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Abstract

Recently using convolutional neural networks (CNNs)

has gained popularity in visual tracking, due to its robust

feature representation of images. Recent methods perform

online tracking by fine-tuning a pre-trained CNN model to

the specific target object using stochastic gradient descent

(SGD) back-propagation, which is usually time-consuming.

In this paper, we propose a recurrent filter generation meth-

ods for visual tracking. We directly feed the target’s im-

age patch to a recurrent neural network (RNN) to estimate

an object-specific filter for tracking. As the video sequence

is a spatiotemporal data, we extend the matrix multiplica-

tions of the fully-connected layers of the RNN to a convolu-

tion operation on feature maps, which preserves the target’s

spatial structure and also is memory-efficient. The tracked

object in the subsequent frames will be fed into the RNN to

adapt the generated filters to appearance variations of the

target. Note that once the off-line training process of our

network is finished, there is no need to fine-tune the net-

work for specific objects, which makes our approach more

efficient than methods that use iterative fine-tuning to on-

line learn the target. Extensive experiments conducted on

widely used benchmarks, OTB and VOT, demonstrate en-

couraging results compared to other recent methods.

1. Introduction

Given an object of interest labeled by a bounding box in

the first frame, the goal of generic visual tracking is to lo-

cate this target in subsequent frames automatically. Since

the type of object may not be known in advance under some

scenarios, it is infeasible to gather a lot of data to train

an object-specific tracker. Hence, generic visual tracking

should be robust enough to work with any type of object,

while also being sufficiently adaptable to handle the appear-

ance of the specific object and variations of appearance dur-

ing tracking. Visual tracking plays a crucial role in numer-

ous vision application such smart surveillance, autonomous

driving and human-computer interaction.

Most existing algorithms locate the object by online

training a discriminative model to classify the target from

the background. This self-updating paradigm assumes that

the object’s appearance changes smoothly, but is inappro-

priate in challenging situations such as heavy occlusion, il-

lumination changes and abrupt motion. Several methods

adopt multiple experts [46], multiple instance learning [2],

or short and long term memory stores [19] to address the

problem of drastic appearance changes. Recent advances

using CNNs for object recognition and detection has in-

spired tracking algorithms to employ the discriminative fea-

tures learned by CNNs. In particular, [27, 33, 8] feed the

CNN features into a traditional visual tracker, the correla-

tion filter [18], to get a response map for target’s estimated

location.

However, the application domain of object recogni-

tion/detection is quite different from visual tracking. In ob-

ject recognition, the networks are trained to recognize spe-

cific categories of objects, whereas in visual tracking the

type of object is unknown, and varies from sequence to se-

quence. Furthermore, because the CNNs are trained to rec-

ognize object classes (e.g., dogs), the high-level features are

invariant to appearance variations within the object class

(e.g., a brown dog vs. a white dog). In contrast, visual

tracking is concerned about recognizing a specific instance

of an object (a brown dog), possibly among distractor ob-

jects in the same class (white dogs). Thus, naively applying

CNNs trained on the object recognition task is not suitable.

One way to address this problem is to fine-tune a pre-trained

CNN models for each test sequence from the first frame, but

this is time-consuming and is prone to overfitting due to the

limited available labeled data. Therefore, using a smaller

learning rate, constraining the number of iteration for SGD

back-propagation, and only fine-tuning fully-connected lay-

ers [31, 30] have been proposed for adapting the CNN to the

specific target, while also alleviating the risk of ruining the

weights of model.

In contrast to these object-specific methods, we propose

a recurrent filter learning (RFL) algorithm by maintaining

the target appearance and tracking filter through a Long

Short Term Memory (LSTM) network. A fully convolu-

tional neural networks is used to encode the target appear-
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ance information, while preserving the spatial structure of

the target. Naively flattening the CNN feature map into a

vector in order to pass it to an LSTM would obfuscate the

structure of the target. Instead, inspired by [37], we change

the input, output, cell and hidden states of the LSTM into

feature maps, and use convolution layers instead of fully-

connected layers. The output of the convolutional-LSTM is

itself a filter, which is then convolved with the feature map

of the next frame to produce the target response map.

Our RFL network has several interesting properties.

First, once the offline training process is finished, there is

no need to retrain the network for specific objects during

test time. Instead, a purely feed-forward process is used,

where, for each frame, the image patch of the tracked target

is input into the network, which then updates its appearance

model and produces a target-specific filter for finding the

target in the next frame. Second, the object does not have

to be at the center of exemplar patch due the fully convolu-

tional structure of our LSTM, which is shift invariant. This

is very useful for updating the tracker, since the estimated

bounding box for each frame may not be accurate, resulting

in shifting or stretching the target in the exemplar image.

Furthermore, the convolution of the search image and the

generated filter is actually a dense sliding window search-

ing strategy, implemented in a more efficient way. The con-

tribution of this paper are three-fold:

1. We propose a novel recurrent filter learning framework

that captures both spatial and temporal information of

sequence for visual tracking, and does not require fine-

tuning during tracking.

2. We design an efficient and effective method for initial-

izing and updating the target appearance for a specific

object by using a convolutional LSTM as the memory

unit.

3. We conduct extensive experiments on the widely used

benchmark OTB [44] and VOT [24], which contains

100 challenging sequences and 60 videos respectively

to evaluate the effectiveness of our tracker.

2. Related Work

2.1. CNN-based Trackers

The past several years have seen great success of CNNs

on various computer vision tasks, especially on object

recognition and detection[38, 16, 35, 34]. Recently, several

trackers embed CNNs into their frameworks due to its out-

standing power of its feature representations. One straight-

forward way of using CNNs is treating it as a feature extrac-

tor. [27] adopts the output of some specific layers of VGG-

net [38] including high-level layers, which encodes the se-

mantic information, and low-level layers which preserve the

spatial details. [8] uses a similar approach by using the acti-

vation of the 1st layer (low-level) and 5th layer (high-level)

of VGG-M[4] as the tracking features. [33] uses the fea-

tures extracted on different layers to build correlation filters

and then combine these weak trackers into a strong one for

tracking. In these three methods, CNNs are solely treated

as a feature extractor, and they all adopt correlation filter as

their base tracker. In addition, [19] utilizes Support Vector

Machine (SVM) to model the target appearance based on

the extracted CNN features.

Because the labeled training data for tracking is limited,

online training a convolution neural networks is prone to

overfitting, which makes it becomes a challenging task. [43]

first pre-trains a neural network to distinguish objects from

non-objects on ImageNet [25], and then updates this model

online with a differentially-paced fine-tuning scheme. A

recent proposed tracker [31] trained a multi-domain net-

work, which has shared CNN layers to capture a generic

feature represetnation, and separate branches of subsequent

domain-specific layers to do the binary classification (target

vs. background) for each sequence. For each sequence, the

domain-specific layers must be fine-tuned to learn the tar-

get. In contrast to these CNN based methods that require

running back-propagation to online train the network dur-

ing tracking, our approach does not require online training,

and instead uses a recurrent network to update the target ap-

pearance model with each frame. As a result, our tracker is

faster than the CNN-based trackers that use online training.

An alternative approach to target classification is to train

a similarity function for pairs of images, which regards vi-

sual tracking as an instance searching problem, i.e. us-

ing the target image patch on first frame as query image

to search the object in the subsequent frames. Specifically,

[41] adopts a Siamese neural networks for tracking, which

is a two-stream architecture, originally used for signature

and face verification [5], and stereo matching [45]. [17]

proposed a similar framework called GOTURN, which is

trained to regress the target’s position and size directly by

inputting the network with a search image (current frame)

and a query image (previous frame) that contains the tar-

get. [3] introduced a fully-convolutional Siamese network

for visual tracking, which maps an exemplar of the target

and a larger search area of second frame to a response map.

In contrast to these methods, which do not have an online

updating scheme that adapts the tracker to variations in the

target appearance, our approach take the advantage of the

LSTM’s ability to capture and remember the target’s ap-

pearance.

2.2. RNN-based Trackers

Recurrent Neural Networks (RNNs), especially its vari-

ants Long Short-Term Memory (LSTM) and Gated Recur-

rent Unit (GRU) are widely used in applications involve

sequential data, such as language modeling [28], machine

translation [40], handwriting generation and recognition
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[14], video analysis [10] and image captioning [42]. Sev-

eral recent works propose to solve the visual tracking prob-

lem as a sequential position prediction process by training

an RNN to model the temporal relationship among frames.

[12] adopts a GRU to model the features extracted from a

CNN, while [21] embeds an attention mechanism into the

RNN to guide target searching. However these two meth-

ods mainly focus on conducting experiments on synthesized

data and have not demonstrate competitive results on com-

monly used tracking benchmark like OTB [44] and VOT

[23]. [32] employs the recent efficient and effective object

detection method, YOLO [34], to infer the preliminary po-

sition, and then use LSTM to estimate the target’s bounding

box. A heat map, constructed using the detected box from

YOLO, is also used to help the RNN to distinguish object

from non-object region. However, they only choose 30 se-

quences from OTB dataset for experiments, among which

some of them are used as training data while other are used

for testing.

The major limitation of the aforementioned methods is

that they directly feed the output of the fully connected lay-

ers into the original RNN or its variants (LSTM or GRU),

which obfuscates the spatial information of target. In con-

trast, our approach better preserves the target’s spatial struc-

ture, by changing the matrix multiplication in the fully-

connected layers of the LSTM into convolution layers on

feature maps. As a result, our approach better preserves

the spatial information of the target, while also being more

memory-efficient. Furthermore, most existing RNN-based

trackers estimate the target’s bounding box by directly re-

gressing it from the RNN hidden state, which is not effec-

tive because it requires enumerating all possible locations

and scales of the target during training. In contrast, our ap-

proach is based on estimating a response map of the target,

which makes the training simpler and more effective.

In contrast to modeling the temporal information of se-

quences as in [12, 21, 32], [6] uses RNN to capture the ob-

ject’s intrinsic structure by traversing a candidate region of

interest from different directions. [11] adopts similar strat-

egy to capture spatial information of the target and incor-

porates it into MDNet [31] to improve its robustness. In

addition, a few recent works on multiple person detection

[39] and tracking [29] use RNNs to model the sequential

relationship among different targets.

3. Recurrent Filter Learning

This section describes our proposed filter generation

framework for visual tracking.

3.1. Network Architecture

The architecture of our networks is shown in Figure 1.

We design a recurrent fully convolutional network that ex-

tracts features from the object exemplar image and then

Figure 1. The architecture of our recurrent filter learning networks.

At time step t, a CNN (E-CNN) extracts features from the exem-

plar image patch. Using the previous hidden and cell states, ht−1

and ct−1, as well as the current exemplar feature map et, the con-

volutional LSTM memorizes the appearance information of the

target by updating its cell and hidden states, ct and ht. The tar-

get object filter ft is generated by passing the new hidden state ht

through an output convolutional layer. A feature map st+1 is ex-

tracted from the searching image (next frame) using another CNN

(S-CNN), which is convolved by the target object filter ft, result-

ing in a response map that is used to locate the target.

generates a correlation filter, which is convolved with fea-

tures extracted from the search image, resulting in a re-

sponse map that indicates the position of the target. The

network uses a convolutional LSTM to store the target ap-

pearance information from previous frames.

Our framework uses two CNN feature extractors: 1)

the E-CNN is used to capture an intermediate representa-

tion of the object exemplar for generating the target fil-

ter; 2) the S-CNN is used to extract a feature map from

the search image, which is convolved with the generated

filter to produce the response map. The E-CNN and S-

CNN have the same architecture with different input image

size, 127x127x3 and 255x255x3, respectively. As stated in

[31], relatively smaller CNN are more appropriate for vi-

sual tracking because deeper and larger CNNs are prone to

overfitting and dilute the spatial information. Therefore, for

the two CNN feature extractors, we adopt a similar network

as in [3], which has five convolutional layers (see Table 1).

Note that we do not share the parameters between these two

CNNs because the optimal features used to generate the tar-

get filter could be different from the features needed to dis-

criminate the target from the background. Indeed experi-

ments in Section 5.3 show that sharing the CNNs’ parame-

ters decreases the performance.
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Figure 2. The architecture of convolutional LSTM. σ represents

the sigmoid activation function and tanh denotes the tanh ac-

tivation function. Wf ,Wi,We,Wo are the convolutional filter

weights for the forget gate, input gate, estimated cell state, and

output gate. All these convolutional filters have the same size

3x3x1024. Wl is the convolutional weight of output layer with

size 1x1x256.

filter size channels stride

conv1 11x11 96 2

pool1 3x3 - 2

conv2 5x5 256 1

pool2 3x3 - 2

conv3 3x3 384 1

conv4 3x3 384 1

conv5 3x3 256 1

Table 1. Architecture of the two CNN feature extractors.

The architecture of the convolutional LSTM is shown

in Figure 2. The hidden ht and cell states ct are feature

maps that are each 6x6x1024. The output of the E-CNN

is a 6x6x256 convolutional feature map et, which is actu-

ally a grid of 256 dimensional feature vectors. Within the

conv-LSTM, the exemplar feature map et is concatenated to

the previous hidden state ht−1 along the channel dimension.

The various gates and update layers of the LSTM are imple-

mented using convolutional layers with 3x3 filters, which

helps to capture spatial relationships between features. Note

that zero-padding is used in the convolution layers so that

the hidden state and cell state have the same size with ex-

emplar feature map. The target filter ft is generated via the

output layer of the LSTM, which is a convolution layer with

a 1x1 filter that transforms the hidden state from 6x6x1024

to 6x6x256.

Finally, to find the target in the next frame, the search im-

age patch is input to the S-CNN to extract the search image

feature map st+1, which is then convolved with the gener-

ated filter ft to produce a target response map. Batch nor-

malization [20] is employed after each linear convolution

to accelerating the converge of our network. Each convo-

lutional layers except conv5 is followed by Rectified linear

units (ReLu). Sigmoid functions are used after all gate con-

Figure 3. Initialization network for memory units of the convolu-

tional LSTM.

volution layers, and tanh activation functions are used after

the convolution layer for the estimated cell state. There is

no activation function for the output layer of the LSTM.

3.2. Initialization of Memory States

To start the recurrent filter learning process, we need to

first initialize the memory state of the convLSTM using the

exemplar target from the first frame. The initial exemplar

target E0 is input into the E-CNN to generate an exemplar

feature map e0, which is then fed into a convolutional layer

to produce the initial hidden state h0 (see Figure 3). The

convolutional layer has filter size of 3x3, and output chan-

nel size of 1024. A similar architecture is used to produce

the initial cell state c0 from the exemplar feature map e0.

Here we use a tanh activation function after the convolu-

tion. Although the numerical value of cell state may be out

of the range [-1,1] (the output range of tanh) due to the addi-

tion operation between the input state and previous state, we

experimentally find that this initialization method captures

the information of initial target well. Our initialization net-

work obtains about 10% performance gain compared with

initializing the cell state to zeros (see Section 5.3).

3.3. Loss Function

The response map represents the probability of the target

position on a 17x17 grid placed evenly around the center

square of search image, with stride of 8. A loss function is

applied on the response map to train the network. In partic-

ular, we generate a ground-truth response map, which con-

sists of binary values that are computed from the overlap

ratio between the ground-truth bounding box and a bound-

ing box centered at each position,

yi =

{

1, if Φ(Pi, G) > α

0, otherwise
(1)

where, Pi is a virtual bounding box centered on the i-th po-

sition of the response map, G is the ground-truth bounding

box, Φ(P,G) = P∩G
P∪G

is the Intersection-over-Union (IoU)

between regions P and G, and α = 0.7 is the threshold.

The loss between the predicted response map and

ground-truth reponse map is the sum of the element-wise
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sigmoid cross-entropies,

L(p, y) =
∑

i

−(1− yi) log(1− pi)− yi log(pi), (2)

where p is the predicted response map, and y is the ground-

truth.

3.4. Data and Training

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [36] recently released a video data for evaluat-

ing object detection from video. This dataset contains more

than 4000 sequences, where ∼3800 are used for training

and ∼500 for validation. The dataset contains 1.3 million

labeled frames, and nearly two million object image patches

marked with bounding boxes. This large dataset can be

safely used to learn neural networks without worrying about

overfitting, compared with traditional tracking benchmarks

like OTB [44] and VOT [23]. As is discussed in [3], the

fairness of using sequences from the same domain to train

and test neural networks for tracking is controversial. We

instead train our model from the ImageNet domain to show

our network generalization ability.

The input of our framework is a sequence of cropped

image patches. During training, we uniformly sample N+1

frames from each video. Frames 1 through N are used to

generate the object exemplars, and frames 2 to N+1 are the

corresponding search image patches. Both the object ex-

emplar and search image patches are cropped around the

center of groundtruth bounding box. The exemplar size is

two times that of the target, and the search image size is

four times the target size, as is shown in Figure 4. The rea-

son that the exemplar size is larger than the target size is to

cover some context information, which may provide some

negative examples when generating the filter. If the patch

extends beyond the image boundary, we pad using the mean

RGB value of the image. Note that our architecture is fully

convolutional, which is translation invariant. Hence, it suf-

fices to train the network using search images where the

targets are always located at the center.

3.5. Training Details

The recurrent model is trained by minimizing the loss in

Eq. 2 using the ADAM [22] method with a mini-batches

of 10 video clips of length 10. The initial learning rate is

1e-4, which is decayed by a multiplier 0.8 every 5000 iter-

ations. In case of gradient explosion, gradients are clipped

to a maximum magnitude of 10.

The exemplar and search image patches are pre-

processed by resizing them to their corresponding CNN in-

put sizes. We use various forms of data augmentation. Fol-

lowing [25], we randomly distort colors by randomly ad-

justing image brightness, contrast, saturation and hue. In

addition, we apply minor image translation and stretching

Figure 4. Samples of target exemplar patches (1st and 3rd rows)

and search images (2nd and 4th rows), from VID of ILSVRC. Tar-

gets are marked by a red bounding box on each search image.

to both the exemplar and search images. Search images are

shifted around the center with a range of 4 pixels (within

the stride of the response map grid). The target in exemplar

patches can be translated anywhere as long as its bounding

box is within the exemplar patch. For stretching, we ran-

domly crop the image patches, and resize them into their

network input size. We set a small maximum stretch range

(0.05 times of the target size) for search images, and larger

stretch range (0.5 times of the target size) for exemplar

patch. This setting accounts for the situations where the es-

timated target position and scale may not be very accurate,

and hence the target in the exemplar is shifted from the cen-

ter or stretched due to resizing. The first frame of the clip

for exemplar has no data augmentation since we assume that

the initial bounding box is always accurate in visual track-

ing. Although the object in the exemplar patch may appear

in various places within the patch because of augmentation,

the memory unit of our model can still capture the informa-

tion of target due to its convolutional structure.

4. Online Tracking

We use a simple strategy for online tracking with our

RFL framework, which is presented in Algorithm 1. Unlike

other CNN-based algorithms [31, 30, 43], we do not online

fine-tune the parameters of our networks using SGD back-

propagation, as the target appearance is represented by the

hidden and cell states of the conv-LSTM. Furthermore, we

do not refine our predictions using bounding box regression

as in [31, 41, 11]. Instead, we directly upsample the re-

sponse map into a larger size using bicubic interpolation as

in [3], and choose the position with maximum value as the

target’s location. To account for scale changes, we calculate

response maps at different scales by building a pyramid of
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scaled search images, resizing them to the same input size,

and then assembling them into a mini-batch to be processed

by the network in a single feed-forward pass.

During tracking, we first use the target exemplar to ini-

tialize the memory state of LSTM using the initialization

network (Figure 3). For the subsequent frames, we con-

volve the filter generated by the conv-LSTM with the search

images, which are centered at the previous predicted posi-

tion of object, to get the response map. Let {S−1
t , S0

t , S
1
t }

be three scales of the search image. Using the S-CNN, we

obtain the corresponding feature maps {s−1
t , s0t , s

1
t}. The

response map for scale m is calculated as,

Rm(ft, st+1) = ft ∗ s
m
t+1. (3)

Let vm be the maximum score of the response map Rm at

scale m. Then, the predicted target scale is the scale with

largest maximum score,

mbest = argmax
m

vm (4)

The predicted target position is obtained by averaging po-

sitions with the top K response values on the score map

Rmbest of the predicted scale,

p∗ =
1

K

K
∑

k

pk (5)

where pk are the top K locations.

After we get the estimated position, a target exemplar

is cropped from the frame, and used to update the conv-

LSTM. As seen in recent works [41, 7], excessive model

updating is prone to overfitting to recent frames. Hence, we

dampen the memory states of the conv-LSTM using expo-

nential decay smoothing, Aest = (1− β) ∗Aold + βAnew,

where β is the decay rate and A is the memory state. Fur-

thermore, we also penalize the score map of other scales

(scales ±1) by multiplying those score maps by a penalty

factor γ. To smoothen the scale estimation and penalize

large displacements, we use exponential decay smoothing.

4.1. Tracking Parameters

We adopt three scales 1.03[−1,0,1] to build the scale

pyramid of search images. The penalty factor on score

maps of non-original scales is γ = 0.97. Object scale

is damped with decay rate of β = 0.6, while memory

states are damped with a decay rate of β = 0.06. Score

map is damped with a cosine window by the decay rate of

β = 0.11. What’ more, the number of candidate position

used for averaging final prediction is K = 5.

5. Experiments

We evaluate our proposed RFL tracker on OTB100 [44],

VOT2016 [24] and VOT2017. We implement our algorithm

Algorithm 1 Online Tracking Algorithm with RFL

Input:

Pretrained RFL model M ;

Initial target exemplar E0;

Output:

Predicted object’s bounding box

1: Initialize the memory state of conv-LSTM using the ini-

tialization network on exemplar E0;

2: Generate an initial filter f0 using the conv-LSTM.

3: for t = {0, · · · , T − 1} do

4: Get search image St+1 from frame t+ 1.

5: Build a pyramid of scaled search images

{S−1
t+1, S

0
t+1, S

1
t+1}, and apply S-CNN on

each scaled image to produce feature maps

{s−1
t+1, s

0
t+1, s

1
t+1}.

6: Convolve the filter ft with {s−1
t+1, s

0
t+1, s

1
t+1} as in

Eq. 3.

7: Upsample the responses using bicubic interpolation

and penalize scale changes.

8: Normalize and apply cosine window on score maps

{R−1
t+1, R

0
t+1, R

1
t+1}.

9: Estimate the target’s scale by Eq. 4.

10: Predict the target’s position by Eq. 5.

11: Crop a new target exemplar Et+1 centered at the es-

timated position in frame t+ 1.

12: Update the conv-LSTM using exemplar Et+1.

13: Generate a new filter ft+1 from the conv-LSTM.

14: end for

in Python using the TensorFlow toolbox [1], and test it on

a computer with four Intel(R) Core(TM) i7-6700 CPU @

3.40GHz and a single NVIDIA GTX 1080 with 8G RAM.

The running speed of our algorithm is about 15 fps.

5.1. Tracking Results on OTB100

There are two common performance metrics for evaluat-

ing tracking, center location error (CLE) and Intersection-

over-Union (IoU). Specifically, CLE measures the pixel dis-

tance error between the predicted and groundtruth center

positions. IoU measures the overlap ratio between the pre-

dicted and ground-truth bounding boxes. However, as dis-

cussed in [44], CLE only evaluates the pixel difference,

which is actually not fair for small objects, and does not

consider the scale and size changes of objects. We thus use

IoU success plots as our evaluation metric on OTB.

We compare our tracking method with six other state-

of-the-art methods, including SiamFC [3], CF2 [27], HDT

[33], MEEM [46], DSST [9], and KCF [18] on OTB100.

We present the OPE success plots of in Figure 5 (Left),

where our method is denoted as RFL. Trackers are ranked

by their area under curve (AUC) score. Overall, SiamFC

has slightly higher AUC (ours .581 vs .582). Looking
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Figure 5. Left: Success plots of OPE on OTB100 compared with

seven trackers. Right: Success plot of OPE on OTB100 for differ-

ent variants of proposed RFL. Trackers are ranked by their AUC

scores in the legend. Our proposed method is RFL.

Tracker AUC P@0.3 P@0.5 P@0.7

RFL 0.581 0.825 0.730 0.477

SiamFC 3s 0.582 0.812 0.730 0.503

HDT 0.564 0.812 0.657 0.417

CF2 0.562 0.811 0.655 0.417

MEEM 0.530 0.786 0.622 0.355

DSST 0.513 0.691 0.601 0.460

KCF 0.477 0.681 0.551 0.353

Table 2. AUC and success rates at different IoU thresholds.

closer (see Figure 7), our RFL has higher AUC on videos

where the target or background appearance changes com-

pared with SiamFC: fast motion (ours .602 vs .568), back-

ground clutter (ours .575 vs .523), out-of-view (ours .532 vs

.506). I.e. our RFL can better adapt the tracking filter over

time to better discriminate the changing target/background.

We also report the average success rates at various

thresholds in Table 2. In addition to our superiority in

AUC score, our method’s success rates at IoU=0.3 and

IoU=0.5 is much higher than other methods or on par with

SiamFC, which suggests that our RFL predicts a more ac-

curate bounding box than other trackers.

We further analyze the performance of our method un-

der different sequence attributes annotated in OTB. Figure 7

shows the OPE results comparison of 6 challenge attributes:

out-of-view, scale variation, in-plane rotation, illumination

variation, background clutter and fast motion. Our RFL

tracker shows better or similar performance compared with

other methods. Note that our method works especially well

under the fast motion and out of view attribute. Figure 8

shows some example frames of the results generated by

our RFL and the other six trackers on several challeng-

ing sequences (see supplemental for vidoes). From these

videos, we can see that our method handles fast motion,

scale changes and illumination variation better than others.

5.2. Tracking Results on VOT2016 and VOT2017

We presents a comparison of our trackers with 7 state-

of-the-art trackers, including DSST [9], SiamFC [3], SAMF

Figure 6. A state-of-the-art comparison on the VOT2016 bench-

mark. Left: Ranking plot includes the accuracy and robustness

rank for each tracker. Right: AR plot shows the accuracy and ro-

bustness scores

Tracker Accuracy Robustness EAO

RFL 1.72 3.07 0.2222

DSST 1.95 3.38 0.1814

SiamFC 3s 2.00 2.42 0.2352

SAMF 2.05 2.65 0.1856

KCF 2.20 2.77 0.1924

TGPR 2.73 3.47 0.1811

STRUCK 3.20 4.73 0.1416

MIL 3.68 4.23 0.1645

Table 3. AR ranking and EAO for each tracker.

[26], KCF [18]TGPR [13], STRUCK [15] and MIL [2] on

VOT2016 [24]. Two performance metrics, which are accu-

racy and robustness, are used to evaluate our algorithm. The

accuracy measures the averaged per-frame overlap between

predicted bounding box and ground truth, while robustness

reveals the number of failures over sequences. We gener-

ate these results using the VOT-toolkit. Figure 6 visualizes

independent ranks for each metric on two axes. Table 3 re-

ports the AR ranking (Accuracy and Robustness) and EAO

(expected averaged overlap) for each tracker. Our RFL

tracker achieves the best accuracy rank and shows competi-

tive EAO compared with other trackers.

We also evaluate our method on VOT2017 challenge. In

baseline experiment, we obtain an average overlap of 0.48

and failure of 3.29. In unsupervised experiment, we get an

average overlap of 0.23. Our average speed in realtime ex-

periment is 15.01 fps.

5.3. Experiments on Architecture Variations

To show the effectiveness of our recurrent filter learn-

ing framework, we also conduct comparisons among three

variations of our framework:

• Using shared the weights for E-CNN and S-CNN (de-

noted as RFL-shared).

• Initializing the memory states to all zeros, rather than

2016



Figure 7. Success plot for 6 challenge attributes: out-of-view, scale variation, in-plane rotation, illumination variation, background clutter

and fast motion. Trackers are ranked by their AUC scores in the legend.

Figure 8. Qualitative results of our method on some challenging videos (from top to botton, biker, human5, skating1)

using the intialization network (denoted as RFL-no-

init-net).

• Use a normal LSTM on each channel vector of the fea-

ture map, i.e. by setting the filter sizes in the convolu-

tional LSTM to 1x1 (denoted as RFL-norm-LSTM)

Figure 5 (Right) shows the success plot of OPE on

OTB100 for different variants of RFL. Sharing parameters

between the E-CNN and S-CNN significantly decreases the

tracking performance. Also, we are able to obtain about 8-

10% performance gain by using the initialization network

for the memory state and a convolutional LSTM.

6. Conclusion

In this paper, we have explored the effectiveness of

generating tracking filters recurrently by sequentially feed-

ing target exemplars into a convolutional LSTM for vi-

sual tracking. To best of our knowledge, we are the first

to demonstrate improved and competitive results on large-

scale tracking datasets (OTB100, VOT2016 and VOT2017)

using RNN to model temporal sequences. Instead of

initializing and updating the neural network using time-

consuming SGD back-propagation for each specific video

as in other CNN-based methods [31, 30, 43], our tracker

estimates the target filter using only feed-forward computa-

tion. Extensive experiments on well-known tracking bench-

marks have validated the efficacy of our RFL tracker.
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