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Abstract

The aspect ratio variation frequently appears in visual

tracking and has a severe influence on performance. Al-

though many correlation filter (CF)-based trackers have al-

so been suggested for scale adaptive tracking, few studies

have been given to handle the aspect ratio variation for CF

trackers. In this paper, we make the first attempt to address

this issue by introducing a family of 1D boundary CFs to lo-

calize the left, right, top, and bottom boundaries in videos.

This allows us cope with the aspect ratio variation flexi-

bly during tracking. Specifically, we present a novel track-

ing model to integrate 1D Boundary and 2D Center CFs

(IBCCF) where boundary and center filters are enforced by

a near-orthogonality regularization term. To optimize our

IBCCF model, we develop an alternating direction method

of multipliers. Experiments on several datasets show that

IBCCF can effectively handle aspect ratio variation, and

achieves state-of-the-art performance in terms of accuracy

and robustness.

1. Introduction

Visual tracking is one of the most fundamental problems

in computer vision. And it plays a critical role in versatile

applications such as video surveillance, intelligent trans-

portation, and human-computer interaction [36, 31, 35, 39,

5]. Given its annotation on the initial frame, visual track-

ing aims to estimate the trajectory of a target with large

appearance variations caused by many factors, e.g., scale,

rotation, occlusion, and background clutter. Although great

advance has been made, it remains a challenging issue to
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Figure 1: Three example sequences (CarScale, Trans and Panda)

with aspect ratios variation in OTB benchmark. Given the initial

target position in the first column, we compare our method (IBC-

CF) with its counterparts HCF [23] and sHCF. The results show

our IBCCF is superior to HCF and sHCF in the case of aspect

ratio variation.

develop an accurate and robust tracker to handle all these

factors. Recently, correlation filter (CF)-based approach-

es have received considerable attention in visual tracking

[3, 14, 7]. In these methods, a discriminative correlation

filter is trained to generate 2D Gaussian shaped responses

centered at target position. Benefited from the circulant ma-

trix and fast Fourier transform (FFT), the CF-based trackers

usually perform very efficiently. With the introduction of

deep features [23, 29] and spatial regularization [9, 22] and

continuous convolution [11], the performance of CF-based

trackers have been persistently improved, and lead to the

state-of-the-art performance.
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Despite the advances in CF-based tracking, the aspec-

t ratio variation remains an open problem. The changes

in aspect ratio can be caused by variations in-plane/out-of-

plane rotation, deformation, occlusion, or scale variation,

and usually have a severe effect on tracking performance.

To handle scale variation, Li and Zhu [17] propose a Scale

Adaptive with Multiple Features tracker (SAMF). Danell-

jan et al. [7] suggest a discriminative scale space tracking

(DSST) method to learn separate CFs for translation and s-

cale estimation on scale pyramid representation. Besides,

scale variation issue can also be handled by the part-based

CF trackers [21, 18, 20]. These methods, however, can on-

ly cope with scale variation issue but cannot well address

the the aspect ratio variation issue. Fig. 1 illustrates the

tracking results on three sequences with aspect ratio varia-

tion. It clearly shows that, even with deep CNN features,

neither the standard CF (i.e. HCF [23]) tracker nor its scale-

adaptive version (sHCF) can address the issue of aspect ra-

tio variation caused by in-plane/out-of-plane rotation and

deformation.

In this paper, we present a visual tracking model to han-

dle aspect ratio variation by integrating boundary and center

correlation filters (IBCCF). The standard CF estimates the

trajectory by finding the highest response in each frame to

locate the center of the target, and can be seen as a center

tracker. In contrast, we introduce a family of 1D bound-

ary CFs to localize the positions of the left, right, top and

bottom boundaries (i.e. ml,mr, nt, nb) in the sequences,

respectively. By treating 2D boundary region as a multi-

channel representation of 1D vectors, a boundary CF is

learned to generate 1D Gaussian shaped responses centered

at target boundary (See Fig. 2). By using boundary CFs, the

left, right, top and bottom boundaries can be flexibly tuned

in the image sequences. Thus the aspect ratio variation can

be naturally handled during tracking.

We empirically analyze and reveal the near-

orthogonality property between the center and bound-

ary CFs. Then, by enforcing the orthogonality with an

additional regularization term (i.e. near-orthogonality

constraint), we present a novel IBCCF tracking model to

integrate 1D boundary and 2D center CFs. Meanwhile, an

alternating direction method of multipliers (ADMM) [4] is

then developed to optimize the proposed IBCCF model.

To evaluate our IBCCF, extensive experiments have been

conducted on OTB-2013, OTB-2015 [35] , Temple-Color

[19], VOT-2016 [5] and VOT-2017 datasets. The results

validate the effectiveness of IBCCF on handling aspect ra-

tio variation. Compared with several state-of-the-art track-

ers, our IBCCF achieves comparable performance in terms

of accuracy and robustness. As shown in Fig. 1, by using

CNN features, our IBCCF can well adapt to the aspect ra-

tio variation in the three sequences, yielding better tracking

performance.

To sum up, the contributions of this paper are three-fold:

• A novel IBCCF model is developed to address the as-

pect ratio variation in CF-based trackers. To achieve

this, we first introduce a family of boundary CFs to

track the left, right, top and bottom boundaries besides

tracking the target center. Then, we combines bound-

ary and center CFs by encouraging orthogonality be-

tween them for accurate tracking.

• An ADMM algorithm is suggested to optimize our

IBCCF model, where each subproblem has the closed-

form solution. Our algorithm alternates between up-

dating center CFs and updating boundary CFs, and em-

pirically converges with very few iterations.

• The extensive experimental results demonstrate the ef-

fectiveness of our proposed IBCCF, and it achieves

comparable tracking performance against several

state-of-the-art trackers.

2. Related Work

In this section, we provide a brief survey on CF-based

trackers, and discuss several scale adaptive and part-based

CF trackers close to our method.

2.1. Correlation Filter Trackers

Denote by x an image patch of M×N pixels. Let y be a

2D Gaussian shaped labels. The correlation filter w is then

learned by minimizing the ridge regression objective:

w=argmin
w

{

E(w)=‖w ⊗2 x−y‖
2
+λ ‖w‖

2
}

, (1)

where λ denotes the regularization parameter, and ⊗2

is the 2D convolution operator. Denote by x̂ the Fourier

transform of x, and x̂∗ the complex conjugate of x̂. Using

fast Fourier transform (FFT), the closed-form solution to

Eqn. (1) can be given as:

w = F−1

(

x̂∗ ⊙ ŷ

x̂∗ ⊙ x̂+ λ

)

, (2)

where ⊙ denotes the element-wise multiplication, and

F−1(·) represents the inverse Discrete Fourier transform

operator.

From the pioneering MOSSE by Bolme et al. [3], great

advances have been made in CF-based tracking. Henriques

et al. [14] extend MOSSE to learn nonlinear CF via kernel

trick. And the multi-channel extension of CF has been stud-

ied in [15]. Driven by feature engineering, HOG [6], color

names [10] and deep CNN features [23, 29] have been suc-

cessively adopted in CF-based tracking. Other issues, such

as long-term tracking [24], continuous convolution [11], s-

patial regularization [9, 22], and boundary effect [16], are

also investigated to improve tracking accuracy and robust-

ness. Besides ridge regression, other learning models, e.g.,
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support vector machine (SVM) [40, 27] and sparse coding

[32], are also introduced. Due to the page limits, in the fol-

lowing, we further review the scale adaptive and part-based

CFs which are close to our work.

2.2. Scale Adaptive and Part-based CF Trackers

The first family of methods close to our approach are s-

cale adaptive CF trackers, which aim to estimate target scale

changes during tracking. Among the current scale adaptive

CF trackers [9, 11, 24], SAMF [17] and DSST [7] are t-

wo commonly used methods for scale estimation. They ap-

ply the learned filter to samples of multi-resolutions around

the target, and compute the response for each scale of the

sample whose the maximum response is seen as the opti-

mal scale. However, such strategy is time consuming in

the case of large scale space, and many improvements over

them have been proposed. Tang and Feng [33] employ bi-

section search and fast feature scaling method to speed up

scale space searching. Bibi and Ghanem [2] maximize the

posterior probability rather than the likelihood (i.e. maxi-

mum response map) in different scales for more stable de-

tections. Additionally, Zhang et al. [38] also suggest a ro-

bust scale estimation method by averaging the scales over

n consecutive frames. Despite these successes in isometric

scale variation, such kind of methods cannot well address

aspect ratio variation. Different from the aforementioned

methods, the proposed IBCCF approach can handle aspect

ratio variation effectively with the introduction of boundary

CFs.

Our IBCCF also shares some philosophy with the part-

based CF methods, which divide the entire target into sever-

al parts and merge the results from all parts for final predic-

tion. For example, Liu et al. [21] divide the target into five

parts which are assigned with five independent CF trackers,

and the final target position estimation is obtained by merg-

ing five CF trackers using Bayesian inference methods. D-

ifferent from simple dividing parts, Li et al. [18] propose to

exploit reliable parts, which estimate their probability dis-

tributions under a sequential Monte Carlo framework and

employ a Hough voting scheme to locate the target. In the

similar line, Liu et al. [20] propose to jointly learn mul-

tiple parts from the target with CF trackers in an ADM-

M framework. Compared with the part-based trackers, the

proposed IBCCF has several merits: (1) IBCCF chooses to

track meaningful boundary regions, which is more gener-

al than the fixed partition based method [21] and easier to

be handled than the learned parts based method [20]; (2)

With the introduction of 1D boundary CFs, IBCCF can nat-

urally deal with the aspect ratio variation problem; (3) The

near-orthogonality constraint between boundary and center

CFs encourages IBCCF better performance than part-based

ones.
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Figure 2: Comparison between standard CF and the proposed 1D

boundary CF. Note that ⊗1 and ⊗2 represent the 1D and 2D con-

volution, respectively. (a): Standard CF convolves the center re-

gion with a 2D CF to generate 2D responses for finding the center

position. (b): 1D boundary CF crops the boundary region cen-

tered at target boundary, then 2D boundary region is reshaped as

a multi-channel representation of 1D vectors and convolved with

1D CF to produce 1D responses for finding the boundary position.

3. The Proposed IBCCF Model

In this section, we first introduce the boundary corre-

lation filters. Then, we investigate the near-orthogonality

property between the boundary and center CFs, and finally

present our IBCCF model.

3.1. Boundary Correlation Filters

In standard CF, the bounding box of a target with fixed

size is uniquely characterized by its center (mc, nc). By in-

corporating with scale estimation, the target bounding box

can be determined by both the center (mc, nc) and the scale

factor α. However, both standard and scale adaptive CFs

cannot address the aspect ratio variation issue, so better de-

scription of bounding box is required. For CNN-based ob-

ject detection [12], the bounding box is generally parame-

terized by center coordinate, its height and width. Although

such parameterization scheme can cope with aspect ratio

variation, it is difficult to predict target height and width in

the CF framework.

In this work, the bounding box is parameterized

with its left, right, top and bottom boundaries B =
{ml,mr, nt, nb}. It is natural to see that such parameter-

ization is able to handle aspect ratio variation with dynam-

ically adjusting four boundaries of target. Moreover, for

each boundary of B, a 1D boundary CF (BCF) is learned to

estimate the left, right, top or bottom boundary, respective-

ly. Taking the left boundary ml as an example, Fig. 2(b)

illustrates the process of 1D boundary CF. Given a target

bounding box, let (mc, nc) be the center, h and w be the

height and width. Its left boundary can be represented as

ml = mc −
w
2 . Then we crop a left boundary image region

xl centered at (ml, nc) with width wl = αw and height

hl = βh.

To learn 1D boundary CF, the left boundary image re-

gion is treated as a multi-channel (i.e. hl) representation of

1D wl × 1 vectors xl = [x1
l ; ...;x

hl

l ]. Denote by yl a 1D
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Gaussian shaped labels centered at ml. Then the 1D left

boundary CF model can then be formulated as,

wl=argmin
wl

Ll(wl)=

∥

∥

∥

∥

∥

∥

hl
∑

j=1

x
j
l ⊗1w

j
l −yl

∥

∥

∥

∥

∥

∥

2

+λ ‖wl‖
2

(3)

where ⊗1 denotes the 1D convolution operator. For each

channel of wl, its closed form solution w
j
l can be obtained

by,

w
j
l = F−1

(

x̂
j∗
l ⊙ ŷl

∑hl

j=1 x̂
j∗
l ⊙ x̂

j∗
l + λ

)

. (4)

As shown in Fig. 2(a), the center region is convolved

with a 2D CF to generate a 2D filtering responses. Then,

the target center is determined by the position with the max-

imum response. Thus standard CF can be seen as a center

CF (CCF) tracker. In contrast, as shown in Fig. 2(b), the

left boundary region is first equivalently written as a multi-

channel representation of 1D vectors. The multi-channel

1D vectors are then convolved with multi-channel 1D cor-

relation filters to produce 1D filtering responses. And the

left boundary is determined by finding the position with

the maximum response. Analogously, the other boundaries

can also be obtained to track with the right, top and bottom

boundary CFs, respectively. Fig. 3 shows the setting of the

boundary regions based on the target bounding box.

When a new frame comes, we first crop the boundary re-

gions, which are convolved with the corresponding bound-

ary CFs. The left, right, top and bottom boundaries are

then determined based on the corresponding 1D filtering

responses. Note that each boundary is estimated indepen-

dently. Thus, our BCF approach can adaptively fit target

scale and aspect ratio.

3.2. Near-orthogonality between Boundary and
Center CFs

It is natural to see that the boundary and center CFs are

complementary and can be integrated to boost tracking per-

formance. To locate target in the current frame, we can first

detect an initial position with CCF, then BCFs are employed

to further refine the boundaries and position. To update

the tracker, we empirically investigate the relationship be-

tween the CCF and BCFs, and then suggest to include a

near-orthogonality regularizer for better integration.

Suppose that the size of left boundary region for BCF is

the same with that of center region for CCF. Without loss

of generality, we let [x]vec, [w]vec, and [wl]vec be the vec-

torization of the center region, center CF, and left boundary

CF, respectively. On one hand, the filtering responses of left

boundary CF should be higher at the left boundary and near

zero otherwise. So we have that [wl]
T
vec[x]vec ≈ 0, which

indicates that [wl]vec and [x]vec are nearly orthogonal. On

the other hand, the filtering responses of center CF achieve

Center Region

Left Region

Right Region

Top Region

Bottom Region

Target

Common Region

Figure 3: An illustration of the generated center, boundary and

common region based on the target bounding box.

(a) (b)

Figure 4: The angles (in degree) between the common regions of

center and boundary CFs on the sequence Skiing. (a) The angles

computed by training CCF and BCFs independently. (b) Using

the near-orthogonality constraint, the angles obtained by IBCCF

can be more near to 90
◦, and 4.7% gains by overlap precision is

attained during tracking.

its maximum at the center position, and thus the angle be-

tween [x]vec and [w]vec should be small. Therefore, [wl]vec

should be nearly orthogonal with [w]vec.

However, in general the sizes of left boundary region and

center region are not the same. From Fig. 3, one can see

that they share a common region. Let [w̃]vec be the vector-

ization of center CF in the common region, and so do [x̃]vec

and [w̃l]vec. We then extend the near-orthogonality property

to the common region, and expect that [w̃l]vec and [w̃]vec are

also nearly orthogonal, i.e., [w̃l]
T
vec[w̃]vec ≈ 0. Analogous-

ly, we also expect that [w̃r]
T
vec[w̃]vec ≈ 0, [w̃t]

T
vec[w̃]vec ≈ 0,

[w̃b]
T
vec[w̃]vec ≈ 0. Fig. 4 shows the angles between the

center CF and boundary CFs in common region on the se-

quence Skiing. From Fig. 4(a), one can note that it is rough-

ly hold true that the boundary and center CFs are nearly or-

thogonal. Thus, as illustrated in Fig. 4(b), we expect better

near-orthogonality and tracking accuracy can be attained by

imposing the near-orthogonality constraint on the training

of CCF and BCFs. Empirically, for Skiing, the introduction

of near-orthogonality constraint does bring 4.7% gains by

overlap precision during tracking.

3.3. Problem Formulation of IBCCF

By enforcing the near-orthogonality constraint, we pro-

pose our IBCCF model to integrate boundary and center

CFs, resulting in the following objective,

argmin
W

∑

k∈Ψ

Lk(wk) + E(w) + μ
∑

k∈Ψ

(

[w̃]Tvec[w̃k]vec

)2
(5)
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where Ψ = {l, r, t, b}, and W = {w,wl,wr,wt,wb}.

Lk(wk) and E(w) are defined in Eqns. (3) and (1).

Comparison with DSST [7]. Even DSST also adopt-

s 1D and 2D CFs, it learns separate 2D and 1D CFs for

translation and scale estimation on scale pyramid represen-

tation, respectively. And our IBCCF is distinctly different

with DSST from three aspects: (i) While DSST formulates

scale estimation as 1D CF, BCF is among the first to suggest

a novel parameterization of bounding box, and formulates

boundary localization as 1D CFs. (ii) For DSST, the inputs

to 1D CF are image patches at different scales, while the in-

put for BCF is four regions covering the edges of bounding

boxes. (iii) In DSST, the 1D CF and 2D translation CF are

separately trained. While in IBCCF, 1D BCFs and 2D CCF

are jointly learned by solving the IBCCF model in Eqn. (5).

4. Optimization

In this section, we propose an ADMM method to min-

imize Eqn. (5) by alternately updating center CF w and

boundary CFs wk (k ∈ Ψ), where each subproblem can be

easily solved with a close-form solution.

We first employ variable splitting method to change Eqn.

(5) into a linear equality constrained optimization problem:

argmin
W

∑

k∈Ψ

Lk(wk) + E(w) + μ
∑

k∈Ψ

(

[w̃]Tvec[w̃k]vec

)2
(6)

s.t. g = w,uk = wk, k ∈ Ψ.

Hence, the Augmented Lagrangian Method (ALM) can

be applied to solve Eqn. (6), and its augmented lagrangian

form [4] is reformulated as:

argmin
H

∑

k∈Ψ

Lk(wk) + E(w) + μ
∑

k∈Ψ

(

[g̃]Tvec[ũk]vec

)2
(7)

+ρ ‖w − g − p‖
2
+

∑

k∈Ψ

γk ‖wk − uk − qk‖
2
,

where H = {W,g,p,uk,qk}, p and qk represent the La-

grange multiplier, ρ and γk are penalty factors, respectively.

For multivariable non-convex optimization, ADMM itera-

tively updates one of variables while keeping the rest fixed,

hence the convergence can be guaranteed [4]. By using AD-

MM, Eqn. (7) is divided into the following subproblems:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

w(i+1) = argmin
w

E(w) + ρ(i)
∥

∥w − g(i) − p(i)
∥

∥

2

g(i+1) = argmin
g

μ
∥

∥(S(i))T [g̃]vec

∥

∥

2

+ρ(i)
∥

∥w(i) − g − p(i)
∥

∥

2

w
(i+1)
k = argmin

wk

L(wk) + γ
(i)
k

∥

∥

∥
wk − u

(i)
k − q

(i)
k

∥

∥

∥

2

u
(i+1)
k = argmin

uk

μ
∥

∥[g̃(i)]Tvec[ũk]vec

∥

∥

2

+γ
(i)
k

∥

∥

∥
w

(i)
k − uk − q

(i)
k

∥

∥

∥

2

p(i+1) = p(i) + g(i+1) −w(i+1)

q
(i+1)
k = q

(i)
k + u

(i+1)
k −w

(i+1)
k

(8)

where S(i) = [[ũ
(i)
l ]vec, [ũ

(i)
r ]vec, [ũ

(i)
t ]vec, [ũ

(i)
b ]vec] and

k ∈ Ψ. From Eqn. (5), we can see that the boundary CFs

are independent of each other, so each pair of wk and uk

can be updated in parallel for efficiency. Next, we detail

the solution to each subproblem as follows:

Subproblem w. Using the properties of circulant matrix

and FFT, the closed form solution of w is given as:

w = F−1

(

x̂∗ ⊙ ŷ + ĝ + p̂

x̂∗ ⊙ x̂+ λ+ ρ

)

(9)

Subproblem g. The second row of Eqn. (8) is rewritten as:

argmin
[g]vec

μ
∥

∥QT [g]vec

∥

∥

2
+ ρ‖[w]vec − [g]vec − [p]vec‖

2
(10)

where the matrix Q =

[

S

0

]

is obtained by padding zeros to

each column of S. Then [g]vec can be computed by:

[g]vec =
(

μQQT + ρI
)−1

ρ ([w]vec − [p]vec) (11)

Note that matrix Q only contains four columns, thus

Singular Value Decomposition (SVD) can be used for im-

proving the efficiency. By performing SVD of Q with

Q = UΣVT , we have:

[g]vec = UΛUT ([w]vec − [p]vec) (12)

where Λ = (µ
ρ
ΣΣT + I)−1. Let the nonzero elements in

matrix Σ be [λ1, λ2, λ3, λ4], the nonzero elements of diago-

nal matrix Λ become [ ρ

µλ2

1
+ρ

, ρ

µλ2

2
+ρ

, ρ

µλ2

3
+ρ

, ρ

µλ2

4
+ρ

, ..., 1].

Hence, Eqn. (12) can be written as:

[g]vec =
(

I−U(I− Λ)UT
)

([w]vec − [p]vec) (13)

Since diagonal matrix (I − Λ) only contains four

nonzero elements, we have U(I−Λ)UT = ÛDiag(f)ÛT ,

where Û is the first four columns of matrix U and Diag(f)
denotes the diagonal matrix of the nonzero elements in

(I− Λ). Such special case can be solved efficiently 1.

Subproblem wk. The solution of wk shares similar

solution with one of Eqn. (9):

wk = F−1

(

x̂k
∗ ⊙ ŷk + ûk + q̂k

x̂k
∗ ⊙ x̂k + λ+ γk

)

(14)

Subproblem uk. The fourth row of Eqn. (8) is written as:

[uk]vec =arg min
[uk]vec

μ
∥

∥[s]Tvec[uk]vec

∥

∥

2

+ γk‖[wk]vec − [uk]vec − [qk]vec‖
2

(15)

where [s]vec =

[

[g̃]vec

0

]

and the close-form solution of

[uk]vec is:

[uk]vec = (μ[s]vec[s]
T
vec + γkI)

−1γk([wk]vec − [qk]vec) (16)

Since [s]vec[s]
T
vec is rank-1 matrix, Eqn. (16) can be effi-

ciently solved with Sherman-Morrsion formula [28] , so we

have:

[uk]vec = (1−
μ[s]vec[s]

T
vec

γk + μ[s]Tvec[s]vec

)([wk]vec − [qk]vec) (17)

1Please refer to SVD function with “economy” mode in Matlab.
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Convergence. To verify the effectiveness of the proposed

ADMM, we illustrate the convergence curve with ADMM

on sequence Skiing. As shown in Fig. 5, although IBCCF

model is a non-convex problem, we can see that it converges

within very few iterations (four iterations in this case). This

phenomenon is ubiquitous in our experiments, and most of

the sequences converges within five iterations.

0 2 4 6 8 10 12 14 16 18 20
0.2
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Figure 5: Convergence curve of the proposed IBCCF with ADMM

on the fifth frame of sequence Skiing on OTB benchmark.

5. Experiments

In this section, we first compare IBCCF with state-of-

the-art trackers on OTB dataset [35]. Then we validate the

effects of each component on IBCCF, and analyze the time

cost using OTB dataset. Finally, we conduct comparative

experiments on Temple-Color [19] and VOT benchmarks.

Following the common settings in HCF [23], we imple-

ment IBCCF by using the outputs of layers conv3-4, con-

v4-4 and conv5-4 of VGG-Net-19 [30] for feature extrac-

tion. To combine the responses from different layers, we

follow the HCF setting and assign the weights of three lay-

ers in the center CF to 0.02, 0.5 and 1, respectively. For

boundary CFs, we omit the layer of conv3-4 and set the

weights for layers of conv4-4 and conv5-4 both to 1. The

regularization parameters λ and μ are set to 10−4 and 0.1,

respectively. Note that we employ a subset of 40 sequences

from Temple-Color dataset as the validation set to choose

the above parameters. Detailed description about the sub-

set and corresponding experiments are given in Section 5.3.

Our approach is implemented with Matlab by using Mat-

ConvNet Library. The average running time is about 1.25f-

ps on a PC equipping with a Intel Xeon(R) 3.3GHz CPU,

32GB RAM and NVIDIA GTX 1080 GPU.

5.1. OTB benchmark

OTB benchmark consists of two subsets, i.e., OTB-2013

and OTB-2015. OTB-2013 contains 51 sequences annotat-

ed with 11 different attributes, such as scale variation, oc-

clusion and low resolution. OTB-2015 extends OTB-2013

to 100 videos. We quantitatively evaluate our method with

One-Pass Evaluation (OPE) protocol, where overlap pre-

cision (OP) metrics is used by computing the fraction of

frames with bounding box overlaps exceeding 0.5 in a se-

quence. Besides, we also provide overlap success plots con-

taining the OP metrics over a range of thresholds.

5.1.1 Comparison with state-of-the art trackers

We compare our algorithm with 13 state-of-the-art methods:

HCF [23], C-COT [11], SRDCF [9], DeepSRDCF [8], SIN-

T+ [34], RPT [18], SCF [20], SAMF [17], Scale-DLSSVM

[27], Staple [1], DSST [7], MEEM [37] and SKSCF [40].

Among them, most trackers except HCF and MEEM per-

form scale estimation during tracking. And both RPT and

SCF methods exploit part-based models. In addition, for

verifying the effectiveness of BCFs on handling aspect ra-

tio variation, we implement a HCF variant with five scales

(denoted by sHCF) under the SAMF framework. Note that

we employ publicly available codes of compared trackers or

copy the results from the original paper for fair comparison.

Table 1 lists a comparison of mean OP on OTB-2013 and

OTB-2015 datasets. From it we can draw the following con-

clusions: (1) Our IBCCF outperforms most trackers except

C-COT [11] and surpasses its counterpart HCF (i.e., only

center CF) by 10.2% and 12.8% on OTB-2013 and OTB-

2015, respectively. We owe these significant improvements

to integration of boundary CFs. C-COT achieves higher

mean OP than IBCCF on OTB-2015. It should be noted that

spatial regularization is considered to suppress the boundary

effect in both DeepSRDCF [8] and C-COT. Furthermore, C-

COT also extends DeepSRDCF by learning multiple convo-

lutional filters in continuous spatial domain. In contrast, our

IBCCF does not consider the spatial regularization and con-

tinuous convolution, and can yield favorable performance

against the competing trackers. (2) our IBCCF is consis-

tently superior to sHCF and other scale estimation based

methods (e.g., DeepSRDCF) on both datasets. It indicates

our boundary CFs are more helpful than scale estimation to

CF-based trackers. (3) Compared with part-based trackers

(e.g., SCF), our IBCCF also shows its superiority, i.e., 4%

gains over SCF on OTB-2013 dataset.

Next, we show the overlap success plots of different

trackers, which are ranked using the Area-Under-the-Curve

(AUC) score. As shown in Fig. 6, our IBCCF tracker is

among the top three trackers on both datasets and outper-

forms HCF by 5.9% and 6.8% on OTB-2013 and OTB-2015

datasets, respectively.

5.1.2 Video attributes related to aspect ratio variation

In this subsection, we perform analysis of attributes influ-

encing aspect ratio variation on OTB-2015 dataset. Here

we only provide the overlap success plots for four attributes

which have great influence on aspect ratio variation and the

rest results can be found in the supplementary material.

Scale Variations: In the case of scale variations, target

size continuously changes during tracking. It is worth not-
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C-COT [11] SINT+ [34] SKSCF [40] Scale-DLSSVM [27] Staple [1] SRDCF [9] DeepSRDCF [8] RPT [18] MEEM [37] DSST [7] SAMF [17] HCF [23] SCF [20] sHCF IBCCF

OTB-2013 83.4 81.3 80.9 73.2 74.9 78 79.2 71.4 69.1 67.7 68.9 73.5 79.7 73.4 83.7

OTB-2015 82.7 - 67.4 65.2 71.3 72.7 77.6 64 62.3 62.2 64.5 65.6 - 69.2 78.4

Table 1: Mean OP metrics (in %) of different trackers on OTB-2013 and OTB-2015. The best three results are shown in red, blue and green

fonts, respectively.
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Figure 6: Comparison of overlap success plots with state-of-the-

art trackers on OTB-2013 and OTB-2015.
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Figure 7: Overlap success plots of all competing trackers with four

attributes great influencing aspect ratio variation on the OTB-2015.

ing that most of videos in this attribute only undergo scale

changes rather than aspect ratio variation. Despite in such

setting, as illustrated in the upper left of Fig. 7, IBCCF

still performs favorably among the compared trackers and

is superior to the sHCF method by 9.5%, demonstrating its

effectiveness on handling target size variations.

In-plane/Out-of-plane Rotation: In this case, target-

s encounter with rotation due to fast motion or viewpoint

changes, which often cause aspect ratio variation of target-

s. As shown in the upper right and lower left of Fig. 7,

our IBCCF is robust to such kinds of variations and outper-

forms most of other trackers. Specifically, IBCCF achieves

remarkable improvements over its counterparts HCF, i.e.,

2.5% and 6.4% gains in case of in-plane and out-of-plane

rotation, respectively. It indicates our IBCCF can deal with

aspect ratio variation caused by rotations.

Occlusion: Obviously, the partial occlusions can lead to

aspect ratio variation of target. And complete occlusion-

Mean OP AUC Score

BCFs 50.2 39

Center CF 65.6 56.2

IBCCF (w/o constraints) 72 58.9

IBCCF 78.4 63

Table 2: Evaluation results of component experiments on both

mean OP and AUC score metrics (in %).

s also have an adverse impact on the boundary prediction.

Despite of these negative effects, IBCCF still outperforms

most of the competing trackers and brings 7.6% gains over

the center CF tracker (i.e. HCF).

5.2. Internal Analysis of the proposed approach

5.2.1 Impacts of Boundary CFs and near-orthogonality

Here we investigate the impact of boundary CFs and near-

orthogonality property on the proposed IBCCF approach.

To achieve this, we make four different variants of IBCCF:

the tracker only with 1D boundary CFs (BCFs), the track-

er only with the center CF (i.e., HCF), the IBCCF tracker

without orthogonality constraints denoted by IBCCF (w/o

constraint) and full IBCCF model. Table 2 summarizes the

mean OP and AUC score of four methods on OTB-2015.

From Table 2, one can see that both BCFs tracker and or-

thogonality constraint are key parts of the proposed IBCCF

method, and they can bring significant improvements over

the center CF tracker. Detailed analysis on the results can

be found in the supplementary material.

5.2.2 Time Analysis

Here we analyze the average time cost of IBCCF for each

stage on OTB-2015 dataset. The results are shown in Table

3. One can clearly see that all subproblems including g

and uk can be solved rapidly, validating the efficiency of

the ADMM solution. Overall, the average running time of

IBCCF and IBCCF (w/o constraint) is about 1.25 and 2.19

fps on OTB-2015 dataset, respectively.

5.3. Temple-Color dataset

In this section, we perform comparative experiments on

Temple-Color dataset which contains 128 color sequences.

Different from the OTB dataset, it contain more video se-

quences with aspect ratio changes. Hence, to better ex-

ploit the potential of IBCCF, we also choose a subset of

40 sequences with the largest standard deviations of aspec-

t ratio variation from Temple-Color dataset and compare

IBCCF with other methods. Note that the sequences in the
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DSST [7] sKCF Struck [13] CCOT [11] SRDCF [9] DeepSRDCF [8] Staple [1] MDNet N [26] TCNN [25] DPT SMPR SHCT HCF [23] IBCCF

EAO 0.181 0.153 0.142 0.331 0.247 0.276 0.295 0.257 0.325 0.236 0.147 0.266 0.220 0.266

Accuracy 0.5 0.44 0.44 0.52 0.52 0.51 0.54 0.53 0.54 0.48 0.44 0.54 0.47 0.51

Robustness 2.72 2.75 1.5 0.85 1.5 1.17 1.35 1.2 0.96 1.75 2.78 1.42 1.38 1.22

Table 4: Comparison of different state-of-the-art trackers on VOT-2016 dataset.

Time Cost(ms)

CCF Feature Extraction 95

BCFs Feature Extraction 141

CCF Prediction 26

BCFs Prediction 40

Subproblem w 51

Subproblem g 37

Subproblem wk 40

Subproblem uk 4

Table 3: Time cost of IBCCF for each stage on OTB-2015 dataset.

Note that all the time listed above is measured in milliseconds.

subset are not overlapped with other datasets. In addition,

for validating the effectiveness of IBCCF with hand-crafted

features, we implement two variants of IBCCF with HOG

and color name [10] features (i.e. IBCCF-HOGCN, IBCCF-

HOGCN (w/o constraint)).

Fig. 8 illustrates the comparison of overlap success plot-

s for different trackers on two datasets. From Fig. 8(a),

one can see that IBCCF ranks the second among all track-

ers, demonstrating the effectiveness of IBCCF on handling

aspect ratio variation again. Furthermore, IBCCF-HOGCN

also performs favorably against other methods and surpass-

es all of its counterparts (i.e. IBCCF-HOGCN (w/o con-

straint), DSST and SAMF). This validates the superiority

of IBCCF under hand-crafted feature setting. As shown in

Fig. 8(b), IBCCF is among the top three best-performed

trackers and outperforms its counterpart HCF by 4.4%.
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Figure 8: Comparison of the overlap success plots on two datasets.

(a) the subset of 40 sequences from Temple-Color dataset. (b) the

complete Temple-Color dataset.

5.4. The VOT benchmarks

Finally, we conduct experiments on Visual Object Track-

ing (VOT) benchmark [5], which consist of 60 challenging

videos from real-life datasets. In VOT benchmark, a track-

er is initialized at the first frame and reset again when it

drifts the target. The performance is measured in terms of

accuracy, robustness and expected average overlap (EAO).

The accuracy computes the average overlap ratio between

the estimated positions and ground truth. The robustness s-

core evaluates the average number of tracking failures. And

the EAO metrics measures the average no-reset overlap of a

tracker run on several short-term sequences.

VOT-2016 results. We compare IBCCF with several

state-of-the-art trackers, including MDNet [26] (VOT-2015

winner), TCNN [25] (VOT-2016 winner) and part-based

trackers such as DPT, GGTv2, SMPR and SHCT. All the re-

sults are obtained from VOT-2016 challenge website2. Ta-

ble 4 lists the results on VOT-2016 dataset. One can note

that IBCCF outperforms HCF method in terms of all three

metrics. In addition, IBCCF also performs favorably a-

gainst the part-based trackers, validating the superiority of

boundary tracking on handling aspect ratio variation.

VOT-2017 results. At the time of writing, the results of

VOT-2017 challenge were not available. Hence, we only

report our results on the three metrics. In particular, the

EAO, accuracy and robustness scores of IBCCF on VOT-

2017 dataset are 0.209, 0.48 and 1.57, respectively.

6. Conclusion

In this work, we propose a tracking framework by inte-

grating boundary and center correlation filters (IBCCF) to

address the aspect ratio variation problem. Besides track-

ing the target center, a family of 1D boundary CFs is intro-

duced to localize the left, right, top and bottom boundaries,

thus can adapt to the target scale and aspect ratio changes

flexibly. Furthermore, we analyze the near-orthogonality

property between the center and boundary CFs, and impose

an extra orthogonality constraint on the IBCCF model for

improving the performance. An ADMM algorithm is also

developed to solve the proposed model. We perform both

qualitative and quantitative evaluation on four challenging

benchmarks, and the results show that the proposed IBCCF

approach perform favorably against several state-of-the-art

trackers. Since we only employ the basic HCF model as the

center CF tracker, in the future, we will incorporate with s-

patial regularization and continuous convolution to further

improve our IBCCF.
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