
Real-time category-based and general obstacle detection for autonomous driving

Noa Garnett Shai Silberstein Shaul Oron Ethan Fetaya

Uri Verner Ariel Ayash Vlad Goldner Rafi Cohen Kobi Horn Dan Levi

Advanced Technical Center Israel, General Motors R&D

Hamada 7, Herzlyia, Israel

{noa.garnett,shaul.oron,uri.verner,ariel.ayash,vlad.goldner,rafi.cohen,dan.levi}@gm.com

Abstract

Detecting obstacles, both dynamic and static, with near-

to-perfect accuracy and low latency, is a crucial enabler

of autonomous driving. In recent years obstacle detection

methods increasingly rely on cameras instead of Lidars.

Camera-based obstacle detection is commonly solved by

detecting instances of known categories. However, in many

situations the vehicle faces un-categorized obstacles, both

static and dynamic. Column-based general obstacle detec-

tion covers all 3D obstacles but does not provide object-

instance classification, segmentation and motion predic-

tion. In this paper we present a unified deep convolutional

network combining these two complementary functions in

one computationally efficient framework capable of real-

time performance. Training the network uses both manually

and automatically generated annotations using Lidar. In

addition, we show several improvements to existing column-

based obstacle detection, namely an improved network ar-

chitecture, a new dataset and a major enhancement of the

automatic ground truth algorithm.

1. Introduction

Autonomous vehicles depend on detecting static and dy-

namic obstacles in real-time and predicting their behav-

ior with no room for error. High resolution Lidar has

been the sensor to go in this domain for most projects

aiming Level 5 automation such as the winning entries in

the DARPA Urban Challenge [33] and Google’s self driv-

ing car [14]. Recently, more projects aim at a camera-

centric approach [23, 2, 1] due to the disadvantages of high-

resolution Lidars (cost, packaging, moving parts) and the

boost in computer vision accuracy. To fully or partially re-

place Lidars, vision-based obstacle detection should reach

at least the same performance. We divide the task to two

main sub-tasks: categorized and general obstacle detection.

Category-based detection (aka detection and classifica-

tion), has been extensively studied in computer vision [7,

Figure 1. Unified method output examples. General obstacles

are marked by blue bars. The bottom position of each bar is de-

termined by the max probability bin of the StixelNet branch (See

Section 2.1). Bar height is shown for display purposes only, and

computed as a linear function of the bottom image position. Cars,

pedestrians and cycles are marked as bounding boxes and color

coded by their class. Notice in the examples that real world driv-

ing involves complex scenarios requiring both types of obstacles

to be detected.

10] leading to dramatic performance improvements in re-

cent years [28, 6, 22]. In the common scenario, during de-

ployment, a bounding box and class is marked for each ob-

ject belonging to a set of pre-defined classes. In addition,

the object’s pose may be assigned [25]. This is particularly

useful since knowing the class and pose of the object is in-

strumental to predicting its behavior and motion. However,

objects outside the pre-defined class set are not detected.

A complementary enabling technology is free-space or

general obstacle detection [3, 19]. The task is to identify in

each image column the row position of the nearest roughly

vertical obstacle. In our formulation obstacles consist of ev-

ery object higher than a typical curb. This allows detecting

all relevant static and dynamic obstacles, both on the road

and on the sidewalk. Several examples include construction

zone delimiters, shopping carts, un-categorized animals and

toddlers. We introduce a method performing both types of

obstacle detection in one unified network capable of run-

1198

ning in real-time (30fps) and sharing most computation be-

tween the tasks. Figure 1 shows detection examples of our

network in three different scenes. Notice the complemen-

tary nature of the two capabilities. In addition, for each

categorized object, the network is capable of estimating its

pose with negligible additional computation cost.

Our contributions are as follows. First, we introduce a

novel unified network architecture for categorized object

detection, pose estimation and general obstacle detection

running in real time. The architecture is single-shot and

learned end-to-end. It combines Single-Shot Multi-Box

Detector (SSD) [22] for categorized object detection and

pose estimation, with our version of the StixelNet [19] for

general obstacles. Training data consists of images with

both manually and automatically generated ground truth

(GT). Second, we introduce several significant improve-

ments to the StixelNet: a new network architecture, a new

automatic ground truth method for generating training data

and the use of a newly collected dataset. In our experi-

ments, we improve state-of-the-art general obstacle detec-

tion. The combined multi-task network maintains single-

task networks accuracy while sharing most computation be-

tween the tasks. Finally, we show that column-based gen-

eral obstacle detection can be generalized to cope with sub-

stantially different cameras and viewing angles.

1.1. Related Work

Network architectures for modern object detectors are

divided to single shot [22, 27] and region-proposal

based [28, 6]. The output of such detectors is a tight bound-

ing box around each object instance. Recently, it has been

shown that with little computational overhead rich addi-

tional information can be extracted for each instance. This

includes object pose [25], instance segmentation [15] and

3D bounding box estimation [4]. For our combined net-

work we built our architecture on the SSD [22] which was

shown to have the best accuracy when processing time is

the first priority [16].

There exist several approaches for general obstacle or

free space detection. We follow the column-based ap-

proach [3, 34]. In particular we further develop and im-

prove the StixelNet monocular approach introduced in [19].

This representation of the free space is both compact and

useful since it can be efficiently translated to the occupancy

grid representation commonly used by autonomous agents.

A contrasting approach is based on pixel-level road seg-

mentation [24, 32]. It has the advantage of detecting free

space areas not immediately reachable at the expense of an

over-parametrization: an output for each pixel. [26] de-

tect unexpected obstacles using a joint geometric and deep

learning approach. In [29] stereo-based stixels and pixel-

level segmentation are combined to obtain “Semantic Stix-

els”: Stixels with class labels. The most related to our work

is MultiNet [32], a combined network for road segmenta-

tion and object detection. In comparison our approach uses

column-based detection and operates over two times faster

on a comparable hardware.

We believe automated ground truth (AGT) methods will

be instrumental in next generation automotive computer

vision. Their main appeal is the ability to collect large

amounts of training data with a relatively low effort. Recent

benefits of the approach were shown in learning monocular

depth estimation from Lidar [18] and Stereo [11]. [19] have

shown the effectiveness of AGT for general obstacle detec-

tion. Lidar is very efficient at detecting free-space and accu-

racy can be obtained by ignoring low confidence columns.

In this paper we introduce a new and improved algorithm

for the this task.

Finally, while numerous datasets with vehicle on board

imagery exist [13, 5] only few exist from low mounted fish-

eye lens cameras [20]. Such setup is in wide use for sur-

round view applications and requires special adaptation of

computer vision methods. We introduce a new such dataset

with automatically generated GT. The remaining of the pa-

per is organized as follows: We start with the description of

the combined network followed by an experimental valida-

tion on multiple datasets and conclusions.

2. Combined network for obstacle detection

We next describe our architecture for each of the three

tasks we address: general obstacle detection, object detec-

tion and pose estimation. We then present the combined

network architecture and its training procedure.

2.1. General obstacle detection

Our network for general obstacle detection is derived

from the StixelNet [19]. The network gets as input an im-

age of arbitrary width and predefined height Ih = 370. The

final desired result is the pixel location y of the closest ob-

stacle bottom point in each image column (with stride s).

As in the original StixelNet the network outputs for each

column are represented by k position neurons, represent-

ing the centers of k equally spaced bins in the y image axis.

The output of each neuron represents the predicted proba-

bility that the obstacle position is in the respective bin.

An important addition we introduce is the ability to han-

dle two edge cases: the presence of a near obstacle trun-

cated by the lower image boundary (“near obstacle”), and

no obstacle presence in the column (“clear”). This was

not previously handled since the Automatic Ground Truth

(AGT) [19] did not detect such columns and hence they

were not included in the training set. Our AGT described

below does handle these cases, however since the represen-

tation of these in the training set is extremely imbalanced,

we introduced the following modification to the network:

additional per-column type neurons with three possible

199

output values: “near obstacle”, “clear” and “regular” ac-

cording to the aforementioned cases. This dual per-column

representation is combined to one position output as fol-

lows: if the type is one of the edge cases, the first or last

position neurons probability is set to the type probability

respectively. The rest of the position neurons are re-scaled

proportionally s.t. the probabilities sum equals 1. During

training, Softmax-loss is used for the type-neurons, while

the PL-loss [19] is used for the position neurons. PL-loss

has been shown to be effective in regression problems such

as ours, which require a multi-modal representation while

being able to preserve order information between neighbor-

ing position neurons.

Following [19] we use AGT to detect the obstacle po-

sition in each image column using the Lidar point cloud.

The original AGT suffers from several drawbacks which

we address. The proposed AGT has two main differences:

an object-centric obstacle bottom position estimation and

column-type detection. The target of AGT is to bring fully

reliable and consistent GT while covering as many columns

as possible. The new AGT, described in detail next, pro-

vides high reliability while covering a much larger percent

of the columns as shown in the experimental section.

The AGT is composed of two algorithms: one detects

for each obstacle its bottom contour in the image, and the

second detects columns which are certain to be clear of ob-

stacles. Both algorithms get as input the 3D point cloud,

from which ground plane points are removed by fitting a

plane model. We start by describing rest of the stages of the

first algorithm.

The 3D point cloud is separated to clusters in 3D. Obsta-

cles (clusters) with maximal height (position above ground)

below 20cm are ignored. The algorithms continues process-

ing each cluster separately. 3D Points are projected onto

the image and dilated resulting in a dense point blob. Let

IB be the binary image of all lowest points in each image

column. IB is smoothed by a Gaussian kernel. Finally, a

1-dimensional conditional random field is applied to find an

optimal trajectory with maximal value in IB and minimal

y-position discontinuity. This trajectory is considered the

obstacle’s bottom contour. An example result is depicted in

figure 2.

Note that the Lidar points do not cover the entire im-

age. Therefore a special handling is required for near ob-

jects whose bottom is below the Lidar coverage. We first

detect such cases which occur when the bottom most Lidar

point of an obstacle cluster is above the ground. Then, we

project these points to the road plane in 3D and add them to

the cluster.

The second part of the AGT consists of detecting “clear”

columns. There are two conditions to be met for such a

column: all points in it (projected from 3D) are lower than

5cm and there exist points beyond 18 meters in distance.

Figure 2. Example of the Lidar-based automatic ground truth for

obstacle detection. Each obstacle instance is colored uniquely and

obstacle bottom contour is marked in white.

The second condition prevents columns to be classified as

clear although there is a close dark object absorbing the Li-

dar beams.

When training on an cropped image patch, if bottom-

most cropping position is above or at the GT bottom of a

valid column, then it is classified “near obstacle” (e.g. right

most object in figure 2). Compared to the automatic ground

truth procedure described in [19] which operates directly in

the image domain our object-centric approach takes advan-

tage of the obstacles continuity to output a more complete

and smooth ground truth annotation.

We next describe the method for object detection and

pose estimation, trained using manual annotations, in con-

trast to the general obstacle detection.

2.2. Categorybased object detection

Our object detection is based on the SSD framework [22]

which provides an excellent run-time vs. accuracy trade-off.

The network is trained with four classes: vehicles, pedestri-

ans, cycles (bicycles + motorcycles) and background. We

found a slight modification to the ground truth bounding

box association in the training procedure to improve the net-

work accuracy. When a GT bounding box is associated to

a proposal, a hard limit on the overlap ratio is originally

used to classify the proposal as true or false. In our version

a buffer zone in the overlap ratio value (0.4-0.6) is defined

in which proposals are ignored. This helps preventing am-

biguities in the association process and better defines class

and background train samples. In addition we modify the

learning such that difficult examples are ignored instead of

treated as background. We used a version of the code pro-

vided by the authors in which we optimized the network

deployment efficiency.

2.3. Object pose estimation

Object pose is defined for a car by its heading direction

angle in top view ΘH in camera-centric coordinates. The

pose angle is defined as ΘP = ΘH − ΘC where ΘC is

angle of the line passing through the camera and car cen-

ter position. For representation in the network ΘP is dis-

200

cretized to 8 equally spaced bins between 0 and 2π. For

each bounding box proposal, the network outputs probabil-

ity of each angle bin. A cyclic version of the PL-loss is used

to train the output layer against the continuous ground-truth

ΘP . Supporting the cyclic nature of the output cyclic-PL-

loss considers first and last bins as neighboring, such that

angles close to zero contribute both. The SSD architecture

is modified by adding per proposal, 8 pose neurons, similar

to those for class and box regression.

2.4. The combined network

The combined network architecture is illustrated

in 3. The feature extraction layers are based on the

GoogLeNet[31] backbone. From this, two main branches

split: object/pose (SSD+Pose) and general obstacle detec-

tion (StixelNet). The StixelNet branch is trained with AGT

as described previously while the object detection, classi-

fication and pose estimation are trained with manually la-

beled data. Inspired by GoogLeNet [31] and VGG [30], our

version of StixelNet uses a deeper architecture than the one

described in [19]. Feature map sizes in Illustration 3 cor-

respond to a 800 × 370 image. Note however that the two

branches may operate on different image sizes by cropping

feature maps accordingly when branching out.

The combined network objective loss is defined as a lin-

ear combination of the SSD object classification, bounding

box regression, pose estimation, stixel-position and stixel-

type losses with relative weighing of 1, 0.5, 0.5, 1, 1 respec-

tively. These weights were experimentally set to minimize

accuracy loss on each task in the combined network. We

start all training sessions with the GoogLeNet layers pre-

trained on the ImageNet [8] as provided by the authors. We

found that fine-tuning the network with the combined ob-

jective to produce degraded results. Instead, we first train

the SSD branch without pose, then fix all weights and train

pose neurons only, then fix again and train the StixelNet

branch, and finally allow all network weights to freely learn

the combined objective loss.

3. Experimental results

We compare the new version of the StixelNet with the

original one [19], and the combined network with partial

networks each specializing in a single task. Since different

tasks require specialized types of annotation we have mul-

tiple data-sets for training and testing each task as summa-

rized in Table 1. All training datasets are used for the rele-

vant tasks and are ignored for all other tasks during training.

We show results on each test set according to available an-

notations for that set. Notice the public domain test datasets

are actually validation sets we separated from the training

data. In the kitti-stixels dataset we follow the same separa-

tion to train and test as in [19].

Data-set name / source S
ti

x
el

s

O
b

je
ct

s

P
o

se

#
im

ag
es

#
in

st
an

ce
s

kitti-objects-train [13] X X 5K 15K

Cityscapes [5] X 3K 15K

TDCB [21] X 9K 15K

Caltech-peds [9] X 32K 53K

internal-objects-train X 3K 19K

internal-pose-train X 155K 160K

kitti-stixels-train [12] X 6K 5M

internal-stixels-train X 16K 20M

kitti-objects-test [13] X X 891 3.5K

internal-objects-test X 1K 8K

internal-stixels-test X 910 19K

kitti-stixels-test [12] X 760 11K
Table 1. Datasets used in paper

Three datasets in 1 were internally collected: object-

internal, pose-internal and stixel-internal. The first two,

used for object detection and pose estimation respectively

were collected with a roof top mounted camera similar in

setting to the kitti-dataset [13] and manually labeled. The

stixel-internal dataset is aimed at short range general ob-

stacle detection with fisheye-lens camera mounted in typi-

cal production surround vision systems position. To obtain

accurate automatic ground truth we mounted a Velodyne

HDL64 Lidar right below the camera as depicted in Fig-

ure 4. Co-locating the sensors eliminates differences stem-

ming from viewpoint variation. The camera is triggered to

capture an image every time the Lidar is pointed directly

forward. Each image is corrected before processing by vir-

tually rotating the camera to forward view, and un-distorting

it to a cylindrical image plane. Figure 1 bottom left shows

detection results on an image from the test portion of this

dataset.

3.1. Implementation details

Implementation was done in the Caffe framework [17].

All training was carried out with extensive geometric data

augmentation with crop, mirror and warp operations. For

training, the SSD patches were cropped with width ranging

from 320−1280 and height 160−800 such that their aspect

ratio (width/height) was between 1.5 and 2.5, and warped to

800× 400 training patches. For the StixelNet, patches were

cropped with width 760 − 840 and height 360 − 380, and

warped to 800 × 370. Kitti images are roughly 370 pix-

els height so there was no augmentation in the vertical axis.

However, the internal dataset image height is 800 pixels al-

lowing extensive variation in vertical position. We used an

augmentation scheme in which the horizon vertical position

varies by ±50 pixels making the StixelNet less sensitive to

201

100

12

100 100

S
S

D
 D

e
te

ct
io

n
s,

 c
o

n
fi

d
e

n
ce

,
p
o
se

N
o

n
-m

a
xi

m
a

l
su

p
p

re
ss

io
n

3

800

370

Input image
GoogleLeNet
through inception_4 layer

100

46

480

inception_3
inception_4

832

50

23

512

25

12

256

13

6

2 56

7

3

SSD + Pose Layers

StixelNet Layers

Conv: 1X1*256 / s1
Conv: 3X3*512 / s2

Conv: 1X1*128 / s1
Conv: 3X3*256 / s2

Conv: 3X3 *(4(priors)*(3(Class confidences)+4(Box)+8(pose)))

Conv: 3X3 *(6*15)

Conv: 3X3 *(6*15)

Conv: 3X3 *(6*15)

Conv: 3X3 *(6*15)

Conv: 3X3 / s1
Conv: 3X3 / s1 Conv: 3X3 / s1

Conv: 3X3 / s1

Vertical Pool: 1X2 / s:1X2
Conv: 3X3 / s1
Conv: 3X3 / s1

Vertical Pool: 1X2 / s:1X2
Conv: 3X3 / s1
Conv: 3X3 / s1

Vertical Pool: 1X2 / s:1X2

256256 256 256256 256 256256 256256 256

Conv: 1X1*128 / s1
Conv: 3X3*256 / s2

23

46

100

6

3 1

100 100 100 100

1 1

Conv: 1X1*77=

(74 (position) +

3 (type))

256 2048 2048 77

Figure 3. Combined SSD, Pose and StixelNet architecture.

Figure 4. General obstacle detection data collection setup for au-

tomatic ground truth. A fisheye-lens camera is mounted in typical

production position (height 80cm, tilt 20 degrees downward). A

Velodyne Lidar is mounted below the fisheye-lens camera.

the exact horizon position.

3.2. Combined network

Table 3.2 summarizes accuracy results vs. run-time on

all tasks with the combined network and its subsets. Run-

time is measured in milliseconds per 800× 370 pixel frame

on Nvidia Quadro M6000 GPU. Best accuracy per task is

in bold. The SSD-only method is only trained for object

detection. Accuracy is reported as area under curve (AuC)

of the precision-recall following exactly KITTI evaluation

protocol [13] in the “moderate” difficulty setting. A 0.5

minimal intersection over union overlap is required for cor-

rect bounding box detection. The SSD + pose adds pose de-

tection functionality. Pose estimation accuracy is measured

for correctly detected cars following the kitti-objects [13]

methodology as well.

The StixelNet-only method is trained for general obsta-

cle detection only. Results are reported for each of the two

test sets separately and using the two measures described

in [19]: AuC for correct predictions at maximal probability,

and average probability.

The result show that combined method accuracy on each

task is on-par or slightly degraded compared to each single

task method. Two out of the eight measures suffer a 4.4%

degradation in accuracy while for the remaining ones it is

negligible. In terms of run-time, running the combined net-

202

Accuracy measure Run-time

DataSet: {kitti, internal}-objects-test kitti-objects-test kitti-stixels-test internal-stixels-test

Test: Car Pedestrian Bicycle Pose Max Pr. Avg. Pr. Max Pr. Avg. Pr. ms/f

SSD-only 0.901 0.574 0.560 27

SSD + pose 0.900 0.578 0.541 0.890 28

StixelNet-only 0.854 0.824 0.827 0.774 19

Combined net 0.900 0.570 0.536 0.892 0.825 0.788 0.824 0.772 33

Table 2. Accurracy vs. run-time measures (in milliseconds per frame) on the three tasks for the combined net and its subsets. See text for

more details on accuracy measures and datasets.

work versus the SSD-only adds 20% to the total run-time,

meaning most computation is shared between the tasks. At

30 frames per second (33ms/f) the combined network is

most suitable for run-time even with more power efficient

GPUs.

3.3. General obstacle detection

Due to the improved AGT, dataset and architecture the

general obstacle detection module performs significantly

better than the originally proposed StixelNet. Figure 5 il-

lustrates these differences on some examples from the kitti-

stixels-test set. Most apparent are, not surprisingly, for

the edge cases (near object and clear column). The sig-

nificant qualitative improvement has much to do with the

new AGT which provides a much more complete cover-

age: 81% (internal-stixels-dataset) and 69% (kitti-stixels-

dataset) are provided with valid ground truth. For com-

parison the original AGT provides a 25% coverage on the

kitti-stixels-dataset. Specifically, the edge cases were al-

most completely excluded in the previous AGT.

In table 3 we show consistent performance improvement

on the new test set compared to the original StixelNet. To

have a fairer comparison we also show the results when

edge cases are excluded from the test set, since the original

StixelNet was not trained with such cases. A full ablation

study to single out the different factors for the improvement

is prohibitive since the new network architecture, training

set, test set and AGT are coupled together, and in fact solve

a slightly altered, more complete problem than the original

one. We compared the effect of the backbone change in

the architecture by altering the original StixelNet to use the

same backbone as in our implementation (GoogLeNet[31]).

The network was trained and tested on the original test set

from [19]. Results show a marginal improvement in the ac-

curacy (1% or less in all measures) indicating the backbone

is not an important factor in the improvement.

To test the transferability of StixelNet from one camera

setup to another we do a cross examination of the method

trained and tested on both kitti and internal datasets. Note

the large difference: a roof mounted forward camera ver-

sus a low mount fisheye-lens tilted downwards. As sum-

marized in table 4 highest accuracy on each test set is at-

kitti-stixels-test internal-stixels-test

Max Pr. Avg. Pr. Max Pr. Avg. Pr.

Original 0.689 0.671 0.681 0.654

Ours 0.854 0.824 0.827 0.774

Edge cases excluded from test

Original 0.779 0.758 0.704 0.678

Ours 0.827 0.807 0.819 0.760
Table 3. Comparison of original StixelNet [19] and ours on stixel

test sets

tained when trained only on the corresponding train set or

on the combined one. Having negligible degradation in ac-

curacy when trained on the entire dataset suggests that the

network learned a general representation transferable to dif-

ferent cameras.

Train / Test kitti-stixels-test inter.-stixels-test

Max P. Avg P. Max P. Avg P.

kitti-stixels-tr. 0.855 0.827 0.740 0.721

inter.-stixels-tr. 0.685 0.679 0.833 0.776

both 0.854 0.824 0.827 0.774
Table 4. Generalization across datasets

4. Conclusions and future work

We presented a unified network with real-time detec-

tion capability for both categorized and uncategorized ob-

ject. The network is trained with a combination of manual

and automatic ground truth based on Lidar. Our novel au-

tomated ground truth (AGT) algorithm covers most image

parts facilitating the learning of a generic obstacle detection

module. Using the new AGT, in combination with a new

network architecture and dataset our version of the Stixel-

Net improves state-of-the-art column-based general obsta-

cle detection. We believe future research should focus on

obtaining a unified AGT process that covers all aspects of

obstacle detection.

References

[1] https://www.tesla.com/blog/

all-tesla-cars-being-produced-now/

203

Figure 5. StixelNet example results on kitti-test dataset. Left: Ours, Right: [19].

-have-full-self-driving-hardware. 1

[2] http://www.mobileye.

com/future-of-mobility/

history-autonomous-driving. 1

[3] H. Badino, U. Franke, and D. Pfeiffer. The stixel world

- a compact medium level representation of the 3d-world.

In Proceedings of the 31st DAGM Symposium on Pat-

tern Recognition, pages 51–60, Berlin, Heidelberg, 2009.

Springer-Verlag. 1, 2

[4] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and

T. Chateau. Deep MANTA: A coarse-to-fine many-task net-

work for joint 2d and 3d vehicle analysis from monocular

image. CoRR, abs/1703.07570, 2017. 2

[5] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 2, 4

[6] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via

region-based fully convolutional networks. In Advances in

Neural Information Processing Systems 29: Annual Confer-

ence on Neural Information Processing Systems 2016, De-

cember 5-10, 2016, Barcelona, Spain, pages 379–387, 2016.

1, 2

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Proceedings of the 2005 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05,

pages 886–893, Washington, DC, USA, 2005. IEEE Com-

puter Society. 1

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009. 4

[9] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian

detection: A benchmark. In CVPR, June 2009. 4

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE Trans. Pattern Anal. Mach. Intell.,

32(9):1627–1645, Sept. 2010. 1

[11] R. Garg, B. G. V. Kumar, G. Carneiro, and I. D. Reid. Un-

supervised CNN for single view depth estimation: Geometry

to the rescue. In Computer Vision - ECCV 2016 - 14th Eu-

ropean Conference, Amsterdam, The Netherlands, October

11-14, 2016, Proceedings, Part VIII, pages 740–756, 2016.

2

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. International Journal of Robotics

Research (IJRR), 2013. 4

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012. 2, 4, 5

[14] E. Guizzo. Very deep convolutional networks for large-scale

image recognition. IEEE Spectrum, October, 2011. 1

204

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-

CNN. arXiv preprint arXiv:1703.06870, 2017. 2

[16] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and

K. Murphy. Speed/accuracy trade-offs for modern convolu-

tional object detectors. CoRR, abs/1611.10012, 2016. 2

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 4

[18] Y. Kuznietsov, J. Stückler, and B. Leibe. Semi-supervised

deep learning for monocular depth map prediction. In IEEE

International Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 2

[19] D. Levi, N. Garnett, and E. Fetaya. Stixelnet: A deep con-

volutional network for obstacle detection and road segmen-

tation. In Proceedings of the British Machine Vision Confer-

ence (BMVC), pages 109.1–109.12. BMVA Press, Septem-

ber 2015. 1, 2, 3, 4, 5, 6, 7

[20] D. Levi and S. Silberstein. Tracking and motion cues for

rear-view pedestrian detection. In 2015 IEEE 18th Inter-

national Conference on Intelligent Transportation Systems,

pages 664–671, Sept 2015. 2

[21] X. Li, F. Flohr, Y. Yang, H. Xiong, M. Braun, S. Pan, K. Li,

and D. M. Gavrila. A new benchmark for vision-based cy-

clist detection. In 2016 IEEE Intelligent Vehicles Symposium

(IV), pages 1028–1033, June 2016. 4

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In ECCV, 2016. 1, 2, 3

[23] R. Metz. Autox has built a self-driving car that navigates

with a bunch of 50usd webcams. MIT Technology Review,

March, 2017. 1

[24] G. L. Oliveira, W. Burgard, and T. Brox. Efficient deep mod-

els for monocular road segmentation. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 4885–4891, Oct 2016. 2

[25] P. Poirson, P. Ammirato, C. Fu, W. Liu, J. Kosecka, and A. C.

Berg. Fast single shot detection and pose estimation. CoRR,

abs/1609.05590, 2016. 1, 2

[26] S. Ramos, S. K. Gehrig, P. Pinggera, U. Franke, and

C. Rother. Detecting unexpected obstacles for self-driving

cars: Fusing deep learning and geometric modeling. CoRR,

abs/1612.06573, 2016. 2

[27] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection.

In 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,

2016, pages 779–788. IEEE Computer Society, 2016. 2

[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Neural Information Processing Systems (NIPS),

2015. 1, 2

[29] L. Schneider, M. Cordts, T. Rehfeld, D. Pfeiffer, M. En-

zweiler, U. Franke, M. Pollefeys, and S. Roth. Semantic

Stixels: Depth is not enough. In IEEE Intelligent Vehicles

Symposium, Proceedings, pages 110–117, Piscataway, NJ,

2016. IEEE. 2

[30] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 4

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1–9, June 2015. 4, 6

[32] M. Teichmann, M. Weber, J. M. Zöllner, R. Cipolla, and

R. Urtasun. Multinet: Real-time joint semantic reasoning

for autonomous driving. CoRR, abs/1612.07695, 2016. 2

[33] C. Urmson, J. Anhalt, J. A. D. Bagnell, C. R. Baker, R. E.

Bittner, J. M. Dolan, D. Duggins, D. Ferguson, T. Galatali,

H. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. Howard,

A. Kelly, D. Kohanbash, M. Likhachev, N. Miller, K. Pe-

terson, R. Rajkumar, P. Rybski, B. Salesky, S. Scherer, Y.-

W. Seo, R. Simmons, S. Singh, J. M. Snider, A. T. Stentz,

W. R. L. Whittaker, and J. Ziglar. Tartan racing: A multi-

modal approach to the darpa urban challenge. Technical Re-

port CMU-RI-TR-, Pittsburgh, PA, April 2007. 1

[34] J. Yao, S. Ramalingam, Y. Taguchi, Y. Miki, and R. Urta-

sun. Estimating drivable collision-free space from monocu-

lar video. In 2015 IEEE Winter Conference on Applications

of Computer Vision, pages 420–427, Jan 2015. 2

205

