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Abstract

Designing autonomous vehicles suitable for urban envi-

ronments remains an unresolved problem. One of the major

dilemmas faced by autonomous cars is how to understand

the intention of other road users and communicate with

them. The existing datasets do not provide the necessary

means for such higher level analysis of traffic scenes. With

this in mind, we introduce a novel dataset which in addition

to providing the bounding box information for pedestrian

detection, also includes the behavioral and contextual an-

notations for the scenes. This allows combining visual and

semantic information for better understanding of pedestri-

ans’ intentions in various traffic scenarios. We establish

baseline approaches for analyzing the data and show that

combining visual and contextual information can improve

prediction of pedestrian intention at the point of crossing

by at least 20%.

1. Introduction

Visual perception and scene understanding are key com-

ponents in autonomous driving. Tasks such as road detec-

tion and following [24], pedestrian [42] and car detection

[40] have been extensively researched in the past decades

and shown to be essential in designing robust and safe sys-

tems.

In typical traffic scenarios, there are numerous factors

that influence the behavior of road users. Aside from offi-

cial rules that govern traffic flow, which can be accommo-

dated by observing signs, signals or position of the other

road users, traffic participants often engage in some form of

non-verbal communication to resolve ambiguous situations,

such as yielding, taking the right of way, or even crossing

the street [39].

The importance of such interactions between road users

is evident in the recent report on Google’s self-driving car

[1] indicating that 90% of the failures occur in busy streets

out of which 10% is due to the incorrect prediction of traf-

fic participants behavior. Among the problems reported in

Figure 1: Example of annotations provided in the dataset:

bounding boxes for all pedestrians, behavioral labels, gen-

der and age for pedestrians crossing or intending to cross,

contextual tags (weather, time of the day, street structure)

recent years are the failure to estimate other vehicle’s move-

ment [33] or inability to respond to unexpected behaviors of

other drivers [19]. This is a concern for pedestrian safety.

For example, a recent study [32] shows that pedestrians, in

particular the ones at crosswalks, have the highest risk of

being the victim of perceptual discrepancies.

The common approach to remedy the problem of pre-

dicting road users behavior is to employ dynamic factors,

such as trajectory [3] or velocity [30], or the expected final

goal of pedestrians [18, 31]. More recently researchers also

looked at other behavioral cues such as pedestrian head ori-

entation to measure the level of awareness at the point of

crossing [21, 35]. These studies, however, are limited in

scope and look at very few contextual elements to predict

the behavior of pedestrians. In practice, there are other fac-

tors, in addition to spatiotemporal ones, that can influence

the crossing behavior of a pedestrian including the structure

of the crosswalk (e.g. sign, delineation) [38], environmen-

tal factors (e.g. weather condition, visibility) or individual

characteristics of pedestrians (e.g. demographics) [39].
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To provide a testbed and facilitate further studies in the

field of pedestrian behavior analysis, we make the follow-

ing contributions: 1) We introduce a novel dataset called

Joint Attention in Autonomous Driving (JAAD)1 that en-

ables behavioral analysis of pedestrians at the point of

crossing. Compared to existing large-scale datasets such as

KITTI [13] and Caltech pedestrian dataset [8], in addition to

ground truth for all pedestrians in the scene and occlusion

information, our dataset contains behavioral tags describ-

ing actions of pedestrians intending to cross. Each frame

also includes contextual information such as the type of the

crosswalk, traffic signs and road type as well as weather

conditions and time of the day. 2) We examine baseline

approaches using Convolutional Neural Networks (CNNs)

to detect and analyze the context of the scenes as well as

pedestrians’ behavioral cues. 3) Finally, we combine the

best performing baseline approaches using a linear classi-

fier to evaluate how well the crossing behavior of pedestri-

ans can be predicted.

2. Why context matters

In the computer vision community human activity recog-

nition has been extensively studied [26, 23, 17, 6, 41].

These works either focus on recognizing the basic activ-

ity of a subject such as walking, running or jumping [41]

or understanding the underlying semantics of a certain ac-

tivity, e.g. standing in a queue [6], performing an offensive

action in a sports game [17, 23] or grasping certain objects

[26]. To resolve the latter problem, the context in which

the activity is perceived is also considered. The relevance

of a contextual element to understanding a certain activity

may vary depending on the task. For instance, in a sports

scene to analyze a certain game strategy the current state

of all subjects in the scene [23] as well as the spatiotempo-

ral context that resulted in the perceived behavior [17] are

important.

Understanding pedestrian activities and predicting their

behavior in traffic scenes is no exception and requires higher

level reasoning by taking into account various contextual

elements. Here the context can either be target specific such

as demographics (e.g. gender and age) or culture specific

attributes [39], spatiotemporal (e.g. trajectory or velocity)

[25] or environmental context (e.g. signs, delineation) [38].

A number of recent works have attempted to capture

some of the above contextual elements to predict pedes-

trian behavior. For instance, trajectory [3] or head orien-

tation of pedestrians [21] are used to predict whether they

will cross. In these works, however, the physical context

is known (streets with no designated crossing) and is not

linked to the perceived behavior (e.g. the pedestrian is look-

1The JAAD dataset is available at http://data.nvision2.

eecs.yorku.ca/JAAD_dataset/
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INRIA[4] 1.8k 2.5k

Daimler[10] 72k 28.5k x

Caltech[8] 347k 250k x x x

KITTI [13] 12k 80k x x

MPD [16] 86.2k 95k x x x

Our Dataset 337k 82k x x x x x x

Table 1: Comparison of our dataset with existing large-scale

pedestrian datasets. The last six columns indicate the prop-

erties of each dataset.

ing towards the approaching car). The pedestrian behavior

is also limited to looking and non-looking actions.

There are a number of large-scale datasets publicly avail-

able that can be potentially used for pedestrian behavior

understanding [13, 8, 10]. However, the majority of these

datasets are designed for the purpose of pedestrian detec-

tion and only provide bounding boxes for pedestrians. Few

exceptions, such as KITTI [13], also provide optical flow

and stereo information for mapping and localization.

Some small-scale datasets are also available that are gen-

erated for pedestrian path prediction [34], [21]. The one of

interest is from Daimler [21], which, in addition to dynamic

factors, also takes into account context in the form of the

degree of pedestrians’ head orientation. This dataset, how-

ever, only contains 58 sequences that are collected from 4

pedestrian participants who were instructed to perform cer-

tain behaviors during the recording (i.e. the dataset is not

naturalistic). This feature limits the scope of the dataset

as ”in the wild” much more varied behaviors may occur

during the course of crossing. In addition, in the Daimler

dataset, context only refers to the pedestrians head orienta-

tion, the curbside location and distance and trajectory of the

pedestrians. Apart from head orientation there are no other

behavioral tags reflecting the actions of the driver or the

pedestrian. In terms of environmental context, the videos

are only recorded in streets without any traffic signals or

zebra crossing and no ground truth information is available

for characteristics of the scene (both for the pedestrians and

environments).

We are introducing a novel dataset to facilitate the study

of traffic scene analysis and pedestrians’ behavior under-

standing. Since most of the interactions with pedestrians,

from the perspective of an autonomous car, are at the point

of crossing, in our dataset we particularly focus on various

crossing scenarios. To the best of our knowledge, this is

the first publicly available large-scale dataset that combines

pedestrian detection with behavioral and contextual infor-

mation. Table 1 summarizes the differences between our

dataset and some of the state-of-the-art datasets.
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Camera Model resolution FOV # clips

Garmin GDR-35 1920x1080 110o 276

GoPro Hero+ 1920x1080 170o 60

Highscreen BB Connect 1280x720 100o 10

Table 2: The properties of the cameras used to collect the

data and corresponding number of video clips captured with

each one.

3. The dataset
3.1. Data collection

There are over 300 video clips in our dataset ranging

from 5 to 15 seconds in duration. The data is collected in

North America (60 clips) and Europe (286 clips) using three

different high-resolution monocular cameras (see Table 2).

The cameras were positioned inside the car below the rear

view mirror. The frame rate of the videos is 30 fps.

3.2. Ground truth

Our dataset comes with three types of ground truth anno-

tations: bounding boxes for detection and tracking of pedes-

trians, behavioral tags indicating the state of the pedestrians

and scene annotations listing the environmental contextual

elements (shown in Figure 1).

Bounding boxes: the dataset contains approximately

82k frames and 2.2k unique pedestrian samples comprising

a total of 337k bounding boxes. The bounding boxes and

annotations are done using Piotr’s annotation toolbox [7].

We used 3 types of ids: pedestrian to identify the pedestri-

ans with behavioral tags (i.e. the ones demonstrating the in-

tention of crossing or located close to the curb), ped for all

other individual pedestrians in the scene (bystanders) and

people for groups of pedestrians, where individual people

are hard to distinguish. All identified pedestrians are as-

signed a unique id such as pedestrian1, pedestrian2, ped1,

ped2, people1, people2, etc. This form of annotation en-

ables tracking of pedestrians throughout a sequence.

Occlusion information is provided in the form of tags for

each bounding box: partial occlusion (between 25 and 75%

visible) and full occlusion (less than 25% visible).

Behavioral tags: there are 654 unique pedestrian sam-

ples (out of 2.2k samples) with behavioral tags in the

dataset. The behavioral data is created using the BORIS

software [12]. The behavioral information captures the type

and duration of pedestrians’ actions and also the actions of

the driver (i.e. the car with the recording camera). The

pedestrians’ actions are categorized into 3 groups: Precon-

dition- this refers to the state of the pedestrian prior to cross-

ing and can be either standing, moving slow or fast. At-

tention- the way the pedestrian becomes aware of the ap-

proaching vehicle. These actions, depending on their dura-

tion, are looking ( > 1s) or glancing (≤ 1s). Response- this

includes the behaviors that pedestrians exhibit in response

to the action of the approaching vehicle, namely, stop, clear

Figure 2: Behavioral labels with timestamps to represent the

sequence of the events that took place during the crossing

and observe the correspondence between the actions of the

driver and the pedestrian.

path, slow down, speed up, hand gesture and nod.

In addition to individual behavioral information, com-

plementary tags are also included that reflect the demo-

graphics of the pedestrians such as gender, age (adult, child

or elderly), and the size of the group each individual pedes-

trian is associated with.

The driver’s behavioral tags capture the state of the ap-

proaching vehicle which can be one of the following: mov-

ing slow or fast (current state) and slow down or speed up

(response). Figure 2 shows an example of behavioral anno-

tation with selected corresponding frames.

Contextual tags: each frame is assigned a contextual tag

that describes the scene. There are four types of contextual

information: Configuration- includes the number of lanes or

whether it is a parking lot/garage. Traffic signals- refers to

the presence of zebra crossing, pedestrian sign, stop sign or

traffic light in the scene. Weather- includes sunny, cloudy,

snowy or rainy. Time of day- this tag crudely indicates the

lighting conditions and can be day, afternoon or nighttime.

3.3. Properties

Visibility- The majority of the dataset is collected dur-

ing daytime, only a few videos are recorded at night. In

some videos there is strong sun glare making it particularly

difficult to observe the scene properly. Weather is another

factor that varies significantly and changes from clear sky to

heavy rain or snow. Figure 3 shows some examples of vis-

ibility variation and how challenging detecting pedestrians

and analyzing their actions can be in some cases.

Position distribution- Figure 4 shows the distribution of

pedestrians positions in the scene. As one would expect, the

position of the pedestrians with behavioral data is more con-

centrated in the center of the images since most of them are

crossing the street. Other pedestrian samples (bystanders)

are more uniformly distributed on either side of the frame.

Scale-Figure 5 shows the scale changes of data for pedes-
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sun glare night

snow cloudy

Figure 3: Samples of visibility changes in our dataset.

These examples show how weather/lighting conditions can

make the analysis of pedestrians behavior challenging.

with behavioral data without behavioral data

Figure 4: The distribution of bounding boxes around pedes-

trians in the scenes with and without behavioral data. The

pedestrians with behavioral data appear mainly in the center

of the images because they are crossing.

Figure 5: The scale variation of pedestrians height (in pix-

els) in the scenes. The pedestrians with behavioral data are

generally larger in scale and closer to the camera with an

average distance of 6-20m. The pedestrians without be-

havioral data (bystanders) are farther away from the vehicle

(20-45m).

trians with and without behavioral data in terms of the

height of bounding boxes. The average distance to pedestri-

ans from the recording vehicle was between 6 to 20 meters

for the ones with behavioral data and 20 to 45 m for the rest.

4. Baseline methods for scene analysis

In order to understand pedestrians’ intentions to cross,

we take into account two elements: static environmental

context and behavior of the pedestrians. For our baseline

approaches, we first identify how these elements can be ex-

tracted from the visual data using the textual annotations.

Next, we examine how combining static contextual infor-

mation with behavioral data can affect the prediction accu-

racy of pedestrian crossing.

Our data samples only have labels that list the elements

presented in the scene and the behavior exhibited by the

pedestrians. There is no bounding box information avail-

able for contextual data or for the position of the pedestri-

ans body parts. Thus, our problem is an instance of weakly-

supervised learning where we try, by providing sufficient

amount of data, to identify the attributes of the image. This

is particularly challenging for context understanding since

there is a large amount of background clutter that can affect

detection of certain elements.

Convolutional Neural Networks (CNNs) are commonly

used to deal with weakly-supervised data and showed state-

of-the-art performance in various applications [36, 29, 2].

In our experiments we apply the widely used AlexNet archi-

tecture [22] as our baseline and evaluate different variants

of this architecture against our data.

4.0.1 Contextual elements

Attribute recognition in weakly-supervised data is an active

topic of research [36, 43, 37]. There are two ways to recog-

nize attributes in a weakly-supervised manner. The first is to

explicitly classify attributes in the scenes [36]. The second

is to implicitly infer the attributes by classifying the scenes

and then identifying the attributes from the shared features

[43]. Since our data mainly contains inner city street scenes,

we use the former method to directly learn the attributes.

We selected seven classes that best represent the struc-

ture of a scene relevant to crossing:

Street width-narrow (< 2 lanes) or wide (≥ 3 lanes).

The wider the street, the longer it takes the pedestrian to

cross, therefore he/she would behave more conservatively.

Traffic signal- pedestrian crossing sign, zebra crossing,

stop sign and traffic light. Lack of street signal does not con-

strain the approaching vehicles to slow down or stop, there-

fore pedestrians will be more conservative to cross in the

presence of a vehicle. In addition, different signs may have

a different level of strength in controlling the traffic. For

instance, a pedestrian sign indicates yielding to pedestrians

(in some instances the driver might not yield), whereas stop

sign or red traffic light prohibits the driver to go any further

without stopping. Most of the locations in the dataset are

without the stop signs and traffic signals.

Location-parking lot (indicates whether the scene is in

a regular street or a parking area). The driving speed in
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parking lot areas is significantly slower than in streets (on

average 20 km/h). Therefore, pedestrians may have a higher

level of confidence to cross.

As the baseline model, we first train randomly initialized

AlexNet end-to-end on our dataset. Next, we examine the

option of transferred learning by fine-tuning the network on

our data. For this purpose we use pre-trained AlexNet on

two large image datasets, ImageNet [5] and places, and both

datasets combined [44].

One drawback of AlexNet is that it accepts images of

size 227x227 pixels as input. This limits its ability to learn

smaller objects in large scenes. One remedy to this prob-

lem is to convert AlexNet to a fully convolutional network

(FCN) allowing learning of images with larger dimensions.

To do so, we transform the last three fully connected lay-

ers (fc6-fc8) to convolution layers. We follow a similar ap-

proach as in [28] and use a global max-pooling layer at the

output to generate the final class scores.

Depending on where the attributes appear in the scene,

they might be captured in small or large scale images. For

this reason, we also consider multi-scale learning of the

scenes using two approaches. The first is the Spatial Pyra-

mid Pooling (SPP) [15] technique which allows the max-

pooling of the features from the last convolutional layer

(conv5) at different scales. Next, we also combine two dif-

ferent scale models, AlexNet and FCN, and take max pre-

diction for each class from either network.

4.0.2 Pedestrian behavior estimation

We use behavioral annotation to determine pedestrians’ ac-

tions from the still frames. In particular, we focus on deter-

mining pedestrians’ gait (walking/standing) and the pres-

ence of attention (looking), since moving towards the road

or standing at the curb and examining the traffic are strong

indicators of crossing intention [14]. Some works in the

context of pedestrian safety explicitly estimate body and

head orientation [11], detect early signs of crossing inten-

tion [20] or focus on path estimation [21]. Since our dataset

focuses on pedestrians that are about to cross or are mov-

ing/standing sufficiently close to the road we are only inter-

ested in distinguishing between four actions, namely, walk-

ing, standing, looking (towards the traffic) and not looking.

Thus, to establish a baseline we reduce this problem to im-

age classification.

We train separate models for gait and attention estima-

tion. In each case we train a randomly initalized AlexNet

end-to-end on cropped images of pedestrians from our

dataset (with minor occlusions up to 25% allowed) and then

try transfer learning by fine-tuning an AlexNet pre-trained

on ImageNet [27].

We also verify whether using a full body pose improves

classification compared to analyzing only the cropped im-

age of the head for orientation or lower body for gait estima-

tion. Since our dataset does not have annotations for body

parts, we simply crop the top third and the bottom half of the

bounding box for attention and gait estimation respectively.

5. Evaluation and discussion

In this section we describe the experimental evaluation

of our classification problem for both context and pedes-

trian behavior. We report on the results in terms of Average

Precision (AP) for each class and mean of AP for the overall

performance of each method.

5.0.1 Environment analysis

For context detection experiments we divided our total

dataset into three sets of train, test and validation each con-

taining 50%, 10% and 40% of the data respectively. In all of

our experiments, the following parameters were fixed: we

used Stochastic Gradient Descent (SGD) learning method

with constant step learning update with γ set to 0.1. Mo-

mentum, µ, and weight decay, ω, were set to 0.9, and 0.0005

respectively.

In the original AlexNet method, the softmax loss func-

tion is used to perform classification. A particular feature

of using softmax is that it normalizes the final prediction to

sum to 1. This means one class eventually gets the most

importance among the other classes. In our case, since mul-

tiple objects may be present in each scene, we require indi-

vidual confidence estimation for each class. As a result, we

choose the sigmoid cross entropy loss function instead.

We used the default parameters for the base case end-to-

end training of AlexNet with the learning rate of 0.01 and

batch size of 256. For fine-tuning the pre-trained models

on AlexNet, we reduced the learning rate to 0.001 and the

local rate of the remaining layers by a factor of 10 times.

We found that in practice reducing the learning rate of con-

volutional layers instead of fixing their learning results in a

better performance, on average up to 5%.

Fine-tuning the FCN and SPP models is similar. We set

the weights the same way as regular AlexNet models. We

chose the image size of 540x540 pixels for input with batch

size of 32. Here a lower learning rate (0.000625) was used

to accommodate the learning on a smaller batch of samples.

The SPP model was evaluated with pyramid height of 2 and

3. It should also be noted that in the SPP models the fc6

layers were learned from scratch due to the change in the

dimensionality of their inputs.

The results of the experiments are summarized in Ta-

ble 3. Overall, combining AlexNet with its fully convolu-

tional counterpart achieved the best results. This is primar-

ily due to the fact that AlexNet and FCN have complemen-

tary performance in detection of objects in different scales.

Such a multi-scale detection performance, however, was not

achieved using the SPP models. Overall, the performance

of the SPP models was even inferior comparing to those of
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Method mAP %

29040 17460 12817 20754 1862 3372 6576

AlexNet 63.42 71.95 50.85 73.73 5.40 4.63 53.46 46.20

AlexNet-places 84.61 88.50 74.46 92.10 20.75 29.33 77.77 66.79

AlexNet-hybrid 83.82 91.23 78.74 92.05 21.07 29.68 74.83 67.35

AlexNet-imagenet 84.94 91.94 77.19 92.32 17.34 42.45 78.21 69.20

FCN-imagenet 86.82 91.02 83.20 90.75 19.62 35.13 80.85 69.63

SPP-imagenet-p2 83.48 91.14 77.93 89.10 22.82 22.24 70.74 65.35

SPP-imagenet-p3 85.80 91.76 79.42 91.49 21.36 24.21 80.34 67.77

AlexNet + FCN 87.33 93.65 84.02 92.94 17.62 42.25 79.38 71.03

Table 3: The performance of weakly-supervised classification models for environmental contextual elements. The results

from the left to right refer to classes narrow, wide, pedestrian crossing sign, zebra crossing, stop sign, traffic light, parking

lot and mean AP of all the classes. The first line of numerical values below the class symbols indicate the number of instances

of each element in the training data.

single scale models (with exception of stop sign detection).

5.0.2 Action

Our dataset contains a total of 88K unoccluded pedestrian

samples, however, their distribution between classes is un-

even. For instance, there are 14K samples for people stand-

ing and 17K for people looking. In order to have balanced

training data, we use all of the samples for the least rep-

resented classes and randomly select an equivalent number

of negative samples. We use 60% of the data for training,

10% for validation and 30% for testing. For all experiments

we used SGD learning and kept the default parameters of

AlexNet unchanged: γ set to 0.1, momentum, µ, set to 0.9

and and weight decay, ω of 0.0005. For end-to-end training

we set the learning rate to 0.001 and reduced it by a factor

of 10 for fine-tuning.

Average precision for each model is shown in Table 4.

We found that fine-tuning AlexNet gave the best results,

possibly due to the fact that the network was able to lever-

age the existing representation for people during the train-

ing. Also using only the top and bottom part of the bound-

ing box for attention and gait classification offered slight

improvement over using the whole image. Figure 6 shows

samples from the dataset with predicted action labels. Over-

all, all learned models were successful at recognizing typi-

cal cases such as people looking straight at the camera and

profile view of people walking. In many misclassified look-

ing samples the pedestrian’s face is partially obscured by

clothes or sunglasses. The biggest issue for distinguishing

walking pedestrians from the ones standing is that some of

the key frames from these actions may look very similar and

can be disambiguated only by taking into account temporal

context.

5.0.3 Crossing or not?

Finally, we examine the contribution of gait/attention and

environmental context (width of the road, pedestrian cross-

ing, signs, traffic lights, etc.) to determining pedestrians’

Method walking looking

AlexNet-full 78.34 67.45

AlexNet-cropped 74.23 74.98

AlexNet-imagenet-full 80.45 75.23

AlexNet-imagenet-cropped 83.45 80.23

Table 4: The average precision (AP%) of the classification

results for pedestrians’ walking and looking actions.

looking looking walking walking

Figure 6: Example predictions of pedestrians actions for

looking/not looking (top) and walking/standing (bottom).

The captions in green and red indicate correct and wrong

predictions respectively.

intentions of crossing. We select from the dataset 315 in-

stances of pedestrians approaching or standing at the curb

with the following ground truth: walking/standing, look-

ing/not looking, street parameters and whether they cross

or not. For each scenario, we select 10-15 frames and

corresponding bounding boxes of the pedestrians preced-

ing their decision to cross or not to cross (omitting frames

with heavy occlusion). Overall, there are 81 non-crossing

and 234 crossing scenarios with the total number of 3324

frames.

Method AP

Action 39.24 ±16.23

Action + context 62.73 ± 13.16

Table 5: Prediction accuracy (%) of pedestrians’ crossing.

Adding the context information significantly improves the

prediction results.
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To get corresponding visual features for gait and at-

tention we convert fc6, fc7 and fc8 layers of AlexNet to

fully-convolutional layers and use the output of fc8 as the

compact representation of the scene and pedestrian action

(such features proved useful for generic recognition tasks

[9]). Given that the size of the input image is 227x227 pix-

els, each CNN for gait and attention produces a 4D fea-

ture vector. For environmental elements classification, we

use the output of the last layer of the fully-convolutional

model (FCN-imagenet). Since each input image is resized

to 540x540 pixels, the resulting feature vector for scene is

121D. Next, we train a linear SVM model to classify in-

stances of crossing or not crossing based on gait/attention

information with and without the context. We perform a

10-fold cross-validation and report the mean accuracy and

95% confidence interval of the accuracy estimate in Table

5.

Classification using only the attention/gait information

can correctly predict approximately 40% of crossing behav-

ior observed, however, adding context, such as the width of

the street and the presence of the designated crossing, im-

proves the classification by 20%.

It should be noted that environmental contextual ele-

ments, e.g. zebra crossing or pedestrian sign, are not the

only contributing factors in predicting pedestrian crossing.

There are also dynamic factors, such as reaction from the

driver (slowing down or maintaining the speed), which also

have a significant effect. For example, pedestrians are more

likely to take the right of way at the designated crossing

assuming that the driver would yield. On the other hand,

pedestrians at non-designated locations usually wait for the

explicit driver’s reaction or large enough gap between vehi-

cles before making a decision to cross.

6. Conclusion

We introduced a novel dataset to facilitate research on

traffic scene understanding, in particular, pedestrian behav-

ioral analysis. Our dataset combines localization informa-

tion of pedestrians in the scenes with their behavioral data

and contextual information allowing for higher-level rea-

soning about their actions.

We showed that relying only on low-level behavioral in-

formation such as looking or walking does not suffice for

reliable prediction of pedestrian crossing action. However,

combining behavioral clues with contextual elements such

as scene structure can significantly increase crossing pre-

diction accuracy.

While environmental contextual information improves

understanding of crossing behavior, it is still not sufficient

for robust and reliable behavioral prediction in practical

traffic scenarios. There are also dynamic factors such as ve-

locity changes, changes in the state of the vehicle and pedes-

trians’ sequences of actions that should be taken into con-

sideration. Furthermore, the effects of demographic context

(e.g. age and gender), group behavior and ambient weather

conditions need to be investigated.
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