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Abstract

We explore beyond object detection and semantic seg-

mentation, and propose to address the problem of estimat-

ing the presence probabilities of nonexistent pedestrians

in a street scene. Our method builds upon a combination

of generative and discriminative procedures to achieve the

perceptual capability of figuring out missing visual infor-

mation. We adopt state-of-the-art inpainting techniques to

generate the training data for nonexistent pedestrian detec-

tion. The learned detector can predict the probability of

observing a pedestrian at some location in image, even if

that location exhibits only the background. We evaluate our

method by inserting pedestrians into images according to

the presence probabilities and conducting user study to de-

termine the ‘realisticness’ of synthetic images. The empir-

ical results show that our method can capture the idea of

where the reasonable places are for pedestrians to walk or

stand in a street scene.

1. Introduction

Humans are good at inferring implicit information from

images based on the context. For instance, with sufficient

familiarity of urban street scenes, humans know where to

look at to find pedestrians. It implies that peripheral cues in

the scene other than the pedestrians themselves are useful

for pedestrian detection. The ability to explore and exploit

those cues would be important for algorithms to achieve

human-level scene understanding and behavior analysis.

Our goal is to address the problem of predicting where

the pedestrians are likely to appear in a scene. Such a task is

new and different from conventional pedestrian detection in

that the target locations might not contain any pedestrians.

Many urban street scene datasets [4, 6, 7, 8] are available for

training deep models to solve object detection and seman-

tic segmentation, but they cannot be directly used for our

task. We have to generate new training data that enforce our

method to learn how to infer possible presence locations of

pedestrians using implicit contextual cues of scenes rather

than the features on the pedestrians.

Figure 1. Top: The input image and the predicted heatmap. The

likelihoods of head and feet positions are depicted in red and blue.

Bottom: The synthesized images with phantom pedestrians using

the baseline method (left) and the proposed method (right).

We use adversarial training [10] and build a ConvNet

that combines generative and discriminative procedures to

achieve the perceptual capability of figuring out missing vi-

sual information. The contributions of this work include

1. Suggesting an alternative direction toward scene un-

derstanding, which is relatively unexplored and may

be applied to other pedestrian- or scene-related tasks,

e.g., as auxiliary information for pedestrian accident

avoidance.

2. Providing a training dataset for the new task of predict-

ing pedestrian presences.

3. Proposing a ConvNet that incorporates an adversarial

loss. The results show that our model successfully pre-

dicts the probability of observing a pedestrian at some

location in the current image, even if that location ex-

hibits only the background, as shown at the top row in

Fig. 1.

4. Designing a pipeline for automatic image synthesis,

which is used to evaluate our method and can be fur-

ther used as auto-annotated training data. Examples

of synthesized images are shown at the bottom row in

Fig. 1.
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2. Related work

The idea of Binge Watching proposed by Wang et

al. [26], which is to predict affordance poses, is very simi-

lar to our idea of nonexistent pedestrian detection. Given a

new scene, the variational autoencoder (VAE) can be used

to sample from the distribution of possible poses. Wang

et al. successfully show the possibility of predicting rea-

sonable nonexistent human poses using ConvNets. How-

ever, their data are collected only from some specific indoor

scenes of seven different sitcoms. Our work focuses more

on outdoor street scenes and can generate training data with

various combinations. Huang and Ramanan [12] generate

synthetic pedestrian images by inserting CG rendered hu-

man models into real street scene images, and use GAN

to make the generated images more realistic. In contrast,

we use real 2D human images for synthesizing. We also

use the predicted heatmap as the prior of reasonable places

for pedestrians. Sun and Jacobs [24] aim to predict where

missing curb ramps should exist in an image, even when

no curb ramps are present. They generate training data by

covering curb ramps with black masks. Our training data,

on the other hand, are generated via removing the pedes-

trians, using state-of-the-art inpainting techniques to reduce

the artifact features.

Deep convolutional neural networks. Deep ConvNets

are popular in computer vision. Many challenging prob-

lems (e.g., image classification [15], object detection [9],

human pose estimation [25], etc.) can be solved via end-

to-end learning with ConvNes. Fully convolutional net-

works (FCN) [23] replaces fully connected layers in the

network with convolutional layers and produces an output

whose size is the same as the input size. The significant im-

provement of segmentation accuracy makes FCN be widely

used in pixel-wise prediction problems. The stacked hour-

glass networks [18] further use the concept of residual maps

and becomes the state-of-the-art method for human pose

heatmap prediction. Our work is based on the two afore-

mentioned networks [18, 23] to develop a more suitable ar-

chitecture for our task.

Generative adversarial networks. GAN [10] consists of

two components: a generator (G) and a discriminator (D).

The training is unsupervisedly done by playing a two-player

minimax game (i.e. adversarial game) with the objective

function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z))] ,
(1)

where D aims to distinguish two data domains and G tries

to map a random normal distribution z to a target data space

Figure 2. What is a nonexistent pedestrian? Left column: Images

of street scenes. Right column: Everything stays the same except

that some pedestrians disappear. The white regions are places that

have once existed some pedestrians, and now they are considered

reasonable places for pedestrians to walk or stand.

p (e.g., a set of human face images). DCGAN [22] pro-

vides a more stable and easier-to-train framework by re-

placing pooling layers with strided convolution. WGAN [2]

uses Wasserstein distance to measure the loss and success-

fully avoids mode collapsing in various generator architec-

tures. WGANGP [11], based on WGAN, improves the way

how Lipschitz constraint is enforced by replacing weight-

clipping with gradient penalty. CGAN [17] extends GAN

to supervised learning with additional constrains. Many re-

lated applications use the concept of GAN to achieve further

improvements, such as pose estimation [3], saliency detec-

tion [20, 19], semantic segmentation [16, 27], and image

inpainting [13, 21, 28]. We apply GAN to our task of de-

tecting nonexistent pedestrians.

3. Approach

The proposed pipeline has three parts: i) generating

training data for nonexistent-pedestrian detection, ii) learn-

ing to predict possible locations of pedestrians, and iii) syn-

thesizing new images with phantom pedestrians for qualita-

tive evaluation.

3.1. Training Data

To address our task, we make the following assumption:

if a place observed in the real world does exist pedestrians,

then that place is likely to be a suitable one for pedestri-

ans to appear. Fig. 2 gives some practical examples show-

ing what our hypothesis looks like. Under this assumption,

we automatically generate our training dataset by collecting

images, estimating pedestrian poses, and removing pedes-

trians. Fig. 3 shows some examples of the training pairs of

input image and ground truth heatmap (as output) used in

our experiments.
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Figure 3. Training data pairs. Top row: Input images with pedestrians removed randomly. Bottom row: Corresponding heatmaps as the

ground truths. Blue, red, and green color represent the likelihoods of head, foot, and full body respectively.

Collecting images. We collect a wide range of urban-

scene images from the Cityscapes dataset [4]. It is a large-

scale dataset of street scenes in 50 different European cities.

It provides 2,975 training images and the corresponding

pixel-level annotations. However, more than 2,500 images

do not contain any pedestrians and hence a large number of

pixels are labeled as non-pedestrian. The unbalanced pixel

amounts between pedestrian and non-pedestrian might lead

to bias, and the network would tend to generate all-empty

predictions. To alleviate the bias, we only select those im-

ages of which the pedestrian pixels cover more than 5% of

the entire image. Furthermore, for the sake of reducing time

and space, we resize the images to 256 × 512 in the subse-

quent steps.

Estimating pedestrian poses. We further enrich our

training data information by analyzing pedestrian poses.

The pedestrian poses are estimated using the stacked hour-

glass network [18]. We train the stacked hourglass on the

MPII [1] and LSP [14] datasets. During inference, we crop

out each single pedestrian from the original scene to get the

predicted pose. We superimpose the predicted locations of

head and feet onto a blank image of the same size as the

input image, and blur the locations to generate a ‘ground

truth’ heatmap of the original street scene. As shown in the

bottom row of Fig. 3, besides the green color representing

the segment of pedestrians, the blue and red channels indi-

cate the possible positions for head and feet respectively.

Removing pedestrians. Since each image in the

Cityscapes dataset has the ground truth segmentation of

pedestrians, we can use state-of-the-art inpainting methods

[5, 21, 28] to remove all pedestrians and create a set of

‘synthetic background’ images. The comparison of the

three methods is shown in Fig. 4. The method of Criminisi

et al. [5] is an exemplar-based method which repeatedly

sample small patches from original images to fill the

holes. The results preserve the original image texture but

(a) (b)

(c) (d)

Figure 4. Comparisons between different inpainting methods. (a)

An original street view image. (b) An exemplar-base approach

by Criminisi et al. [5] (c) A variational autoencoder based ap-

proach by Pathak et al. [21] (d) Image content and texture opti-

mized jointly by Yang et al. [28]

the content might not make sense as shown in Fig. 4(b).

Pathak et al. [21] train a variational auto-encoder (VAE)

combined with a discriminator to render realistic images

that can deceive the discriminator. The generated images

have reasonable image content and structure, but tend to

be blurry as shown in Fig. 4(c). Yang et al. [28] integrate

the advantages of previous methods by optimizing the

texture and content of the image jointly. They fill the

hole by selecting the patch that not only makes the target

region boundary seamless but also maintains the structure

of scene. The results preserve high-resolution details and

have reasonable content structure as shown in Fig. 4(d).

Producing training images. Based on the synthetic back-

grounds, the original images, and the ground truth segmen-

tations, we generate various training data exhibiting differ-

ent combinations of removed/non-removed pedestrians and

the corresponding heatmaps of possible pedestrian pres-

ences as shown in Fig. 3. By doing so, we can acquire train-
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Figure 5. The architecture of the proposed model FCN+D.

ing data for learning relations not only between pedestrian

and scene structure, but also among pedestrians, e.g., how

pedestrians interact with each other. We extract individual

pedestrian according to the instance-level annotation pro-

vided by [4]. For each combination, the selected pedestrians

are added to the synthetic backgrounds (top row of Fig. 3),

and unselected pedestrian heatmap segmentations are added

to the ground truth heatmap (bottom row of Fig. 3). We only

produce at most 40 images of different combinations from

one single synthetic background.

3.2. Learning

We formulate the problem as a multi-label classification

problem: The input is an RGB image, and the output is a

3-channel heatmap which is for head, feet, and full body,

respectively. Each class is independent and not mutually

exclusive (i.e., a pixel can be head and body at the same

time). Some examples of the pairs of training image and

ground truth are shown in Fig. 3.

Network architecture. We present three convolutional

networks to detect nonexistent pedestrians. We adopt the

network of FCN [23] and the stacked hourglass network

[18] as our first and second models. Our FCN is based on

VGG-19 and our stacked hourglass network is a two-stack

version. We also propose a new model by combining FCN

with a discriminator (D). Our discriminator network archi-

tecture is adapted from DCGAN [22]. While the discrim-

inator tries to judge whether the heatmap is generated by

FCN or is picked from the ground truth set, FCN attempts to

deceive the discriminator by generating heatmaps that look

like the ground truths as much as possible. We also require

the generated heatmap to be coherent with the input image.

This constraint resembles conditional GAN [17] where our

condition is the input image. We directly concatenate the

input image with the heatmap generated by FCN as a ‘fake’

pair, and concatenate the input image with the correspond-

ing ground truth as a ‘true’ pair. We refer to our proposed

model as FCN+D, shown in Fig. 5.

Content loss. FCN [18] and the stacked hourglass net-

work [23] produce heatmaps based on the content of in-

put images. We minimize the per-pixel differences between

the ground truth and the output heatmap. The content loss

(LCE) is defined by

LCE = −

P∑

i=1

C∑

c=1

[yci log σ(x
c
i ) + (1− yci ) log(1− σ(xc

i ))] ,

(2)

where C is the number of classes, P is the number of pixels,

x is the output heatmap, y is the ground truth, and σ(·) is

the sigmoid function.

Adversarial loss. The proposed FCN+D uses an addi-

tional loss for adversarial training, where FCN is referred

to as a generator (G). Our adversarial loss follows WGAN

[2] using the Wasserstein distance. We use gradient penalty

[11] to enforce the Lipschitz constraint. The adversarial

losses for G and D are defined by

LadvD = −Ey∼Pr
[D(y, I)] + Ex∼Pg

[D(x, I))]

+λgp Ex̂∼Px̂
[(‖∇x̂D(x̂, I)‖

2
− 1)2]

(3)

and

LadvG = −Ex∼Pg
[D(x, I))] , (4)

where I is the input image, x is the generated heatmap, y

is the corresponding ground truth heatmap, Pr is the real

data distribution, and Pg is the model distribution implicitly
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(a) (b)

(c) (d)

Figure 6. The synthesis pipeline. (a) An arbitrary input street scene

image. (b) The predicted nonexistent-pedestrian heatmap. (c) Syn-

thesis guiding map based on the predicted nonexistent-pedestrian

heatmap and the user preferences. (d) The final synthetic image.

defined by x = G(I). We combine the content loss with the

adversarial loss as the overall generator loss:

LG = LCE + λG LadvG , (5)

where λG is a hyperparameter controlling the ratio. In this

case, generator has an auxiliary adversarial loss that guides

the direction of updating. During training, we alternately

update the discriminator and the generator of the proposed

FCN+D.

3.3. Synthesis

Our method automatically synthesizes a new test image

according to the predicted nonexistent-pedestrian heatmap.

The pipeline is shown in Fig. 6. Given an arbitrary street

scene, we predict the nonexistent-pedestrian heatmap using

the proposed model. Then, we produce another ‘synthe-

sis guiding map’ based on the predicted full body heatmap

and the user preferences. Finally, our method searches the

most compatible and suitable pedestrians from the pedes-

trian dataset and produces the final synthetic output image.

Synthesis guiding map. We produce a ‘synthesis guiding

map’ based on the predicted full body heatmap and the user

preferences. An example is shown in Fig. 6(c). The syn-

thesis guiding map is used as an interface between the user

preferences and the final synthetic image. Since each pixel

in the original predicted heatmap simply represents a like-

lihood, there are two questions to be answered by the user:

i) how large the likelihood response should be for a pixel to

be qualified as belonging to a pedestrian? and ii) how likely

the pixels may connect to each other to form a shape of

pedestrian? We provide two hyperparameters: Gaussian fil-

ter standard deviation σ and heatmap threshold α for users

to adjust, as shown in Fig. 7. A Gaussian filter is used to

Figure 7. Various synthesis guiding maps for different user pref-

erences. From top to bottom: smaller σ to larger σ. From left to

right: smaller α to larger alpha. The color regions mean that the

pixel responses are higher than the specified threshold α. White:

local regions of which the responses are too small and can be ig-

nored. Blue: local regions of which the aspect ratio is classified

as a single pedestrian. Green: local regions of which the aspect

ratio is classified as multiple pedestrians. Red: local regions that

are classified as invalid regions (e.g., floating in the air).

smooth the responses. A larger value of σ means that more

pixels will be connected together to form a larger region

instead of many separate local regions. After Gaussian fil-

tering, we only consider those responses that are higher than

α as the candidate places of pedestrians.

Pedestrian dataset. We collect images of pedestrians

from [4, 7] to form our pedestrian dataset. Each pedestrian

is categorized by height, width, and aspect ratio based on

the segment bounding box. Besides ‘single-person’ images,

we also collect ‘multi-person’ images from [4]. If people in

an image overlap each other and their segments are not sep-

arable, then we crop the whole connected component and

mark it as multi-person. We further estimate the pedestrian

poses using the stacked hourglass network [18] for a more

detailed representation. Currently we only use the keypoints

of head and feet.

Rendering. For each test image, we obtain three

heatmaps modeling the head, feet and body locations of

pedestrians. We perform non-maximum suppression on the

synthesis guiding map and propose several candidate ‘phan-

tom’ pedestrians. After filtering out some unlikely or in-

valid phantoms (e.g., too small or floating in the air), we

classify the phantoms as a single person or multiple peo-

ple by the aspect ratio of their bounding box. Finally, our

method searches for the most likely real pedestrian(s) in the

pedestrian dataset according to the poses and shapes, and

the output image can be rendered by copy-and-paste.
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4. Experiments

We conduct several experiments to evaluate our method

on two aspects: the capability of nonexistent pedestrian de-

tection and the quality of synthetic images.

4.1. Nonexistent Pedestrian Detection

Since our task is rather new and abstract, there is no stan-

dard method to evaluate the capability of detecting nonex-

istent pedestrians. We use the recall rate as a metric to give

a rough comparison between the three models mentioned in

Sec. 3.2. We also look into the predicted heatmap results

and give some preliminary analysis.

Experiment settings. We use the dataset mentioned in

Sec. 3.1 to train our three ConvNets: FCN, stacked hour-

glass network, and FCN+D. The training data contain

around 12,000 images. The sizes of the training images and

the ground truth labels are both 256× 512. The earlier lay-

ers of FCN and the generator of FCN+D are initialized with

the VGG-19 weights. The FCN+D loss function is set with

λgp = 10 and λG = 0.001. We alternately update the dis-

criminator and the generator of FCN+D. The batch size is

9 for FCN and FCN+D, and is 2 for the stacked hourglass

network. We keep other settings and hyperparameters the

same as in the original papers [18, 22, 23].

Validation. We randomly select nearly 700 different im-

ages generated from 10 synthetic backgrounds for valida-

tion. To evaluate quantitatively the performance of our net-

works on predicting heatmaps, we use the recall rate as the

metric:

1

N

N∑

i=1

area(li ∩ hi)

area(li)
, (6)

where N is the number of images in the validation set,

and area(li ∩ hi) is the overlap between the ground truth

heatmap li and the predicted whole-body heatmap hi. We

choose the recall rate as the evaluation metric because our

ground truths just represent parts of many feasible solutions.

We expect the network to have its own perceptual capability

of figuring out missing visual information rather than be-

ing restricted with the ground truths provided by ourselves.

The validation scores are shown in Table. 1. Intuitively,

FCN+D seems to perform the best on retrieving those places

overlapped with the ground truth. However, the recall rate

should not be over-interpreted as our proposed architecture

being always better in all respects. The results are more

likely to reflect the facts that all of the models are simi-

lar on detecting what we call nonexistent pedestrians. No

matter what architectures or loss functions are chosen, the

detection results show no noticeable differences.

FCN [23] Hourglass [18] FCN+D

Recall 0.86 0.88 0.89

Table 1. Comparison on the recall rate for the three methods.

Figure 8. Validation results. Left: Ground truth. Right: Predicted

heatmap of full body. The responses almost appear only on the

pedestrian-removed regions and many clear contours of pedestri-

ans can be found during validation.

Testing. We test the proposed method using unseen street

scene images, which are natural and do not contain arti-

facts. If our models only have the perceptual capability of

figuring out inpainting artifacts, then there should not be

any responses on these input images. It turns out that our

ConvNet is still able to predict many reasonable places for

pedestrians as shown in Fig. 9 during testing. The intensi-

ties of responses are smaller than those predicted during val-

idation, but after we normalize the intensities the heatmap

shows visible and reasonable responses. We think that our

models actually learn both perceptual capabilities of finding

inpainting artifacts and detecting nonexistent pedestrians.

Analysis. Given unseen images, the trained model per-

forms well on mimicking human perceptual ability. In

Fig. 9, we highlight some logical patterns that can be ob-

served in the generated images: i) Sidewalks, safety islands,

and bus stops are often assigned with high probabilities of

pedestrian presence, even if the scene is void of pedestri-

ans. ii) The timing is right: The ‘phantom’ pedestrians are

inclined to cross the street when there is no car. iii) People

tend to form groups: The ‘phantom’ like to stand or walk

close to existing people. iv) Depth and perspective are cor-

rect: The ‘sizes’ of high-response areas in the heatmap are

in accordance with the depth and vanishing point.

4.2. Synthetic Images with Rendered Pedestrians

In Sec. 3.3 we provide a complete process to automat-

ically generate the synthetic output images. To verify the

quality of the synthesized images, we conduct user study

and ask the viewers to choose the most realistic image.

Fig. 1 shows a simple pipeline. Given an input image and

the corresponding predicted heatmap, we synthesize a new

image with baselines and our proposed method, as shown at

the bottom row of Fig. 1.
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Figure 9. Some observed heatmap patterns. From top to bot-

tom: appropriate positions, appropriate timing, forming groups,

and correct perspective.

.

Baselines. We consider two baselines for comparison.

The first one is to paste the same number of pedestrians

into the target image as our proposed method. The pedes-

trian poses and positions are unconstrained and random. As

shown in Fig. 10(a), the results look weired and unnatu-

ral. The second baseline directly copies the whole group of

pedestrians from another image and paste them, under the

same scale, into the target image. As shown in Fig. 10(b),

the results are more realistic because the relations between

the copied pedestrians are natural and correct. If the original

scene structure is also similar to the target image structure,

the output image may look appealing. Therefore, this base-

line is actually quite competitive.

Experimental results. We recruit several viewers to par-

ticipate in the experiment. To each viewer we ask 100 ques-

tions. Each question shows three synthetic images at the

same time and the viewer has to choose the one that is

considered the most realistic among the three. We count

the votes of each method; getting more votes means better

quality. Our method significantly outperforms the other two

baselines. The experimental results show that the predicted

positions are reasonable and our synthetic images are real-

istic. More examples of our synthesis pipeline and results

are shown in Fig. 11.

(a)

(b)

Figure 10. Two baselines. (a) Pedestrians are randomly selected

and placed. (b) Pedestrians are copied as a whole from another

street scene image in the pedestrian dataset.

5. Conclusion and Future Work

This work presents a possibility of using deep networks

to infer a scene from the implicit cues for nonexistent pedes-

trian detection, which is a relatively unexplored area and has

no standard mechanisms for quantitative evaluation. The

empirical results show that our method can capture the idea

of where the reasonable places are for pedestrians to walk

or stand in a street scene. The proposed idea suggests an

alternative route toward scene understanding and may be

further applied to other tasks, such as pedestrian segmenta-

tion, activity analysis, etc. Extending this work from im-

age to video will be our future work. We also look for

the improvement of synthetic image quality. Our current

copy-and-paste method sometimes cannot achieve visually

appealing quality. Using GANs to generate end-to-end syn-

thetic output images would be an interesting direction.
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