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Abstract

We propose a novel method for fusing geometric and ap-

pearance cues for road surface segmentation. Modeling

colour cues using Gaussian mixtures allows the fusion to be

performed optimally within a Bayesian framework, avoid-

ing ad hoc weights. Adaptation to different scene condi-

tions is accomplished through nearest-neighbour appear-

ance model selection over a dictionary of mixture models

learned from training data, and the thorny problem of se-

lecting the number of components in each mixture is solved

through a novel cross-validation approach. Quantitative

evaluation reveals that the proposed fusion method signifi-

cantly improves segmentation accuracy relative to a method

that uses geometric cues alone.

1. Introduction

Vehicle-mounted cameras can provide critical visual data

to support assisted and autonomous driving as well as road

condition assessment. An important initial task is to seg-

ment the portion of the image that projects from the road,

as opposed to portions of the vehicle on which the camera

is mounted, other vehicles, the sidewalk or shoulder, over-

passes, etc. This task is challenging particularly for cameras

for which pan/tilt parameters are variable and/or unknown,

so that a region of interest cannot be pre-defined. Other

complications include occlusions caused by other vehicles

and variability in road appearance due to weather conditions

(rain, snow, etc) - see Fig. 1 for examples.

Recent methods use either appearance cues or geometric

cues to estimate the road surface, but not both. Unfortu-

nately appearance cues are fallible since non-road surfaces

(e.g., sidewalk, buildings, overpasses) can be made of ma-

terial that is very similar to the road surface, and with fresh

snow cover it can be difficult to distinguish the road surface

from neighbouring regions that are also covered with snow.

While geometric methods are not subject to these limita-

tions, they can fail when the road geometry is obscured

(e.g., due to snow), or less well-defined (e.g., in parking

Figure 1. Example images from the road weather conditions

dataset of Qian et al. [15].

lots). Moreover, geometric methods do not provide a means

for excluding non-road objects such as vehicles or pedestri-

ans. To address these limitations we propose here a novel

probabilistic method for fusing both geometry and appear-

ance cues and show that this leads to more reliable road

segmentation.

To model geometric cues, we follow the approach of

Almazen et al. [1], who used estimates of the road van-

ishing point or horizon to deliver a map of the probabil-

ity that each image pixel projects from the road surface.

To model road surface appearance we use a Gaussian mix-

ture model (GMM) in RGB space. While simpler than

many currently popular discriminative models for appear-

ance [6, 14, 7, 8, 19] this probabilistic approach has the ad-

vantage of allowing appearance cues to be fused with prob-

abilistic geometric cues in a rigorous way without resorting

to ad hoc weighting functions.

The two main challenges in real-world computer vision

application of GMMs is 1) adaptation to varying scene con-

ditions and 2) selection of the number of components. A

major contribution of our work is a novel supervised cross-

validation method that optimizes the number of GMM com-

ponents for each image in the training set and adaptively se-

lects the optimal model for a new image at inference time.
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2. Prior Work

Prior appearance-based road surface segmentation algo-

rithms have modeled road pixel appearance in HSV [21, 18]

or RGB [12, 4, 23] space. However, these methods become

problematic when the road surface is covered by ice or snow

and when other nearby objects (e.g., sidewalks, buildings)

have similar appearance.

An alternative is to use geometric cues such as the road

vanishing point [9, 16, 17], horizon [2], and/or road bound-

aries [10, 22, 24]. Here we employ the recent geometric

approach of Almazen et al. [1], which uses either the de-

tected vanishing point of the road or the horizon to identify

the probability that each pixel of the image projects from

the road surface. While Almazen et al. showed that this ge-

ometric segmentation method improved road weather clas-

sification performance, the resulting segmentations are ap-

proximate and do not exclude objects such as other vehicles

that may be occluding the road surface. Indeed, Almazen

et al. noted that residual error in road segmentation remains

one of the factors limiting road weather classification accu-

racy.

Recently, Deep Neural Network (DNN) methods have

been applied to the road segmentation problem. Stixel-

Net [13] uses a 5-layer convolutional architecture inherited

from LeNet [11], trained from on the KITTI dataset [5] for

obstacle detection and road segmentation. SegNet [3] is

a VGG16 [20]-based deep convolutional encoder-decoder

network for semantic road scene segmentation that includes

the road surface as one of 12 classes. The StixelNet sys-

tem has only been evaluated on the KITTI dataset which

lacks the more realistic and challenging diversity in camera

pose, weather, illumination and road environments present

in the Qian et al. dataset [15], and the StixelNet code is

not publicly available. However, the SegNet code is pub-

licly available, and we compare its performance against our

proposed method on the Qian et al. dataset (Section 5).

Our proposed method uses the posterior probability map

generated by the geometry-based method of Almazen et

al. [1] as a prior and combines with appearance likelihoods

based upon our mixture models to generate a fused poste-

rior that combines both geometric and appearance cues. A

final segmentation can then be generated by thresholding

the posterior.

3. Dataset

To train and evaluate the proposed method, we use the

dataset of road images introduced by Qian et al. [15], ob-

tained directly from the authors. The dataset consists of

100 2048×1536 pixel images in a 50/50 training/test split.

For each of the images the portion of the image project-

ing from the road has been segmented by hand. It covers

a broad range of road weather conditions, including dry,

wet, snow and ice-covered as well as a broad range of il-

lumination conditions, from full sunlight to night. The pose

of the camera varies considerably - note that the horizon

may appear either toward the top or toward the bottom of

the image. Finally, the images were obtained from a diver-

sity of road maintenance vehicles, and large portions of the

road surface can be occluded by the hood of the vehicle and

mounted snow-clearing equipment.

All parameter tuning was performed on the training

dataset: the test dataset was used only for final evaluation.

4. Methods

4.1. Geometric Prior

Let xi ∈ {F,B} represent the provenance of pixel i,

where F indicates foreground (i.e., the road surface) and

B indicates background, and let yi represent the colour of

this pixel, in RGB space. Almazen et al. [1] observed that

while the unconditional probability map p (xi = F ) esti-

mated from the training subset of the Qian et al. dataset [15]

is quite broad due to the variability in camera pose and road

geometry (Fig. 2(a)), anchoring the prior to a detected van-

ishing point (Fig. 2(b)) or horizon (Fig. 2(c)) tightens

the distribution considerably. With this motivation, their

method proceeds by first using dominant lines in the im-

age to estimate the road vanishing point. If the resulting

estimate is judged to be reliable, the vanishing point prior

(Fig. 2(b) is employed to estimate the road segmentation.

Otherwise the horizon line is estimated and the the hori-

zon prior (Fig. 2(c)) is employed. In either case, Almazen

et al. threshold the prior at 0.5 to deliver a final segmenta-

tion, which is then used to estimate road conditions. For our

purposes we will retain the real-valued probability map to

allow probabilistic fusion with appearance cues.

(a) (b) (c)
Figure 2. (a) Unconditional prior. (b) Prior anchored to road van-

ishing point. (c) Prior anchored to horizon.

4.2. Learning Appearance Models

The training subset of the Qian et al. dataset [15] pro-

vides ground truth segmentations of foreground (road) and

background from which appearance models can be learned.

Here we elect to model the appearance yi of a pixel con-

ditioned on its provenance xi (foreground or background)

as Gaussian mixture model (GMM) in RGB space. Unlike
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discriminative methods this approach delivers a probability

that allows principled fusion with our geometric prior.

In prior approaches [21, 18, 12, 4, 23], a single model for

road appearance is learned from training data, and we could

certainly follow this approach by learning a single GMM

for foreground and a single GMM for background over all

training data. However, this naı̈ve approach would fail to

account for the non-stationarity of these conditional distri-

butions due to diversity in geography, weather and illumi-

nation conditions (Fig. 1). To address this challenge we in-

stead adopt a nearest-neighbour approach. Specifically, we

learn separate foreground and background models for each

image in the training dataset. At inference time we then ap-

ply each model to the test image and select the model with

highest likelihood. This allows the model to adapt to chang-

ing geography, weather and illumination conditions. Note

that foreground and background models can be and often

are drawn from different training images.

A second issue that arises with all mixture models is how

to choose the number of components. Maximizing likeli-

hood leads to overfitting, while maximizing performance

on training data can be slow and lead to models that are

too task-specific and do not generalize. Here we adopt a

novel cross-validation approach that is simple but effective.

Let Y F
i and Y B

i represent the set of appearance vectors for

all pixels in foreground and background regions of training

image i and let MF
ik and MB

ik represent k-component max-

imum likelihood GMMs for these appearance vectors.

We first determine these models for k = [1 . . . 20] and all

training images. Our goal is then to identify, for each train-

ing image i, the optimal model complexity kFi and kBi for

foreground and background regions, respectively. Here we

define optimality in terms of the ability of the model to gen-

eralize, selecting the model that maximizes the log likeli-

hood over the other images in the training dataset, assuming

conditional independence of appearance observations over

pixels:

kFi = argmax
k

∑

j �=i

log p
(

Y F
j |MF

ik

)

, (1)

where p
(

Y F
j |MF

ik

)

=
∏

yl∈Y F
j

p
(

yl|M
F
ik

)

(2)

kBi = argmax
k

∑

j �=i

log p
(

Y B
j |MB

ik

)

, (3)

where p
(

Y B
j |MB

ik

)

=
∏

yl∈Y B
j

p
(

yl|M
B
ik

)

(4)

In this way we identify a dictionary of optimal GMMs, one

for each training image:

MF
i = MF

ikF
i

(5)

MB
i = MB

ikB
i

(6)

In effect this approach uses the other training images as

surrogates for test images, optimizing the complexity of the

model to maximize its predictive capacity. Fig. 3 shows

the distributions over the number of mixture components

kFi and kBi for the optimized foreground and background

models derived from the training images.
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(b)
Figure 3. Distributions over the number of mixture components for

the optimized foreground kF

i (a) and background kB

i (b) models,

over the training images.

4.3. Selecting an Appearance Model

Given a novel test image, we wish to select appropri-

ate foreground and background appearance models from
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our GMM dictionary learned from training data. This is

a chicken-and-egg problem: If we knew which test pixels

were foreground and background, we could evaluate each

of the models from our foreground dictionary on the set

of foreground test pixels and each of the models from our

background dictionary on the set of background test pixels,

selecting the models with maximal likelihood. However,

to discriminate foreground from background pixels we first

need to apply our appearance model.

We resolve this chicken-and-egg problem with a simple

bootstrap approach. First, we use the methods of Section

4.1 to compute the geometric prior p (xi = F ) over all pix-

els of the test image. We then use this geometric prior to

identify samples Ŷ F and Ŷ B of the colours in the test image

that we believe to be drawn from foreground or background

regions:

Ŷ F = {yi : p (xi = F ) > 0.5} (7)

Ŷ B = {yi : p (xi = F ) = 0} (8)

The asymmetry between these two thresholds arises from

the asymmetry in the geometric priors (Fig. 2) derived from

the training data. While there are many pixels with a fore-

ground probability of zero, there are very few with a fore-

ground probability of one.

Finally, we select from our dictionary foreground and

background appearance models that maximize the likeli-

hood over these samples, again assuming conditional inde-

pendence of appearance observations over pixels:

MF = MF

î
, (9)

where î = argmax
i

p

(

Ŷ F |MF
i

)

(10)

and p

(

Ŷ F |MF
i

)

=
∏

yi∈Ŷ F

p
(

yi|M
F
i

)

(11)

MB = MB

î
, (12)

where î = argmax
i

p
(

Ŷ B |MB
i

)

(13)

and p

(

Ŷ B |MB
i

)

=
∏

yi∈Ŷ B

p
(

yi|M
B
i

)

(14)

These models allow us to compute appearance like-

lihoods p
(

yi|xi = F,MF
)

and p
(

yi|xi = B,MB
)

for

each pixel in the test image.

Fig. 4 shows foreground Ŷ F and background Ŷ B ap-

pearance samples for an example test image, and the train-

ing images from which optimal foreground MF and back-

ground appearance models MB are drawn for this test im-

age.

(a) (b)

(c) (d)
Figure 4. Selecting an appearance model. (a) Target test image.

(b) Foreground Ŷ F (red) and background Ŷ B (blue) appearance

samples. (c-d) Training images from which optimal foreground

MF and background appearance models MB are drawn for this

test image.

4.4. Fusion of Geometry with Appearance

Given a novel image, geometric and appearance cues are

fused by computing the posterior odds of the pixel labels:

p
(

xi = F |yi,M
F
)

p (xi = B|yi,MB)
=

p
(

yi|xi = F,MF
)

p (xi = F )

p (yi|xi = B,MB) p (xi = B)
(15)

An example is shown in Fig. 5.

4.5. Segmentation and Refinement

We segment road from non-road regions by threshold-

ing the posterior odds. To optimize the threshold, we ap-

ply our appearance model selection method to each of the

training images, using a dictionary drawn from the remain-

ing training images, and compute the log odds of the poste-

rior. Sweeping over a broad range of thresholds, we select

the threshold that maximizes the average intersection-over-

union (IOU) of the segmented road region with ground truth

over all training images.

Fig. 6 (a) shows the results of this optimization. Note

that the optimal empirical threshold is close to the theoreti-

cally optimal value of 0.

Since our appearance model lacks a smoothness term

this initial segmentation contains small foreground frag-

ments and holes. We therefore incorporated a refinement

stage in which we filled all holes and removed segments

below a threshold size, again optimizing the threshold by

maximizing IOU of the detected foreground with ground

truth over the training dataset. Fig. 6 (b) shows the results
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(a) (b)

(c) (d)
Figure 5. Fusion of geometric and appearance cues for an

example test image (a). (b) Geometric prior ratio map

p (xi = F ) /p (xi = B). (c) Appearance likelihood ratio

map p
(

yi|xi = F,MF
)

/p
(

yi|xi = B,MB
)

(d) Posterior map

p
(

xi = F |yi,M
F
)

/p
(

xi = B|yi,M
B
)

of this optimization.

4.6. Implementation Details

We implemented our method in MATLAB. To fit the

GMMs, we sampled 5,000 pixels from both foreground and

5,000 pixels of each training image. Full-covariance GMMs

were estimated using the EM algorithm (MATLAB’s fitg-

mdist) with 10 replications per model, initializing with k-

means, and employing a small regularization term (10−6)

to ensure covariance matrices were positive definite. Mor-

phological close operations (MATLAB imclose) with pro-

gressively larger structuring elements were applied until all

holes were eliminated. This was assessed by counting the

number of foreground regions (MATLAB function bwcon-

ncomp) and comparing with the Euler number (MATLAB

function bweuler).

All experiments were conducted on a 2.6 GHZ Pentium

i7 with 16GB RAM. The geometric method of Almazen et

al. [1] takes about 18 sec per image. Total run time for ap-

pearance model selection, fusion and refinement is roughly

3.7 sec per image.

5. Results

Fig. 7 compares the performance of our fusion method

against the geometric method of Almazen et al. [1] on the

test dataset, in terms of foreground IOU with ground truth.

We find that fusing appearance cues with the geometric

method of Almazen et al. [1] increases IOU by about 15%

(from 43.8 to 50.3). Matched-sample t-tests between the
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Figure 6. Optimizing segmentation and refinement. (a) Optimal

threshold on log posterior odds. (b) Optimal threshold on region

size.

mean IOU for our fusion method (refined) and the geomet-

ric method of Almazen et al [1] confirm that these improve-

ments are statistically significant (t(49) = 2.6, p = 0.012).
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Figure 7. Mean performance on test set. Error bars indicate stan-

dard error of the mean.

Table 1 compares these results against SegNet [3]. We
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(a) (b) (c) (d) (e)
Figure 8. Example results. (a) Test image (b) Ground truth segmentation. (c) Geometric method [1]. (d) Fusion method (initial). (e) Fusion

method (refined). (f) SegNet method (road + pavement)

noticed that SegNet sometimes confuses the road and pave-

ment categories and therefore assess both of these individu-

ally as well as their union. SegNet achieves an average IOU

of only 29.3, performing best when road and pavement cat-

egories are combined.

Table 1. Quantitative comparison (IOU for foreground) with Seg-

Net [3] on test set.

Method Mean Std. Err.

Geometric 43.8 2.7

Fusion (initial) 48.6 2.9

Fusion (refined) 50.3 3.1

SegNet (road) 28.9 3.5

SegNet (pavement) 10.0 2.1

SegNet (road + pavement) 29.3 2.7

Fig. 8 shows sample results from the test set.

6. Limitations & Future Work

SegNet [3] did not perform well on the Qian et al. test

set [1]. Some of the errors may be due to lack of familiarity

with wet and snowy ground conditions and occlusions by

the vehicle, although it also commits errors where the road

surface seems relatively clear (e.g., Fig. 8, second row). Its

performance might be improved by fine-tuning on the Qian

et al. training dataset; this is future work. However, it is

still striking that our relatively simple geometric and fusion

methods outperform SegNet by such a large margin.

Our fusion method fails to improve the geometric seg-

mentation on some of the test images. Fig. 9 shows the

three test cases where fusion causes the greatest % decrease

171



(a) (b) (c) (d) (e)

Figure 9. Example failure cases. (a) Input image (b) Ground truth segmentation. (c) Geometric segmentation [1]. (d) Foreground Ŷ F (red)

and background Ŷ B (blue) appearance samples. (e) Fusion method (refined).

in foreground IOU relative to the geometric method. Gen-

erally these failures tend to be cases where the geometric

method is already quite accurate, and the fusion method

serves to broaden the foreground region to extend beyond

the ground truth. In some cases the decline in IOU may

be partly due to error in the manual ground truth segmen-

tation in the Qian et al. dataset, as it is difficult to iden-

tify the exact right and left road boundaries under snowy

conditions. However, some of these errors (e.g., the inclu-

sion of some of the tree bottoms in the foreground region

for the first failure mode) may be due to the simple colour

appearance model we employ. Our framework can easily

accommodate an extension of the appearance model to in-

clude texture cues that would help to discriminate between

trees and the road surface; this is future work.

Since our current training sets consist of only 50 images
each it is feasible to include a model from each of the train-
ing images in our foreground and background dictionaries.
Scaling up to larger and more diverse datasets will require
a little more thought in forming the dictionary if the algo-
rithm is to remain efficient. One option is to simply cluster
the models, representing each cluster by its centre. Another
is to organize the models in a decision tree so that only a
logarithmic number of models need be evaluated for a given
test image.
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