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Abstract

In this paper we propose a method to find the location

of crop plants in Unmanned Aerial Vehicle (UAV) imagery.

Finding the location of plants is a crucial step to derive

and track phenotypic traits for each plant. We describe

some initial work in estimating field crop plant locations.

We approach the problem by classifying pixels as a plant

center or a non plant center. We use Multiple Instance

Learning (MIL) to handle the ambiguity of plant center la-

beling in training data. The classification results are then

post-processed to estimate the exact location of the crop

plant. Experimental evaluation is conducted to evaluate the

method and the result achieved an overall precision and re-

call of 66% and 64%, respectively.

1. Introduction

Phenotyping is the process of measuring the physical

properties of a plant, and it is critical in determining how

genetic and environmental factors influence the physical

and chemical properties of a plant [1, 2, 3]. Traditional

field phenotyping requires a great deal of human labor to

routinely obtain traits measurement on a plant by plant ba-

sis, making data acquisition very time-consuming. For ex-

ample, workers first need to identify an individual plant

from its neighbors, because plants in the field are typically

planted densely to maximize yield. Then, leaves are un-

tangled and a number of traits are recorded with multiple

devices. Since measurements are done plant by plant, field

size directly relates to the time needed for collecting data.

Thus, labor requirements become the bottleneck of plant
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phenotyping in the field. In addition, damage done to plants

during measurements may affect future experiments.

While traditional phenotyping techniques are labor in-

tensive, modern imaging technologies have provided faster

and more cost-effective plant phenotyping [3, 4, 5, 6, 7].

Phenotyping experiments can be conducted in greenhouses

or outdoor fields. In greenhouse environments, phenotyp-

ing systems have been developed to provide fast and accu-

rate data collection [8, 9, 10]. In [10], sorghum plants are

3D reconstructed from depth images. Greenhouse pheno-

typing systems can provide high precision measurements,

but they are limited in terms of scalability and reflecting

real growing conditions in the field. For example, in [9],

plants must be individually moved inside a phenotyping

chamber, thus limiting scalability. Also, plants are grown

in individual pots, as opposed to field conditions where

they share the same ground. In outdoor environments,

phenotyping using Unmanned Aerial Vehicle (UAV) im-

agery has become popular due to its efficiency and non-

invasiveness [11, 12, 13, 14]. One issue is that plants in

UAV images have lower resolution and less consistent light-

ing conditions compared to plants in a greenhouse, making

UAV images more difficult to analyze.

Identifying individual plants is a crucial step in analyzing

UAV image data in field based plant-level phenotyping. In

[15], the centers of the plants are selected as a starting point

to extract phenotypic data. Since leaves spread out from a

plant’s center, the location of the center is important to study

the plant structure and distinguish leaves from leaves of

neighboring plants. Distinguishing individual plants from

their neighbors is essential to track the growth of each plant,

and obtain precise estimates of plant traits. However, locat-

ing field based crop plant centers is not a trivial task due to

heavy occlusion.

In this paper, we describe some initial work in estimat-

ing plant centers from UAV images. In order to handle the

ambiguity of the plant centers in our training data, we use

Multiple Instance Learning (MIL) [16, 17] because it can
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Figure 1: Image of a subrow of a sorghum field acquired

from a UAV at an altitude of 40m.

tolerate some error in the labels. We approach the problem

by classifying/labeling each pixel as a plant center or not

a plant center. After the candidate locations are classified,

we generate a mask indicating the estimated plant centers.

From this mask, we find the plant centers by finding the cen-

troids of large clusters. We focus our analysis on the crop

plant sorghum [Sorghum bicolor (L.) Moench] [18, 1].

2. Related Work

Previous work in estimating plant centers generally work

only on non-overlapping plants or require additional inputs.

In [19], a mixture of Gaussian color model of plants is es-

timated by using expectation maximization. The model is

used to segment the image into plants and background. A

connected components analysis is used and each plant is

identified by their component mask. In [15], the skeleton

of the plant segmentation mask is estimated. The shortest

paths between endpoints of the skeleton are detected. Then,

the center of the plant is estimated by the center of the most

frequently used path segment. In [20], leaf edges are de-

tected and used to segment leaves. The longest line across

each segmented leaf shape is considered as the orientation

line of the leaf. The center of the plant is estimated by find-

ing a point that is close to all orientation lines. The num-

ber of plants is assumed to be known in [21]. The centers

are randomly initialized and moved iteratively to minimize

a cost function. The cost function is modeled to account

for the plants’ vertical and horizontal alignment and the

distance between its center and surrounding segmentation

mask pixels.

Deep learning has been used to effectively segment ob-

jects in clustered scenes. In [22, 23], neural networks are

used to segment multiple objects. Large labeled data sets

are required to achieve accurate results. In order to em-

ploy deep learning to locate each plant, we would need a

large quantity of labeled samples. There is no such publicly

available dataset.

3. Multiple Instance Learning

In this section, we describe how we train a classifier us-

ing Multiple Instance Learning (MIL) [17, 16] to determine

if a location is a plant center. Many studies have success-

fully used MIL with a boosting framework [24] to solve ob-

ject detection problems [17, 25, 26, 27, 28]. In this paper,

we implement the MILBoosting presented in [17].

In MIL, each sample is considered an instance. All the

instances are put into bags. A bag must contain at least one

instance and an instance may exists in multiple bags. We

define the label of each bag based on the following criteria.

A bag is considered positive if at least one of the instance

in the bag is positive. A bag is considered negative if all of

the instances in the bag are negative. Unlike in a common

classification problem, the label for each instance can toler-

ate some error. As long as the label of the bag is correct, the

classifier can be properly trained. Therefore, we can train

the classifier with an approximate label of the plant loca-

tion.

For a candidate plant location P = (Px, Py) in image,

we train classifier C to determine if location P is the cen-

ter of the plant. The pixel value at location P may not be

sufficient to discriminate between plant center or not plant

center. We design the classifier C to consider the surround-

ing leaf structures of the plant for classification. Let W (P )
be the gray scale image that corresponds to a square win-

dow of size w centered at P (Figure 2a). The classifier is

defined as:

C(W (P )) =

{

1 P is plant’s center

0 P not plant’s center.
(1)

Let W (P ) be an instance. We denote the i-th bag as xi,

and the j-th instance of the i-th bag as xij . Each bag xi has

Ni instances. We assign yi to be the label of i-th bag, and

assign yij to be the label of j-th instance in i-th bag.

We train a strong classifier from K weak classifiers. Let

ck(xij) be the classification result of the k-th weak classifier

on instance xij . Then, we define the strong classifier as a

linear combination of K weak classifiers:

C(xij) =

K
∑

k=1

λkck(xij). (2)

The label yij for instance xij is obtained as

yij =

{

1 if C(xij) > 0

0 otherwise.
(3)

Based on the definition of a bag, the label yi for bag xi is:

yi = max
j

yij (4)

To train the classifier, we model the probabilities that the

instances are positive and use them to compute the prob-

ability for each bag being positive. Then we compute the

likelihood function for all bags. Finally, we construct the

strong classifier finding the best K weak classifier that max-

imize the likelihood function iteratively. The probability pij
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of the j-th instance in the i-th bag is modeled as a sigmoid

function of its classification result C(xij).

pij = σ(C(xij)) =
1

1 + e−C(xij)
(5)

Once we estimate the instance probabilities, we use the

noisy-or (NOR) boosting frameworks presented in [17, 26]

to compute the bag probability. The probability of a bag

being positive is

pi = 1−
∏

j

(1− pij). (6)

After the probabilities of all I bags are computed, we com-

pute the likelihood L of all bags being correctly classified

by classifier C as

L(C) =
I
∏

i=1

p
yi

i (1− pi)
1−yi , (7)

and

log(L(C)) =
∑

i

(yi log pi + (1− yi) log(1− pi)). (8)

As in the Milboost presented in [17], the weight wij of

each sample is computed by the derivative of the log likeli-

hood function:

wij =
∂log(L)

∂C(xij)
=

yi − pi

pi
pij (9)

k-th weak classifier is selected to maximize the sum

score of all instances
∑

i,j ck(xij)wij . Then, we use ex-

haustive search to determine the weight λk of each clas-

sifier over the range [0,1] that maximize the updated log

likelihood with classifier C + λkck. Algorithm 1 shows the

pseudocode to train the classifier.

4. Features

In this paper, we use Gabor features [29]. Gabor fea-

tures has been widely used in many recognition applica-

tions because of its spatial locality and orientation selec-

tivity [30, 31, 32, 33]. Leaves exhibit thin triangle-like

shapes with different orientations that Gabor features will

be able to capture while accounting for the illumination

changes [30].

We denote the value of the n-th feature computed on in-

stance xij as vn,ij . Gabor wavelets are defined as

f(x, y) =
1√
2πσ

e−
x2+y2

2σ2 e−jω(x cos θ+y sin θ), (10)

where (x, y) are the 2D image coordinates, σ is the vari-

ance of the Gaussian, ω is the oscillation frequency, and θ is

(a)

(b) (c)

Figure 2: a) A row of plants with positive sample (red dot)

and negative sample (yellow dot). The window for classi-

fication is marked as a square for each sample. b) A bag

(white circle) contains 2 instance (red dot). c) A positive

bag (red circle) contains a positive instance (red dot) and a

negative instance (yellow dot), and a negative bag contains

3 negative instances. Ground truth location is marked in red

X.

Algorithm 1: Training Classifier

Input : Data set: {X1, X2..XN}, where

Xi = {xi1, xi2, ...xiNi
},

Label set: {y1, y2..yN}
1 Initialize wij ← 1 for all positive instances

2 Initialize wij ← −1 for all negative instances

3 for k = 1 to K do

4 ck ← argmax
c

∑

i,j c(xij)wij

5 λk ← argmax
λ

logL
(

∑k−1
l=1 λlcl + λck

)

6 for all i do

7 for all j do

8 pij ← σ
(

∑k

l=1 λlcl(xij)
)

9 end

10 pi ← 1−∏

j (1− pij)

11 end

12 Update wij ← yi−pi

pi
pij for all i, j

13 end

14 C ←∑K

k=1 λkck

the orientation angle. Gabor wavelets with orientations θ =
{

0, π
8 ,

π
4 ,

3
8π,

π
2 ,

5
8π,

3
4π,

7
8π

}

are generated. The wavelets

are also generated with frequencies ω =
{

π
√

2
, π
2 ,

π

2
√

2
, π
4 ,

π

4
√

2

}

.

In order to account for how leaves relate to the plant

center, we divide the classification window into 9 equally

spaced sections as shown in Figure 3a and Figure 3b. In a

top-view sorghum image, leaves spread out from the center.

We assume leaves in each section follow a specific orien-
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(a) (b)

(c)

Figure 3: a) The lines that divide the classification window.

b) Section numbers of the classification window. c) Orien-

tations of the Gabor feature in each section.

Section Orientations Features / pixel

1, 9 5
8π,

3
4π,

7
8π 15

2, 8 7
8π, 0,

π
8 15

3, 7 π
8 ,

π
4 ,

3
8π 15

4, 6 3
8π,

π
2 ,

5
8π 15

5 0, π
8 ,

π
4 ,

3
8π,

π
2 ,

5
8π,

3
4π,

7
8π 40

Table 1: Orientations of the Gabor wavelets

tation as shown in Figure 3c. Section 1, 3, 7, and 9 have

diagonal leaves. Section 2 and 8 have vertical leaves. Sec-

tion 4 and 6 have horizontal leaves. Section 5 may have

horizontal, vertical and diagonal leaves. Any leaf that does

not follow this assumption is from a neighbor plant. With

this design, cases where the classifier incorrectly classifies

a neighbor plant can be avoided. Table 1 shows the orienta-

tions of Gabor wavelets we used and were assigned to each

window section. Gabor features are computed by convolv-

ing the window section image with a Gabor wavelet. The

result of the convolution at each pixel represents a Gabor

feature. We choose these wavelets based on the work in

[32, 31]. The variance σ of the gabor wavelets is selected to

be pi
2 to account for small window section size.

5. Weak Classifier

We use naive Bayes classifier to replace the Sign classi-

fier used in [17]. The Sign classifier maps the feature values

to two discrete values, 1 for a positive result and value 0 for

a negative result. We are unable to determine if a classifier

with one feature is better than the classifier with another

feature when the classification results are both positive. A

Sign classifier is selected based on the number of instances

it correctly classified. In our application, the data labels

can be wrong. Thus, the quantity of correct classification is

not a reliable measurement for the performance of a clas-

sifier. We need a classifier that can estimate how strong

an instance is classified to be positive or negative. Naive

Bayes classifier is a better choice. A Naive Bayes classifier

that uses n-th feature is given by:

c(n)(xij) = log
p(yij = 1|vn,ij)
p(yij = 0|vn,ij)

. (11)

By using Bayes rule, the above equation becomes

c(n)(xij) = log
p(vn,ij |yij = 1)p(yij = 1)

p(vn,ij |yij = 0)p(yij = 0)
. (12)

We let p(yij = 1) = p(yij = 0), which means we have

equal amount of positive instances and negative instances.

We model p(vn,ij |yij = 1) to be Gaussian with mean µ1

and variance σ1, and p(vn,ij |yij = 0) to be Gaussian with

mean µ0 and variance σ0. The means µ0, µ1, and the vari-

ances σ0, σ1 can be computed as

µ1 =
1

Nt

∑

i,j

vn,ijyij , (13)

µ0 =
1

Nt

∑

i,j

vn,ij(1− yij), (14)

σ1 =

√

1

Nt

∑

i,j

yij(vn,ij − µ1)2, (15)

σ0 =

√

1

Nt

∑

i,j

(1− yij)(vn,ij − µ0)2, (16)

where Nt is the total number of instances.

6. Post-Processing

After the locations in an image are classified, we obtain

a map M with classification labels as shown in Figure 4c

and Figure 4d, where M(Px, Py) ∈ {0, 1}. Because our

classifier is trained to classify areas and specific location is

not given, the classification label map M shows the clusters

of possible plant center location.
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(a)

(b)

(c)

(d)

Figure 4: a) Original subrow with coordinates system. b)

Plant location region (yellow region) and the Y direction

mid line (red dash line). c) Classification label map M (pos-

itive: white, negative: black). d) Classification label marked

in red in original image.

We further process the label map M to estimate the plant

center. We assume small clusters in M are noise. The con-

nected component analysis [34] is used to the label map

M to obtain individual clusters. Small components are re-

moved by thresholding the number of pixels in the com-

ponents with threshold τa. Let the horizontal direction be

denoted as X , and let the vertical direction be denoted as

Y , as shown in 4a. We assume all the plants in a subrow

are somewhat aligned in the X direction, so we only con-

sider results that are within a distance τb to the Y mid line

(see Figure 4b). Some candidate centers may come from the

same plant but may be in different components. We merge

components whose centroids are within a distance of τc of

each other in X direction. After the merging, the centroid

of each component is considered as the center of plants for

our results.

7. Experiment and Results

Our dataset was collected from a UAV in a field of

sorghum on July 19th, 2016. The images were taken at

an altitude of 40 meters at UAV velocity of 8m/s. Figure

5 shows an example image in our dataset. We cropped 26

subrows from the original image, and converted them into

Figure 5: Image of a section of a sorghum field acquired

from a UAV at an altitude of 40m. The pixel resolution is

0.59 cm/pixel.

grayscale images. We used 6 subrows for training, and 20

subrows for testing. The cropped subrows were selected to

have low lens and perspective distortion.

We ground truthed the center locations for each plant.

Each ground truthed location corresponds to one positive

bag. We labeled the locations around each ground truth

as positive if the location is within 5 pixels of the ground

truth. Those positive instances are put into the same bag as

the ground truthed location. The locations that are at least

30 pixels away from any of the ground truth are considered

as negative instances, and each negative instance is put into

one bag. Positive instances and negative instances are ran-

domly selected to reduce the computation cost. We used

800 positive instances and 800 negative instances in the 6

subrows for training. We tested our method with 10 high

leaf density subrows and 10 low leaf density subrows.

We set the classification window width w to be the av-

erage plant diameter, 99 pixels. The number of weak clas-

sifiers K is set to be 10. The threshold τa to remove small

components is set to be 100 pixels empirically. The thresh-

old τb is set to be 1
3w = 33. The merge distance τc is set

to be 30 pixels. To reduce the computational cost, we used

locations in the plants segmentation mask as candidate loca-

tions for classification, and the mask is obtained by applying

the color threshold method described in [21].

Precision and recall was used to evaluate our method [35,

36]. Precision is defined as

Precision =
TP

TP + FP
, (17)

and recall is defined as

Recall =
TP

TP + FN
(18)

If a center is detected within 30 pixels of the ground truth,

the center will be considered as a true positive (TP). If more
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(a)

(b)

(c)

(d)

Figure 6: a) A subrow with low leaf density. b) The cen-

ter of the red dots are the detected plant centers, the center

of the green dots are the ground truth. If a detected plant

falls inside the green circumference, we consider it a true

positive. c) A subrow with high leaf density. d) Detected

centers (red dots) of high leaf density plants.

Type TP FP FN Precision Recall

High Density 779 506 431 61% 64%

Low Density 701 242 399 74% 64%

Overall 1480 748 830 66% 64%

Table 2: Results for plants with different leaf density after

training and evaluating 10 times. Our dataset contains 121

high density plants and 110 low density plants.

than one center is detected within 30 pixels of any ground

truth, the extra detection will be counted as false positive

(FP). Note that this distance is the same as the distance we

use to generate negative samples during training. False neg-

atives (FN) occur when no center is detected for a ground

truth location. As the instances are randomly selected dur-

ing training, the precision and recall may vary when evalu-

ated. We report the results after training and evaluating 10

times. Table 2 shows the results for high leaf density data

and low leaf density data. Our result obtained an average

overall precision of 66%, and a recall of 64%. Figure 6

shows an example output for a low leaf density subrow, and

an example output for a high leaf density subrow.

The results show that the the method produces more false

positive with high leaf density data. This is due to the fact

that the classifier is trained to look for the structures of sur-

rounding leaves. When plants have small amount of leaves,

the structures around the plant centers are clear. Leaves

from the same plant point toward the plant center. If a pixel

location is not a plant center, then the leaves around it will

converge to different location. When plants have high leaf

density, there is more leaf overlapping. The overlapping

makes the leaf structures more complex, and confuses the

classifier. As a result, there are more false positives.

The performance of our method can be interpreted as

follows. In our application, a plant consists of an indefi-

nite number of leaves. Each leaf has a unique shape includ-

ing length, width, and leaf curvature. Plants have different

number of leaves in various orientations. A combination of

simple features may not be enough for describing hetero-

geneous sorghum plants. In addition, our negative training

data may have false labels due to human error during label-

ing. Plant centers can easily be missed during labeling, and

may accidentally be used as negative training data.

8. Conclusions

This paper presented a method to find the centers of

sorghum plants from UAV imagery. Pixel locations are clas-

sified as plant center or not plant center. Areas of possi-

ble plant centers are estimated by MIL. Then, the areas are

merged based on their centroid distance. Finally, we es-

timate the center of the plants to be the centroids of each

merged area. Experiments were conducted on plants with

high and low leaf densities. Results show that the method

works better when the plants have low leaf density. Results

also show the limitation of using simple features to describe

diverse sorghum plants. In the future, we investigate the use

of multiple simple features that can be combined into sec-

ondary features. Boosting frameworks will be used with

the features to find a feature set that defines sorghum plants

centered in image. Future work will also include using deep

learning for classification and refining the post-processing

method with a statistical approach.
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