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Abstract

Convolutional neural networks (CNN) based tracking

approaches have shown favorable performance in recent

benchmarks. Nonetheless, the chosen CNN features are

always pre-trained in different task and individual compo-

nents in tracking systems are learned separately, thus the

achieved tracking performance may be suboptimal. Be-

sides, most of these trackers are not designed towards real-

time applications because of their time-consuming feature

extraction and complex optimization details.In this paper,

we propose an end-to-end framework to learn the convo-

lutional features and perform the tracking process simul-

taneously, namely, a unified convolutional tracker (UCT).

Specifically, The UCT treats feature extractor and track-

ing process (ridge regression) both as convolution opera-

tion and trains them jointly, enabling learned CNN fea-

tures are tightly coupled to tracking process. In online

tracking, an efficient updating method is proposed by intro-

ducing peak-versus-noise ratio (PNR) criterion, and scale

changes are handled efficiently by incorporating a scale

branch into network. The proposed approach results in su-

perior tracking performance, while maintaining real-time

speed. The standard UCT and UCT-Lite can track generic

objects at 41 FPS and 154 FPS without further optimiza-

tion, respectively. Experiments are performed on four chal-

lenging benchmark tracking datasets: OTB2013, OTB2015,

VOT2014 and VOT2015, and our method achieves state-of-

the-art results on these benchmarks compared with other

real-time trackers.

1. Introduction

Visual object tracking, which tracks a specified target in

a changing video sequence automatically, is a fundamental

problem in many aspects such as visual analytics [5], auto-

matic driving [6], pose estimation [8] and et al. On the one

hand, a core problem of tracking is how to detect and lo-

cate the object accurately in the changing scenario such as

illumination variations, scale variations, occlusions, shape
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Figure 1. Comparisons of our approach with three state-of-the-art

trackers in the changing scenario. The compared trackers are two

recent real-time trackers: SiamFC [33] Staple [26], and another

fully convolutional tracker FCNT [36].

deformation, and camera motion [9, 12]. On the other hand,

tracking is a time-critical problem because it is always per-

formed in each frame of sequences. Therefore, accuracy,

robustness and efficiency are main development directions

of the recent tracking approaches.

As a core components of trackers, appearance model

can be divided into generative methods and discriminative

methods. In generative model, candidates are searched to

minimize reconstruction errors. Representative sparse cod-

ing [4, 7] have been exploited for visual tracking. In dis-

criminative models, tracking is regarded as a classification

problem by separating foreground and background. Numer-

ous classifiers have been adapted for object tracking, such

as structured support vector machine (SVM) [2], boosting

[3] and online multiple instance learning [1]. Recently, sig-

nificant attention has been paid to discriminative correlation

filters (DCF) based methods [15, 16, 17, 35] for real-time

visual tracking. The DCF trackers can efficiently train a re-

pressor by exploiting the properties of circular correlation

and performing the operations in the Fourier domain. Thus

conventional DCF trackers can perform at more than 100

FPS [15, 25], which is significant for real-time applications.
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Many improvements for DCF tracking approaches have also

been proposed, such as SAMF [35] for scale changes, LCT

[17] for long-term tracking, SRDCF [16] to mitigate bound-

ary effects. The better performance is obtained but the high-

speed property of DCF is broken. What is more, all these

methods use handcrafted features, which hinder their accu-

racy and robustness.

Inspired by the success of CNN in object classifica-

tion [18, 19], detection [20] and segmentation [21], the vi-

sual tracking community has started to focus on the deep

trackers that exploit the strength of CNN in recent years.

These deep trackers come from two aspects: one is DCF

framework with deep features, which means replacing the

handcrafted features with CNN features in DCF trackers

[27, 28]. The other aspect of deep trackers is to design the

tracking networks and pre-train them which aim to learn the

target-specific features for each new video [29]. Despite

their notable performance, all these approaches separate

tracking system into some individual components. What

is more, most of trackers are not designed towards real-

time applications because of their time-consuming feature

extraction and complex optimization details. For example,

the speed of winners in VOT2015 [10] and VOT2016 [11]

are less than 1 FPS on GPU.

We address these two problems by introducing unified

convolutional networks (UCT) to learn the features and per-

form the tracking process simultaneously. This is an end-

to-end and extensible framework for tracking. Specifically,

The proposed UCT treats feature extractor and tracking pro-

cess both as convolution operation, resulting a fully convo-

lutional network architecture. The ridge regression in DCF

is solved by stochastic gradient descent (SGD). That is to

say, the tracking process can be formulated as convolution

operations. In online tracking, the whole patch can be pre-

dicted using the foreground response map by one-pass for-

ward propagation. What is more, efficient model updating

and scale handling are proposed to ensure real-time tracking

speed.

1.1. Contributions

The contributions of this paper can be summarized in

three folds as follows:

1, We propose unified convolutional networks to learn

the convolutional features and perform the tracking process

simultaneously. The feature extractor and tracking process

are both treated as convolution operation that can be trained

simultaneously. End-to-end training enables learned CNN

features are tightly coupled to tracking process.

2, In online tracking, efficient updating and scale han-

dling strategies are incorporated into the tacking frame-

work. The proposed standard UCT (with ResNet-101) and

UCT-Lite (with ZF-Net) can track generic objects at 41 FPS

and 154 FPS, respectively, which is of significance for real-

time computer vision systems.

3, Extensive experiments are carry out on tracking

benchmarks and demonstrate that the proposed tracking al-

gorithm performs favorably against existing state-of-the-art

methods in terms of accuracy and speed. Figure 1 shows a

comparison to state-of-the-art trackers on three benchmark

sequences.

2. Related works

Visual tracking is a significant problem in computer vi-

sion systems and a series of approaches have been success-

fully proposed for tracking. Since our main contribution is

an UCT framework for real-time visual tracking, we give a

brief review on three directions closely related to this work:

CNN-based trackers,real-time trackers, and fully convolu-

tional networks (FCN).

2.1. On CNN­based trackers

Inspired by the success of CNN in object recognition

[18, 19, 20], researchers in tracking community have started

to focus on the deep trackers that exploit the strength of

CNN. Since DCF provides an excellent framework for re-

cent tracking research, the first trend is the combination

of DCF framework and CNN features. In HCF [27] and

HDT [28], the CNN are employed to extract features in-

stead of handcrafted features, and final tracking results are

obtained by combining hierarchical response and hedging

weak trackers, respectively. DeepSRDCF [32] exploits

shallow CNN features in a spatially regularized DCF frame-

work. Another trend in deep trackers is to design the track-

ing networks and pre-train them which aim to learn the

target-specific features and handle the challenges for each

new video. MDNet [29] trains a small-scale network by

multi-domain methods, thus separating domain indepen-

dent information from domain-specific layers. C-COT [30]

and ECO [31] employ the implicit interpolation method to

solve the learning problem in the continuous spatial domain,

where ECO is an improved version of C-COT in perfor-

mance and speed. These trackers have two major draw-

backs: Firstly, they can only tune the hyper-parameters

heuristically since feature extraction and tracking process

are separate. And they can not end-to-end train and per-

form tracking systems. Secondly, none of these trackers are

designed towards real-time applications.

2.2. On real­time trackers

Other than accuracy and robustness, the speed of the vi-

sual tracker is a crucial factor in many real world applica-

tions. Therefore, a practical tracking approach should be

accurate and robust while operating at real-time. Classical

real-time trackers, such as NCC [22] and Mean-shift [23],

perform tracking using matching. Recently, discriminative

correlation filters (DCF) based methods, which efficiently
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train a repressor by exploiting the properties of circular cor-

relation and performing the operations in the Fourier do-

main, have drawn attentions for real-time visual tracking.

Conventional DCF trackers such as MOSSE, CSK and KCF

can perform at more than 100 FPS [24, 25, 15]. Subse-

quently, a series of trackers that follow DCF method are

proposed. In DSST algorithm, tracker searches over the

scale space for correlation filters to handle the variation of

object size. Staple [26] tracker combines complementary

template and color cues in a ridge regression framework.

CFLB [48] and BACF [49] mitigate the boundary effects of

DCF in the Fourier domain. Nevertheless, all these DCF-

based trackers employ handcrafted features, which limits

better performance.

The recent years have witnessed significant advances of

CNN-based real-time tracking approaches. L. Bertinetto

et.al [23] propose a fully convolutional siamese network

(SiamFC) to predict motion between two frames. The net-

work is trained off-line and evaluated without any fine-

tuning. Similarly to SiamFC, In GOTURN tracker [34],

the motion between successive frames is predicted using

a deep regression network. These two tackers are able to

perform at 86 FPS and 100 FPS respectively on GPU be-

cause no fine-tuning is performed. On the one hand, their

simplicity and fixed-model nature lead to high speed. On

the other hand, this also lose the ability to update the ap-

pearance model online which is often critical to account for

drastic appearance changes in tracking scenarios. There-

fore, there still is an improvement space of performance for

real-time deep trackers.

2.3. On Fully Convolutional trackers

Fully convolutional networks can efficiently learn to

make dense predictions for visual tasks like semantic seg-

mentation, detection as well as tracking. Jonathan Long

et al. [21] transform fully connected layers into convolu-

tional layers to output a heat map for semantic segmenta-

tion. The region proposal network (RPN) in Faster R-CNN

[20] is a fully convolutional network that simultaneously

predicts object bounds and objectness scores at each posi-

tion. DenseBox [37] is an end-to-end FCN detection frame-

work that directly predicts bounding boxes and object class

confidences through whole image. The most related work

in tracking literatures is FCNT [36], which propose a two-

stream fully convolutional network to capture both general

and specific object information for visual tracking. How-

ever, its tracking components are still independently, so the

performance may be impaired. What is more, the FCNT can

only perform at 3 FPS on GPU because of its layers switch

mechanism and feature map selection method, which hin-

der it from real-time applications. Compared with FCNT,

our UCT treats feature extractor and tracking process in a

unified architecture and train them end-to-end, resulting a

more compact and much faster tracking approach.

3. Unified Convolutional networks for tracking

In this section, the overall architecture of proposed UCT

is introduced firstly. Afterwards, we detail the formulation

of convolutional operation both in training and test stages.

3.1. UCT Architecture

The overall framework of our tracking approach is a

unified convolutional architecture (see Figure 2), which

consists of feature extractor and convolutions performing

tracking process. We adopt two groups convolutional fil-

ters to perform tracking process which is trained end-to-

end with features extractor. Compared to two-stage ap-

proaches adopted in DCF framework within CNN features

[27, 28, 32], our end-to-end training pipeline is generally

preferable. The reason is that the parameters in all compo-

nents can cooperate to achieve tracking objective. In Figure

2, the search window of current frame is cropped and sent

to unified convolutional networks. The estimated new tar-

get position is obtained by finding the maximum value of

the response map. Another separate 1-dimentioanl convo-

lutional branch is used to estimate target scale and model

updating is performed if necessary. The solid lines indicate

online tracking process, while dashed box and dashed lines

are included in off-line training and training on first frame.

Each feature channel in the extracted sample is always mul-

tiplied by a Hann window, as described in [15].

3.2. Formulation

In the UCT formulation, the aim is to learn a series of

convolution filters f from training samples (xk, yk)k=1:t
.

Each sample is extracted using another CNN from an image

region. Assuming sample has the spatial size M × N , the

output has the spatial size m × n (m = M/strideM , n =
N/strideN ). The desired output yk is a response map

which includes a target score for each location in the sample

xk. The convolutional response of the filter on sample x is

given by

R(x) =
d

∑

l=1

xl ∗ f l (1)

where xl and f l is l-th channel of extracted CNN features

and desired filters, respectively, ∗ denotes convolutional op-

eration. The filter can be trained by minimizing L2 loss

which is obtained between the response R(xk) on sample

xk and the corresponding Gaussian label yk

L = ||R(xk)− yk||
2
+ λ

d
∑

l=1

||f l||
2

(2)

The second term in (2) is a regularization with a weight pa-

rameter λ.
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Figure 2. The overall UCT architecture. The solid lines indicate online tracking process, while dashed box and dashed lines indicate off-line

training and training on first frame.

In test stage, the trained filters are used to evaluate an

image patch centered around the predicted target location.

The evaluation is applied in a sliding-window manner, thus

can be operated as convolution:

R(z) =

d
∑

l=1

zl ∗ f l (3)

Where z denote the feature map extracted from last target

position including context.

It is noticed that the formulation in our framework is sim-

ilar to DCF, which solve this ridge regression problem in

frequency domain by circularly shifting the sample. Dif-

ferent from DCF, we adopt gradient descent to solve equa-

tion (2), resulting in convolution operations. The dot pro-

duction operation in DCF is nearly equivalent to one layer

convolution, whose filter size is equal to feature map and

output channel is one. Instead of one layer convolution,

we use two layers within smaller filter size, resulting more

nonlinearity. Noting that the sample xk is also extracted by

CNN, these convolution operations can be naturally unified

in a fully convolutional network. Compared to DCF frame-

work, our approach has three advantages: firstly, both fea-

ture extraction and tracking convolutions can be pre-trained

simultaneously, while DCF based trackers can only tune

the hyper-parameters heuristically. Secondly, model updat-

ing can be performed by SGD, which maintains the long-

term memory of target appearance. Lastly, our framework

is much faster than DCF framework within CNN features.

3.3. Training

Since the objective function defined in equation (2) is

convex, it is possible to obtain the approximate global op-

tima via gradient descent with an appropriate learning rate

in limited steps. We divide the training process into two

periods: off-line training that can encode the prior tracking

knowledge, and the training on first frame to adapt to spe-

cific target.

In off-line training, the goal is to minimize the loss func-

tion in equation (2). In tracking, the target position in last

frame is always not centered in current cropped patch. So

for each image, the train patch centered at the given object

is cropped with jittering. The jittering consists of transla-

tion and scale jittering, which approximates the variation in

adjacent frames when tracking. Above cropped patch also

includes background information as context. In training,

the final response map is obtained by last convolution layer

within one channel. The label is generated using a Gaussian

function with variances proportional to the width and height

of object. Then the L2 loss can be generated and the gra-

dient descent can be performed to minimize equation (2).

In this stage, the overall network consists of a pre-trained

network with ImageNet (ResNet101 in UCT and ZF-Net in

UCT-Lite) and following convolutional filters. Last part of

ResNet or ZF-Net is trained to encode the prior tracking

knowledge with following convolutional filters, making the

extracted feature more suitable for tracking.

The goal of training on first frame is to adapt to a spe-

cific target. The network architecture follows that in off-

line training, while later convolutional filters are randomly

initialized by zero-mean Gaussian distribution. Only these

randomly initialized layers are trained using SGD in first

frame.

Off-line training encodes prior tracking knowledge and

constitute a tailored feature extractor. We perform online

tracking with and without off-line training to illustrate this

effect. In Figure 3, we show tracking results and corre-

sponding response maps without or with off-line training.

In left part of Figure 3, the target singer is moving to right,

the response map with off-line training effectively reflects

this translation changes while response map without off-line

training are not capable of doing this. So the tracker with-

out off-line training misses this critical frame. In right part

of Figure 3, the target player is occluded by another player,

the response map without off-line training becomes fluctu-

ated and tracking result is effected by distractor, while re-

sponse map with off-line training still keeps discriminative.

The results are somewhat unsurprising, since CNN features

trained on ImageNet classification data are expected to have

greater invariance to position and same class. In contrast,
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we can obtain more suitable feature tracking by end-to-end

off-line training.

Figure 3. From left to right: images, response maps without off-

line training and response maps with off-line training. Green and

red boxes in images indicates tracking results without and with

off-line training, respectively.

4. Online tracking

After off-line training and training on the first frame,

the learned network is used to perform online tracking by

equation (3). The estimate of the current target state is

obtained by finding the maximum response score. Since

we use a fully convolutional network architecture to per-

form tracking, the whole patch can be predicted using the

foreground heat map by one-pass forward propagation. Re-

dundant computation was saved. Whereas in [29] and [38],

network has to be evaluated for N times given N samples

cropped from the frame. The overlap between patches leads

to a lot of redundant computation.

4.1. Model update

Most of tracking approaches update their model in each

frame or at a fixed interval [15, 25, 27, 30, 31]. However,

this strategy may introduce false background information

when the tracking is inaccurate, target is occluded or out of

view. In the proposed method, model update is decided by

evaluating the tracking results. Specifically, we consider the

maximum value in the response map and the distribution of

other response value simultaneously.

Ideal response map should have only one peak value in

actual target position and the other values are small. On the

contrary, the response will fluctuate intensely and include

more peak values as shown in Figure 4. We introduce a

novel criterion called peak-versus-noise ratio (PNR) to re-

veal the distribution of response map. The PNR is defined

as

PNR =
Rmax −Rmin

mean(R\Rmax)
(4)

where

Rmax = maxR(z) (5)

and Rmin is corresponding minimum value of response

map. Denominator in equation (4) represents mean value of

response map except maximum value and is used to mea-

sure the noise approximately. The PNR criterion becomes

larger when response map has fewer noise and sharper peak.

Otherwise, the PNR criterion will fall into a smaller value.

We save the PNR and Rmax and calculate their historical

average values as threshold:

{

PNRthreshold =
∑

T

t=1
PNRt

T

Rthreshold =
∑

T

t=1
R

t

max

T

(6)

Model update is performed only when both two criterions

in equation (6) are satisfied. The updating is one step SGD

with smaller learning rate compared with that in the first

frame. Figure 4 illustrates the necessity of proposed PNR

criterion by showing tracking results under occlusions. As

shown in Figure 4, updating is still performed if only ac-

cording to Rmax criterion when target is under occlusion.

Introduced noise will result in inaccurate tracking results

even failures. The PNR criterion significantly decreases in

these unreliable frames thus avoids unwanted updating.

Rmax=0.46    PNR=112.5 Rmax=0.48    PNR=35.8

Figure 4. Updating results of UCT and UCT No PNR (UCT with-

out PNR criterion). The first row shows frames that the target is oc-

cluded by distractor. The second row are corresponding response

maps. Rmax still keeps large in occlusion while PNR significantly

decreases. So the unwanted updating is avoided by considering

PNR constraint simultaneously. The red and blue boxes in last im-

age are tracking results of UCT and UCT No PNR, respectively.

4.2. Scale estimation

A conventional approach of incorporating scale estima-

tion is to evaluate the appearance model at multiple resolu-

tions by performing an exhaustive scale search [35]. How-

ever, this search strategy is computationally demanding and

not suitable for real-time tracking. Inspired by [45], we in-

troduce a 1-dimensional convolutional filters branch to es-

timate the target size as shown in Figure 2. This scale filter

is applied at an image location to compute response scores

in the scale dimension, whose maximum value can be used

to estimate the target scale. Such learning separate convo-

lutional filters to explicitly handle the scale changes is more

efficient for real-time tracking.

In training and updating of scale convolutional filters,

the sample x is extracted from variable patch sizes centered
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around the target:

size(Pn) = anW × anH n ∈ {−⌊
S − 1

2
⌋, ..., ⌊

S − 1

2
⌋}

(7)

Where S is the size of scale convolutional filters, W and H
are the current target size, a is the scale factor. In scale esti-

mation test, the sample is extracted using the same way af-

ter translation filters are performed. Then the scale changes

compared to previous frame can be obtained by maximiz-

ing the response score. Note that the scale estimation is

performed only when model updating condition is satisfied.

5. Experiments

Experiments are performed on four challenging track-

ing datasets: OTB2013 with 50 videos, OTB2015 with 100

videos, VOT2014 with 25 videos and VOT2015 with 60

videos . All the tracking results are using the reported re-

sults to ensure a fair comparison.

5.1. Implement details

We adopt ResNet-101 in standard UCT and ZF-Net in

UCT-Lite as feature extractor, respectively. In off-line train-

ing, last four layers of ResNet and last two layers of ZF-Net

are trained. Our training data comes from UAV123 [47],

and TC128 [13] excluding the videos that overlap with test

set. In each frame, patch is cropped around ground truth

and resized into 224*224. The translation and scale jitter-

ing are 0.05 and 0.03, respectively. We apply stochastic

gradient descent (SGD) with momentum of 0.9 to train the

network and set the weight decay λ to 0.005. The model is

trained for 30 epochs with a learning rate of 10−5. In on-

line training on first frame, SGD is performed 50 steps with

a learning rate of 5 ∗ 10−7 and λ is set to 0.01. In online

tracking, the model update is performed by one step SGD

with a learning rate of 1 ∗ 10−7. S and a in equation (7) is

set to 33 and 1.02, respectively.

The proposed UCT is implemented using Caffe [39] with

Matlab wrapper on a PC with an Intel i7 6700 CPU, 48 GB

RAM, Nvidia GTX TITAN X GPU. The code and results

will be made publicly available.

5.2. Results on OTB2013

OTB2013 [14] contains 50 fully annotated sequences

that are collected from commonly used tracking sequences.

The evaluation is based on two metrics: precision plot and

success plot. The precision plot shows the percentage of

frames that the tracking results are within certain distance

determined by given threshold to the ground truth. The

value when threshold is 20 pixels is always taken as the

representative precision score. The success plot shows the

ratios of successful frames when the threshold varies from

0 to 1, where a successful frame means its overlap is larger

than this given threshold. The area under curve (AUC) of

each success plot is used to rank the tracking algorithm.

In this experiment, ablation analyses are performed to

illustrate the effectiveness of proposed component at first.

Then we compare our method against the three best track-

ers that presented in the OTB2013, Struck [2], SCM [42]

and TLD [43]. We also include recent real-time trackers

presented at top conferences and journals, they are KCF

(T-PAMI 2015) [15], Siamese-FC (ECCV 2016) [33], Sta-

ple (CVPR 2016) [26], SCT (CVPR 2016) [34]. What

is more, other recent trackers, HDT (CVPR2016) [28],

FCNT (ICCV 2015) [36], CNN-SVM (ICML 2015) [40],

DLSSVM (CVPR2016) [41] and HCF (ICCV2015) [27]

are also compared, these approaches are not real-time but

most of their speed is more than 10FPS. There are five deep

trackers and seven shallow trackers in total. The one-pass

evaluation (OPE) is employed to compare these trackers.

Figure 5. Precision and success plots on OTB2013 [14]. The

numbers in the legend indicate the representative precisions at 20

pixels for precision plots, and the area-under-curve scores for suc-

cess plots.

5.2.1 Ablation analyses

To verify the contribution of each component in our al-

gorithm, we implement and evaluate four variations of

our approach: Firstly, the effectiveness of our off-line

training is tested by comparison without this procedure

(UCT No Off-line), where the network is only trained

within the first frame of a specific sequence. Secondly, the

tracking algorithm that updates model without PNR con-

straint (UCT No PNR, only depends on Rmax) is com-

pared with the proposed efficient updating method. Last

two additional versions are UCT within multi-resolutions

scale (UCT MulRes Scale) and without scale handling

(UCT No Scale).

As shown in Table 1, the performances of all the varia-

tions are not as good as our full algorithm (UCT) and each

component in our tracking algorithm is helpful to improve

performance. Specifically, Off-line training encodes prior

tracking knowledge and constitute a tailored feature extrac-

tor, so the UCT outperforms UCT No Off-line with a large
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Approaches AUC Precision20 Speed (FPS)

UCT No Off-line 0.601 0.863 41

UCT No PNR 0.624 0.880 33

UCT No Scale 0.613 0.871 51

UCT MulRes Scale 0.629 0.893 22

UCT 0.641 0.904 41
Table 1. Performance on OTB2013 of UCT and its variations

margin. Proposed PNR constraint for model update im-

proves performance as well as speed, since it avoids updat-

ing in unreliable frames. Although exhaustive scale method

in multiple resolutions improves the performance of tracker,

it brings higher computational cost. By contrast, learning

separate filters for scale in our approach gets a better per-

formance while being computationally efficient.

5.2.2 Comparison with state-of-the-art trackers

We compare our method against the state-of-the-art track-

ers as shown in 5.2. There are five deep trackers and seven

shallow trackers in total. Figure 5 illustrates the precision

and success plots based on center location error and bound-

ing box overlap ratio, respectively. It clearly illustrates that

our algorithm, denoted by UCT, outperforms the state-of-

the-art trackers significantly in both measures. In success

plot, our approach obtain an AUC score of 0.641, signifi-

cantly outperforms SiamFC and HCF by 3.3% and 3.6%,

respectively. In precision plot, our approach obtains a score

of 0.904, outperforms HCF and HDT by 1.3% and 1.5%,

respectively. It worth mentioning that our UCT provides

significantly better performance while being 13 times faster

compared to the FCNT tracker.

The top performance can be attributed to that our meth-

ods encodes prior tracking knowledge by off-line training

and extracted features is more suitable for following track-

ing convolution operations. By contrast, the CNN features

in other trackers are always pre-trained in different task

and is independently with the tracking process, thus the

achieved tracking performance may not be optimal. What

is more, efficient updating and scale handling strategies en-

sure robustness and speed of the tracker.

Besides standard UCT, we also implement a lite version

of UCT (UCT-Lite) which adopts ZF-Net [46] and ignores

scale changes. As shown in Figure 5, the UCT-Lite ob-

tains a precision score of 0.856 while operates at 154 FPS.

Our UCT-Lite approach is much faster than recent real-time

trackers, SiamFC and Staple, while significantly outper-

forms them in precision.

5.3. Results on OTB2015

OTB2015 [9] is the extension of OTB2013 and con-

tains 100 video sequences. Some new sequences are

more difficult to track. In this experiment, we com-

Figure 6. Precision and success plots on OTB2015 [9]. The num-

bers in the legend indicate the representative precisions at 20 pix-

els for precision plots, and the area-under-curve scores for success

plots.

pare our method against the best trackers that presented

in the OTB2015, Struck [2]. What is more, some re-

cent trackers are also compared, they are KCF (T-PAMI

2015) [15], DSST (T-PAMI 2017) [45], SiamFC (ECCV

2016) [33], Staple (CVPR 2016) [26], HDT (CVPR2016)

[28], HCF (ICCV2015) [27], FCNT (ICCV 2015) [36],

DLSSVM (CVPR2016) [41] and CNN-SVM (ICML 2015)

[40]. There are five deep trackers and four shallow track-

ers in total. The one-pass evaluation (OPE) is employed to

compare these trackers.

Figure 6 illustrates the precision and success plots of

compared trackers, respectively. The proposed UCT ap-

proach outperforms all the other trackers in terms of both

precision score and success score. Specifically, our method

achieves a success score of 0.611, which outperforms the

SiamFC (0.582) and Staple (0.581) method with a large

margin. Since the proposed tracker adopts a unified con-

volutional architecture and efficient online tracking strate-

gies, it achieves superior tracking performance and real-

time speed.

For detailed performance analysis, we also report the re-

sults on various challenge attributes in OTB2015, such as il-

lumination variation, scale changes, occlusion, etc. Figure 7

demonstrates that our tracker effectively handles these chal-

lenging situations while other trackers obtain lower scores.

Comparisons of our approach with three state-of-the-art

trackers in the changing scenario is shown in Figure 1.

5.4. Results on VOT

The Visual Object Tracking (VOT) challenges are well-

known competitions in tracking community. The VOT have

held several times from 2013 and their results will be re-

ported at ICCV or ECCV. In this subsection, we com-

pare our method, UCT with entries in VOT 2014 [44] and

VOT2015 [10].

VOT2014 contains 25 sequences with substantial varia-

tions. A tracker is re-initialized whenever tracking fails and

the evaluation module reports both accuracy and robustness,

which correspond to the bounding box overlap ratio and the
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Figure 7. The success plots of OTB2015 [9] for five challenge attributes: illumination variation, out-of-plane rotation, scale variation,

occlusion deformation and background clutter. In the caption of each sub-figure, the number in parentheses denotes the number of the

video sequences in the corresponding situation.

number of failures, respectively. There are two sets of ex-

periments: trackers are initialized with either ground-truth

bounding boxes (baseline) or randomly perturbed ones (re-

gion noise). The VOT evaluation then provides a ranking

analysis based on both statistical and practical significance

of the performance gap between trackers. We compare our

algorithm with the top 7 trackers in VOT2014 challenges

[44]. What is more, we add additional three state-of-the-

art real-time trackers GOTURN (ECCV2016) [34], SiamFC

(ECCV2016 Workshop) [33] and Staple (CVPR2016) [26].

Figure 8. Accuracy and robustness rank plot on VOT2014.The bet-

ter trackers are located at the upper-right corner.

As shown in Figure 8, proposed UCT is ranked top both

in accuracy and robustness. With precise re-initializations,

UCT ranks second both in accuracy and robustness while

comprehensive performance is best. It worth mention-

ing that UCT significantly outperforms three state-of-the-

art real-time trackers in robustness rank. The similar per-

formance is obtained with imprecise re- initializations as

shown in region noise experiment results, which implies

that out UCT can achieve long-term tracking within a re-

detection module.

VOT2015 [10] consists of 60 challenging videos that are

automatically selected from a 356 sequences pool. The

trackers in VOT2015 is evaluated by expected average over-

lap (EAO) measure, which is the inner product of the em-

pirically estimating the average overlap and the typical-

sequence-length distribution. The EAO measures the ex-

pected no-reset overlap of a tracker run on a short-term se-

quence.
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Figure 9. EAO rank plot on VOT2015. The better trackers are

located at the right. The ranking of other trackers is consistent

with VOT2015.

Figure 9 illustrates that proposed UCT can ranked sev-

enth in EAO measures. None of top six trackers can perform

in real-time(their speed is less than 5 EFO). Since UCT em-

ploys end-to-end training, efficient updating and scale han-

dling strategies, it can achieve a great balance between per-

formance and speed.

6. Conclusions

In this work, we proposed a unified convolutional tracker

(UCT) that learn the convolutional features and perform the

tracking process simultaneously. In online tracking, effi-

cient updating and scale handling strategies are incorpo-

rated into the network. It is worth to emphasize that our pro-

posed algorithm not only performs superiorly, but also runs

at a very fast speed which is significant for real-time appli-

cations. Experiments are performed OTB2013, OTB2015,

VOT2014 and VOT2015, and our method achieves state-

of-the-art results on these benchmarks compared with other

real-time trackers.
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