LT-
FLO)

K. Lebeda, S. Hadfield, J. Matas, R. Bowden

karel@lebeda.sk, matas@cmp.felk.cvut.cz,

{s.hadfield,r.bowden}@surrey.ac.uk

LTFLO is based on and extends our previous work on

tracking of texture-less objects [37, 36]. It decreases re-

liance on texture by using edge-points instead of point fea-

tures. The use of edges is burdened by the aperture prob-

lem, where the movement of the edge-point is measurable

only in the direction perpendicular to the edge. We over-

come this by using correspondences of lines tangent to the

edges, instead of using the point-to-point correspondences.

Assuming the edge is locally linear, a slightly shifted edge-

point generates the same tangent line as the true correspon-

dence. RANSAC, then provides an estimate of the frame-

to-frame transformation (similarity is employed in the ex-

periments, but higher order transformations could be em-

ployed as well).

A.6. Scale Adaptive Mean-Shift Tracker (ASMS)

T. Vojı́r̃, J. Noskova and J. Matas

vojirtom@cmp.felk.cvut.cz, noskova@mat.fsv.cvut.cz,

matas@cmp.felk.cvut.cz

The mean-shift tracker optimize the Hellinger distance

between template histogram and target candidate in the

image. This optimization is done by a gradient descend.

ASMS [73] addresses the problem of scale adaptation

and presents a novel theoretically justified scale estima-

tion mechanism which relies solely on the mean-shift pro-

cedure for the Hellinger distance. ASMS also introduces

two improvements of the mean-shift tracker that make

the scale estimation more robust in the presence of back-

ground clutter – a novel histogram colour weighting and

a forward-backward consistency check. Code available at

https://github.com/vojirt/asms.

A.7. Flock of Trackers (FoT)

T. Vojı́r̃, J. Matas

{vojirtom, matas}@cmp.felk.cvut.cz

The Flock of Trackers (FoT) is a tracking framework

where the object motion is estimated from the displace-

ments or, more generally, transformation estimates of a

number of local trackers covering the object. Each local

tracker is attached to a certain area specified in the object

coordinate frame. The local trackers are not robust and as-

sume that the tracked area is visible in all images and that it

undergoes a simple motion, e.g. translation. The FoT object

motion estimate is robust if it is from local tracker motions

by a combination which is insensitive to failures.

A.8. Kernelized Correlation Filter (KCF)

T. Vojı́r̃

vojirtom@cmp.felk.cvut.cz

This tracker is a C++ implementation of Kernelized Cor-

relation Filter [26] operating on simple HOG features and

Colour Names. The KCF tracker is equivalent to a Ker-

nel Ridge Regression trained with thousands of sample

patches around the object at different translations. It imple-

ments multi-thread multi-scale support, sub-cell peak esti-

mation and replacing the model update by linear interpola-

tion with a more robust update scheme. Code available at

https://github.com/vojirt/kcf.

A.9. Guided MDNet-N (GMDNetN)

P. Venugopal, D. Mishra, G. R K S. Subrahmanyam

pallavivm91@gmail.com,

{deepak.mishra, gorthisubrahmanyam}@iist.ac.in

The tracker Guided MDNet-N improves the existing

tracker MDNetN [48] in terms of its computational effi-

ciency and time without much compromise on the track-

ers performance. MDNet-N is a convolutional neural net-

work tracker which initializes its network using the Ima-

geNet [18]. This network is now directly taken for track-

ing where it takes 256 random samples around the previous

target and selects the best possible sample out of it as the

target. Guided MDNet-N chooses lesser number of guided

samples by two of the efficient methods called as frame

level detection of TLD [27] and non-linear regression model

of KCF [26]. The speed of the Guided MDNet-N improves

due to the lesser number of efficient guided samples cho-

sen. All implementations and comparisons were done on

the CPU.

A.10. Convolutional Features for Correlation Fil-
ters (CFCF)

E. Gundogdu, A. A. Alatan

egundogdu87@gmail.com, alatan@metu.edu.tr

The tracker ‘CFCF’ is based on the feature learning

study in [23] and the correlation filter based tracker in [17].

The proposed tracker employs a fully convolutional neu-

ral network (CNN) model trained on ILSVRC15 [56] video

dataset by the introduced learning framework in [23]. This

framework is designed for correlation filter formulation

in [13]. To learn features, convolutional layers of VGG-

M-2048 network [10], which is trained on [18], with an ex-

tra convolutional layer is fine-tuned on ILSVRC15 dataset.

The first, fifth and sixth convolutional layers of the learned

network, HOG [47] and Colour Names (CN) [65] are inte-

grated to the tracker of [17]. The reader is referred to [23]

for details.
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A.11. Online Adaptive Hidden Markov Model for
Multi-Tracker Fusion (HMMTxD)

T. Vojı́r̃, J. Noskova and J. Matas

vojirtom@cmp.felk.cvut.cz, noskova@mat.fsv.cvut.cz,

matas@cmp.felk.cvut.cz

The HMMTxD method fuses observations from comple-

mentary out-of-the box trackers and a detector by utilizing

a hidden Markov model whose latent states correspond to

a binary vector expressing the failure of individual track-

ers. The Markov model is trained in an unsupervised way,

relying on an online learned detector to provide a source

of tracker-independent information for a modified Baum-

Welch algorithm that updates the model w.r.t. the partially

annotated data.

A.12. KFebT

P. Senna, I. Drummond, G. Bastos

{pedrosennapsc, isadrummond, sousa}@unifei.edu.br

The tracker KFebT [57] fuses the result of three

out-of-the box trackers: a mean-shift tracker that uses

colour histogram (ASMS) [73], a kernelized corre-

lation filter (KCF) [26] and the Normalized Cross-

Correlation (NCC) [8] by using a Kalman filter. The tracker

works in prediction and correction cycles. First, a simple

motion model predicts the target next position, then, the

trackers results are fused with the predicted position and

the motion model is updated in the correction process. The

fused result is the KFebT output which is used as last posi-

tion of the tracker in the next frame. To measure the relia-

bility of the Kalman filter, the tracker uses the result confi-

dence and the motion penalization which is proportional to

the distance between the tracker result and the predicted re-

sult. As confidence measure, the Bhattacharyya coefficient

between the model and the target histogram is used in case

of ASMS tracker, while the correlation result is applied in

case of KCF tracker and NCC tracker. The source code is

public available in https://github.com/psenna/KF-EBT.

A.13. Scale Adaptive Point-based Kanade Lukas
Tomasi colour-Filter (SAPKLTF)

E. Velasco-Salido, J. M. Martı́nez, R. Martı́n-Nieto,

Á. Garcı́a-Martı́n

{erik.velasco, josem.martinez, rafael.martinn,

alvaro.garcia}@uam.es

The SAPKLTF [70] tracker is based on an extension

of PKLTF tracker [21] with ASMS [73]. SAPKLTF is

a single-object long-term tracker which consists of two

phases: The first stage is based on the Kanade Lukas Tomasi

approach (KLT) [58] choosing the object features (colour

and motion coherence) to track relatively large object dis-

placements. The second stage is based on scale adaptive

mean shift gradient descent [73] to place the bounding box

into the exact position of the object. The object model con-

sists of a histogram including the quantized values of the

RGB colour components, and an edge binary flag.

A.14. CFWCR

Z. He, Y. Fan, J. Zhuang

{he010103, evelyn}@bupt.edu.cn,

junfei.zhuang@faceall.cn

CFWCR adopts Efficient Convolution Operators [12]

tracker as the baseline approach. A continuous convolution

operator based tracker is derived which fully exploits the

discriminative power in the CNN feature representations.

First, each individual feature extracted from different lay-

ers of the deep pre-trained CNN is normalised, and after

that, the weighted convolution responses from each feature

block are summed to produce the final confidence score. It

is also found that the 10-layers design is optimal for con-

tinuous scale estimation. The empirical evaluations demon-

strate clear improvements by the proposed tracker based on

the Efficient Convolution Operators Tracker (ECO) [12].

A.15. Deep Location-Specific Tracking (DLST)

L. Yang, R. Liu, D. Zhang, L. Zhang

A Deep Location-Specific Tracking (DLST) frame-

work is proposed based on deep Convolutional Neural

Neworks (CNNs). The DLST decomposes the tracking into

localization and classification, and trains an individual net-

work for each task online. The localization network ex-

ploits the information in the current frame and provides an-

other specific location to improve the probability of suc-

cessful tracking. The classification network finds the target

among many examples drawn around the target location in

the previous frame and the location estimated in the cur-

rent frame. The bounding box regression and online hard

negative mining [48] technologies are also adopted in the

proposed DLST framework.

A.16. gNetTracker (gnet)

Siddharta Singh, D. Mishra

siddharthaiist@gmail.com, deepak.mishra@iist.ac.in

The tracker gnet integrates GoogLeNet features with the

spatially regularized model (SRDCF) and ECO model. In

both cases, it was observed that tracking accuracy increased.

The spatially regularized model on different combination of

layers is evaluated. The results of these evaluations on VOT

2016 dataset indicated that features extracted from incep-

tion module 4d and 4e are most suitable for the purpose

of object tracking. This finding is in direct contrast to the

finding of previous studies done on VGGNet [14, 44] which

recommended the use of shallower layers for tracking based

on the argument that shallower layers have more resolution

and hence can be used for object localization. It was found

that a combination of shallow layers (like inception modules
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4c and 4b ) with deeper layers result in slight improvement

in the performance of tracker but also leads to significant

increase in computational cost.

A.17. Best Structured Tracker (BST)

F. Battistone, A. Petrosino, V. Santopietro

francesco.battistone, petrosino,

vincenzo.santopietro@uniparthenope.it

BST is based on the idea of Flock of Trackers [71]: a

set of local trackers tracks a little patch of the original tar-

get and then the tracker combines their information in order

to estimate the resulting bounding box. Each local tracker

separately analyzes the Haar features extracted from a set of

samples and then classifies them using a structured Support

Vector Machine as Struck [24]. Once having predicted local

target candidates, an outlier detection process is computed

by analyzing the displacements of local trackers. Trackers

that have been labeled as outliers are reinitialized. At the

end of this process, the new bounding box is calculated us-

ing the Convex Hull technique.

A.18. Multi-task Correlation Particle Fil-
ter (MCPF)

T. Zhang, J. Gao, C. Xu

{tzzhang, csxu}@nlpr.ia.ac.cn, gaojunyu2015@ia.ac.cn

MCPF learns a multi-task correlation particle filter for

robust visual tracking. The proposed MCPF is designed to

exploit and complement the strength of a multi-task correla-

tion filter (MCF) and a particle filter. First, it can shepherd

the sampled particles toward the modes of the target state

distribution via the MCF, thereby resulting in robust track-

ing performance. Second, it can effectively handle large-

scale variation via a particle sampling strategy. Third, it can

effectively maintain multiple modes in the posterior den-

sity using fewer particles than conventional particle filters,

thereby lowering the computational cost. The reader is re-

ferred to [83] for details.

A.19. UCT

Z. Zhu, G. Huang, W. Zou, D. Du, C. Huang

{zhuzheng2014, wei.zou}@ia.ac.cn,

{guan.huang, dalong.du, chang.huang}@hobot.cc

UCT uses a fully convolutional network to learn

the convolutional features and to perform the tracking

process simultaneously, namely, a unified convolutional

tracker (UCT). UCT treats both processes feature extrac-

tion and tracking as a convolution operation and trains them

jointly, enabling learned CNN features are tightly coupled

to tracking process. In online tracking, an efficient updat-

ing method is proposed by introducing peak-versus-noise

ratio (PNR) criterion, and scale changes are handled by in-

corporating a scale branch into network.

A.20. Staple

Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej

Miksik, Philip Torr

{name.surname}@eng.ox.ac.uk

Staple is a tracker that combines two image patch rep-

resentations that are sensitive to complementary factors

to learn a model that is inherently robust to both colour

changes and deformations. To maintain real-time speed,

two independent ridge regression problems are solved, ex-

ploiting the inherent structure of each representation. Staple

combines the scores of two models in a dense translation

search, enabling greater accuracy. A critical property of the

two models is that their scores are similar in magnitude and

indicative of their reliability, so that the prediction is domi-

nated by the more confident. For more details, we refer the

reader to [4].

A.21. Fully-Convolutional Siamese Net-
work (SiamFC)

Luca Bertinetto, João Henriques, Jack Valmadre, Andrea

Vedaldi, Philip Torr

{name.surname}@eng.ox.ac.uk

SiamFC [5] applies a fully-convolutional Siamese net-

work trained to locate an exemplar image within a larger

search image. The network is fully convolutional with

respect to the search image: dense and efficient sliding-

window evaluation is achieved with a bilinear layer that

computes the cross-correlation of two inputs. The deep

conv-net is trained offline on the ILSVRC VID dataset [56]

to address a general similarity learning problem. This

similarity function is then used within a simplistic track-

ing algorithm. The architecture of the conv-net resembles

‘AlexNet’ [34]. This version of SiamFC incorporates some

minor improvements and is available as the baseline model

of the CFNet paper [64].

A.22. Spatial Pyramid Context-Aware
Tracker (SPCT)

M. Poostchi, K. Palaniappan, G. Seetharaman, K. Gao

mpoostchi@mail.missouri.edu, pal@missouri.edu,

guna@ieee.org, kg954@missouri.edu

SPCT is a collaborative tracker that combines comple-

mentary cues in an intelligent fusion framework to address

the challenges of persistent tracking in full motion video.

SPCT relies on object visual features and temporal motion

information [53]. The visual feature-based tracker usually

takes the lead as long as object is visible and presents dis-

criminative visual features, otherwise the tracker is assisted

by motion information. A set of pre-selected complemen-

tary features is chosen including RGB color, intensity and

spatial pyramid of HoG to encode object color, shape and

spatial layout information [51]. SPCT utilizes image spatial
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context at different level to make the video tracking sys-

tem resistant to occlusion, background noise and improve

target localization accuracy and exploits integral histogram

as building block to meet the demands of real-time process-

ing [52]. The estimated motion detection mask is fused with

feature-based likelihood maps to filter out false background

motion detections. Kalman motion prediction is used to de-

tect the candidate region in the next frame and improve tar-

get localization when being partially or fully occluded.

A.23. SiamDCF (SiamDCF)

Q. Wang, J. Gao, J. Xing, M. Zhang, Z. Zhang, W. Hu

{qiang.wang, jin.gao, jlxing, mengdan.zhang, zhpzhang,

wmhu}@nlpr.ia.ac.cn

SiamDCF is an end-to-end multitask learning based

tracker, which learns two tasks simultaneously with the aim

of mutual benefit. The low-level features are exploited us-

ing the task which bears a resemblance to the DCFNet [75]

for precisely tracking; the high-level features are captured

using the task inspired by SiameseFC [5] for robust track-

ing.

A.24. Learning Spatial-Aware Regressions for Vi-
sual Tracking (LSART)

C. Sun, J. Liu, H. Lu, M. Yang

waynecool@mail.dlut.edu.cn, jyliu0329@gmail.com,

lhchuan@dlut.edu.cn, mhyang@ucmerced.edu

The LSART tracker exploits the complementary kernel-

ized ridge regression (KRR) and convolution neural net-

work (CNN) for tracking. A weighted cross-patch sim-

ilarity kernel for the KRR model is defined and the spa-

tially regularized filter kernels for the CNN model is used.

While the former focuses on the holistic target, the latter

focuses on the small local regions. The distance transform

is exploited to pool layers for the CNN model, which de-

termines the reliability of each output channel. Three kinds

of features are used in the proposed method, which are re-

spectively Conv4-3 of VGG-16, Hog, and Colour naming.

The LSART tracker is based on [62] with some minor revi-

sions (e.g., more features are used).

A.25. SumShift Tracker with Kernelized Correla-
tion Filter (SSKCF)

J. Lee, S. Choi, J. Jeong, J. Kim, J. Cho

{jylee, sunglok, channij80, giraffe, jicho}@etri.re.kr

SumShiftKCF tracker is an extension of the

SumShift tracker [38] by the kernelized correlation

filter tracker (KCF) [26]. The SumShiftKCF tracker

computes the object likelihood with the weighted sum of

the histogram back-projection weights and the correla-

tion response of KCF. The target is then located by the

Sum-Shift iteration [38].

A.26. Adaptive single object Tracking using of-
fline Learned motion And visual Similar pat-
terns (ATLAS)

B. Mocanu, R. Tapu, T. Zaharia

{bogdan.mocanu, ruxandra.tapu, titus.zaharia}@telecom-

sudparis.eu

ATLAS is a generic object tracker based on two convo-

lutional neural networks trained offline. The key principle

consists of alternating between tracking using motion in-

formation and predicting the object location in time based

on visual similarity. As for GOTURN [25], ATLAS uses

a regression-based approach to learn offline generic rela-

tionships between the object appearances and its associated

motion patterns. Then, by using the DeepCompare [80] the

system adaptively modifies the object bounding box posi-

tion and shape. Starting from the initial candidate location,

the object position is successively shifted within the context

search area based on a patch similarity function which is

learnt from annotated pairs of raw images. The final track

is the one that correspond to the instance that provides the

maximal value of similarity.

A.27. Correlation-based Visual Tracking via Dy-
namic Part Regressors Fusion (DPRF)

A. Memarmoghadam, P. Moallem

{a.memarmoghadam, p moallem}@eng.ui.ac.ir

We propose an impressive part-wise tracking framework

namely as DPRF for evolving single-patch correlation fil-

ter based trackers (CFTs) by simultaneously collaborating

of both global and local CF-based part regressors in object

modeling. Moreover, to intelligently follow target appear-

ance changes, we dynamically assign importance weights to

each parts model via solving a multi-linear ridge regression

optimization problem towards achieving the most discrimi-

native aggregated confidence map. In this respect, we rely

on the most representative parts with higher weights and

hence successfully handle heavy occlusions as well as other

locally drastic appearance changes. Additionally, to further

alleviating tracking drift during model update, we present

a simple yet effective scale estimation technique based on

relative importance movement of pair-wise inlier parts. We

believe that our proposed DPRF tracker provides powerful

framework for promoting single-patch CFTs known in the

literature. Without loss of generality, here, we apply or-

dinary single-patch multi-channel KCF tracker [26] as the

baseline approach for each part which expeditiously tracks

the target object parts.

A.28. ColorHough Tracker (CHT)

A. Tran, A. Manzanera

{antoine.tran, antoine.manzanera}@ensta-paristech.fr

ColorHough Tracker [63] is a real-time object tracker

relying on two complementary low-level features: colour
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and gradient. While colour histogram is used as a global

rotation-invariant model to separate object from the back-

ground, gradient orientation is used as an illumination-

invariant index for a Generalised Hough Transform in or-

der to provide a localisation of the target. These two parts

are then merged, to estimate the object position. Model up-

dating is done by computing independently two pixel-level

confidence maps and by merging them. The original Col-

orHough Tracker [63] is improved by tuning the set of pa-

rameters.

A.29. GOTURN MDNet Tracker (GMD)

Y. Xing, K. M. Kitani

yxing1@andrew.cmu.edu, kkitani@cs.cmu.edu

GMD (GOTURN MDNet Tracker) is a Siamese Con-

volutional Neural Network based tracker. It combines the

characteristics of high-speed tracker GOTURN [25] and

mechanisms from MDNet [48] for a timely feedback on

model update. GMD focuses on a classification based ap-

proach that achieves timely appearance model adaptation

through online learning. By feeding the Siamese network

the paired information of frame t-1 target and a set of can-

didates sampled from frame t, the network learns an obser-

vation model that assigns score to each of the candidates.

The score measurement in turn provides signal for timely

update of the network. ROI pooling over the candidates is

used to speed up the feed-forward process. GMD is trained

using ImageNet [56] video dataset that has high object ap-

pearance variations.

A.30. Efficient Convolution Operator
Tracker (ECO)

M. Danelljan, G. Bhat, F. Shahbaz Khan, M. Felsberg

{martin.danelljan, goutam.bhat, fahad.khan,

michael.felsberg}@liu.se

ECO addresses the problems of computational complex-

ity and over-fitting in state of the art DCF trackers by intro-

ducing: (i) a factorized convolution operator, which drasti-

cally reduces the number of parameters in the model; (ii) a

compact generative model of the training sample distribu-

tion, that significantly reduces memory and time complex-

ity, while providing better diversity of samples; (iii) a con-

servative model update strategy with improved robustness

and reduced complexity. The reader is referred to [12] for

more details.

A.31. Efficient Convolution Operator Tracker -
Hand Crafted (ECOhc)

M. Danelljan, G. Bhat, F. Shahbaz Khan, M. Felsberg

{martin.danelljan, goutam.bhat, fahad.khan,

michael.felsberg}@liu.se

ECOhc is a faster version of the ECO tracker [12] us-

ing hand crafted features (Histogram of Oriented Gradi-

ents (HOG) [47] and Colour Names (CN) [65]).

A.32. Large Displacement Estimation of Similar-
ity transformation on Visual Object Track-
ing (LDES)

Y. Li, J. Zhu

{liyang89, jkzhu}@zju.edu.cn

The tracker LDES estimates the object scale changes and

it reduces the number of scale sampling to accelerate the

speed of the current correlation filter. Search and training

ranges are decomposed into two different areas to enable

large displacement estimation. In addition, only HoG and

colour information are employed to enhance the robustness

of the tracker for the purpose of efficiency.

A.33. FSTC

B. Chen, L. Wang, H. Lu

{bychen, wlj}@mail.dlut.edu.cn, lhchuan@dlut.edu.cn

The proposed FSTC tracker draws inspiration from [74]

by combining mid and high-level features from a deep net-

work [54] pre-trained on the PASCAL-VOC 2007 data set

with 20 categories to be detected. The algorithm leverages

multi-level features from both lower and higher layers of a

pre-trained Deep Neural Network (DNN). Considering that

deep features of different levels may be suitable for different

scenarios, a decision network is trained in the off-line stage

to facilitate feature selection in on-line tracking. To better

exploit the temporal consistency assumption of visual track-

ing, the decision network is implemented with long short

term memory (LSTM) units, which are capable of captur-

ing the historical context information to perform more reli-

able inference at the current time step. To further improve

tracking accuracy, a promoting strategy for trackers with

detection results of a generic object detector is proposed,

reducing the risk of tracking drifts.

A.34. Robust Correlation Particle Filter (RCPF)

T. Zhang, J. Gao, C. Xu

{tzzhang, csxu}@nlpr.ia.ac.cn, gaojunyu2015@ia.ac.cn

The robust correlation particle filter (RCPF) is based

on correlation filters and particle filters [82]. The tracker

has the advantages of particle filters and correlation fil-

ters for scale variation and partial occlusion handling. The

tracking robustness is improved with multiple different fea-

tures (deep and HOG), an effective scale adaptive scheme

and a long-short term model update scheme.

A.35. MOSSE CA

M. Mueller

matthias.mueller.2@kaust.edu.sa

This tracker builds upon the very simple and fast correla-

tion filter tracker MOSSE [6]. MOSSE CA only uses gray-

scale pixel values as features and does not adapt the scale of
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the target. The key difference to the original tracker is that

MOSSE CA explicitly incorporates global context accord-

ing a recent framework for CF trackers [46]. The tracking

performance is certainly not state-of-the-art, but shows that

even a very simple correlation filter tracker can achieve rea-

sonable performance when incorporating context informa-

tion.

A.36. Continuous Convolution Operator
Tracker (C-COT)

M. Danelljan, A. Robinson, F. Shahbaz Khan, M.

Felsberg

{martin.danelljan, andreas.robinson, fahad.khan,

michael.felsberg}@liu.se

C-COT learns a discriminative continuous convolution

operator as its tracking model. C-COT poses the learning

problem in the continuous spatial domain. This enables

a natural and efficient fusion of multi-resolution feature

maps, e.g. when using several convolutional layers from a

pre-trained CNN. The continuous formulation also enables

highly accurate localization by sub-pixel refinement. The

reader is referred to [17] for details.

A.37. Consensus Based Matching and Track-
ing (CMT)

Submitted by VOT Committee

The CMT tracker is a keypoint-based method in a com-

bined matching-and-tracking framework. To localise the

object in every frame, each key point casts votes for the ob-

ject center. A consensus-based scheme is applied for outlier

detection in the voting behaviour. By transforming votes

based on the current key point constellation, changes of the

object in scale and rotation are considered. The use of fast

keypoint detectors and binary descriptors allows the current

implementation to run in real-time. The reader is referred

to [49] for details.

A.38. Discriminative Correlation Filter with Chan-
nel and Spatial Reliability (CSRDCF)

A. Lukežič, T. Vojı́r̃, L. Čehovin, J. Matas, M. Kristan

{alan.lukezic, luka.cehovin, matej.kristan}@fri.uni-lj.si,

{vojirtom, matas}@cmp.felk.cvut.cz

The CSR-DCF [43] improves discriminative correlation

filter trackers by introducing the two concepts: spatial reli-

ability and channel reliability. It uses color segmentation as

spatial reliability to adjust the filter support to the part of the

object suitable for tracking. The channel reliability reflects

the discriminative power of each filter channel. The tracker

uses only HoG and colornames features.

A.39. Discriminative Correlation Filter with Chan-
nel and Spatial Reliability - fast (CSRDCFf)

A. Lukežič, T. Vojı́r̃, L. Čehovin, J. Matas, M. Kristan

{alan.lukezic, luka.cehovin, matej.kristan}@fri.uni-lj.si,

{vojirtom, matas}@cmp.felk.cvut.cz

The faster implementation of the Matlab tracker CSR-

DCF [43]. The main performance improvements include

optimized image resizing, scale interpolation, histogram ex-

traction and backprojection.

A.40. Discriminative Correlation Filter with
Channel and Spatial Reliability - C++
(CSRDCF++)

A. Muhic, A. Lukežič, T. Vojı́r̃, L. Čehovin, J. Matas,

M. Kristan

am4738@student.uni-lj.si,

{alan.lukezic, luka.cehovin, matej.kristan}@fri.uni-lj.si,

{vojirtom, matas}@cmp.felk.cvut.cz

The c++ implementation of the CSR-DCF [43] Matlab

tracker. For the referenced description refer to A.38.

A.41. Deformable part correlation filter
tracker (DPT)

A. Lukežič, L. Čehovin, M. Kristan

{alan.lukezic, luka.cehovin, matej.kristan}@fri.uni-lj.si

DPT is a part-based correlation filter composed of a

coarse and mid-level target representations. Coarse repre-

sentation is responsible for approximate target localization

and uses HOG as well as colour features. The mid-level

representation is a deformable parts correlation filter with

fully-connected parts topology and applies a novel formu-

lation that threats geometric and visual properties within a

single convex optimization function. The mid level as well

as coarse level representations are based on the kernelized

correlation filter from [26]. The reader is referred to [42]

for details.

A.42. Discriminative Scale Space Tracker (DSST)

Submitted by VOT Committee

The Discriminative Scale Space Tracker (DSST) [13]

extends the Minimum Output Sum of Squared Er-

rors (MOSSE) tracker [7] with robust scale estimation. The

DSST additionally learns a one-dimensional discriminative

scale filter, that is used to estimate the target size. For

the translation filter, the intensity features employed in the

MOSSE tracker is combined with a pixel-dense representa-

tion of HOG-features.

A.43. Robust Fragments based Tracking using the
Integral Histogram - FragTrack (FT)

Submitted by VOT Committee

FragTrack represents the model of the object by multi-

ple image fragments or patches. The patches are arbitrary
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and are not based on an object model. Every patch votes

on the possible positions and scales of the object in the cur-

rent frame, by comparing its histogram with the correspond-

ing image patch histogram. A robust statistic is minimized

in order to combine the vote maps of the multiple patches.

The algorithm overcomes several difficulties which cannot

be handled by traditional histogram-based algorithms like

partial occlusions or pose change.

A.44. Incremental Learning for Robust Visual
Tracking (IVT)

Submitted by VOT Committee

The idea of the IVT tracker [55] is to incrementally learn

a low-dimensional sub-space representation, adapting on-

line to changes in the appearance of the target. The model

update, based on incremental algorithms for principal com-

ponent analysis, includes two features: a method for cor-

rectly updating the sample mean, and a forgetting factor to

ensure less modelling power is expended fitting older ob-

servations.

A.45. L1APG

Submitted by VOT Committee

L1APG [2] considers tracking as a sparse approximation

problem in a particle filter framework. To find the target in a

new frame, each target candidate is sparsely represented in

the space spanned by target templates and trivial templates.

The candidate with the smallest projection error after solv-

ing an ℓ1 regularized least squares problem. The Bayesian

state inference framework is used to propagate sample dis-

tributions over time.

A.46. Local-Global Tracking tracker (LGT)

Submitted by VOT Committee

The core element of LGT is a coupled-layer visual

model that combines the target global and local appear-

ance by interlacing two layers. By this coupled constraint

paradigm between the adaptation of the global and the local

layer, a more robust tracking through significant appearance

changes is achieved. The reader is referred to [66] for de-

tails.

A.47. MEEM

Submitted by VOT Committee

MEEM [81] uses an online SVM with a redetection

based on the entropy of the score function. The tracker cre-

ates an ensamble of experts by storing historical snapshots

while tracking. When needed the tracker can be restored

by the best of these experts, selected using an entropy min-

imization criterion.

A.48. Multiple Instance Learning tracker (MIL)

Submitted by VOT Committee

MIL tracker [1] uses a tracking-by-detection approach,

more specifically Multiple Instance Learning instead of tra-

ditional supervised learning methods and shows improved

robustness to inaccuracies of the tracker and to incorrectly

labelled training samples.

A.49. MSSA

V.Zavrtanik, A. Lukežič

alan.lukezic@fri.uni-lj.si, vz1528@student.uni-lj.si

The MSSA tracker uses the mean-shift method for lo-

calization. It uses background weighted color histograms

as a region similarity meassure in the mean-shift procedure.

Additionally it utilizes the DSST [13] scale estimation tech-

nique.

A.50. Spatially Regularized Discriminative Corre-
lation Filter Tracker (SRDCF)

Submitted by VOT Committee

Standard Discriminative Correlation Filter (DCF) based

trackers such as [13, 16, 26] suffer from the inherent peri-

odic assumption when using circular correlation. The Spa-

tially Regularized DCF (SRDCF) alleviates this problem by

introducing a spatial regularization function that penalizes

filter coefficients residing outside the target region. This

allows the size of the training and detection samples to be

increased without affecting the effective filter size. By se-

lecting the spatial regularization function to have a sparse

Discrete Fourier Spectrum, the filter is efficiently optimized

directly in the Fourier domain. For more details, the reader

is referred to [15].

A.51. STRUCK (Struck2011)

Submitted by VOT Committee

Struck [24] is a framework for adaptive visual object

tracking based on structured output prediction. The method

uses a kernelized structured output support vector ma-

chine (SVM), which is learned online to provide adaptive

tracking.

B. Submitted trackers VOT-TIR2017 chal-

lenge

In this appendix we provide a short summary of all track-

ers that were considered in the VOT-TIR2017 challenge.

B.1. Long Term FeatureLess Object tracker (LT-
FLO)

K. Lebeda, S. Hadfield, J. Matas, R. Bowden

karel@lebeda.sk, matas@cmp.felk.cvut.cz,

{s.hadfield,r.bowden}@surrey.ac.uk

For a tracker description, the reader is referred to A.5.
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B.2. KFebT

P. Senna, I. Drummond, G. Bastos

{pedrosennapsc, isadrummond, sousa}@unifei.edu.br

For a tracker description, the reader is referred to A.12.

B.3. Dense Structural Learning based Tracker
(DSLT)

X. Yu, Q. Yu, H. Zhang, N. Xie

yuxianguo chn@163.com

DSLT extends Struck with the ability to learn from dense

samples and high dimensional features. DSLT runs in a sim-

ple tracking by detection mode, with no scale adaptation

and occlusion handling. Compared to our initial work [79],

the feature representation in DSLT consists of 28D HOG

features computed without block normalization as well as a

1D motion feature which is simply the absolute difference

between consecutive frames. The search range is also set

larger to account for faster motion and to get more training

samples.

B.4. Best Structured Tracker (BST)

F. Battistone, A. Petrosino, V. Santopietro

francesco.battistone, petrosino,

vincenzo.santopietro@uniparthenope.it

For a tracker description, the reader is referred to A.17.

B.5. UCT

Z. Zhu, G. Huang, W. Zou, D. Du, C. Huang

{zhuzheng2014, wei.zou}@ia.ac.cn,

{guan.huang, dalong.du, chang.huang}@hobot.cc

For a tracker description, the reader is referred to A.19.

B.6. Spatial Pyramid Context-Aware
Tracker (SPCT)

M. Poostchi, K. Palaniappan, G. Seetharaman, K. Gao

mpoostchi@mail.missouri.edu, pal@missouri.edu,

guna@ieee.org, kg954@missouri.edu

For a tracker description, the reader is referred to A.22.

B.7. MOSSE CA

M. Mueller

matthias.mueller.2@kaust.edu.sa

For a tracker description, the reader is referred to A.35.

B.8. Efficient Convolution Operator Tracker (ECO)

Submitted by VOT Committee

For a tracker description, the reader is referred to A.30.

B.9. Edge Box Tracker (EBT)

Submitted by VOT Committee

For a tracker description, the reader is referred to the de-

scription by G. Zhu, F. Porikli, and H. Li in Section A.2 of

the VOT-TIR2016 paper [20].

B.10. Spatially Regularized Discriminative Corre-
lation Filter Tracker IR (SRDCFir)

Submitted by VOT Committee

For a tracker description, the reader is referred to A.50.
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