

Eliminating the observer effect: Shadow removal in orthomosaics of the road network

Supanee Tanathong^{*†}, William A. P. Smith^{*} and Stephen Remde[†]

^{*}Department of Computer Science, University of York, UK

[†]Gaist Solutions Ltd, UK

william.smith@york.ac.uk, {supanee.tanathong, stephen.remde}@gaist.co.uk

Abstract

High resolution images of the road surface can be obtained cheaply and quickly by driving a vehicle around the road network equipped with a camera oriented towards the road surface. If camera calibration information is available and accurate estimates of the camera pose can be made then the images can be stitched into an orthomosaic (i.e. a mosaiced image approximating an orthographic view) providing a virtual top down view of the road network. However, the vehicle capturing the images changes the scene: it casts a shadow onto the road surface that is sometimes visible in the captured images. This causes large artefacts in the stitched orthomosaic. In this paper, we propose a model-based solution to this problem. We capture a 3D model of the vehicle, transform it to a canonical pose and use it in conjunction with a model of sun geometry to predict shadow masks by ray casting. Shadow masks are pre-computed, stored in a look up table and used to generate per-pixel weights for stitching. We integrate this approach into a pipeline for pose estimation and gradient domain stitching that we show is capable of producing shadow-free, high quality orthomosaics from uncontrolled, real world datasets.

1. Introduction

High quality, high resolution orthographic images of the road network are useful for many applications including mapping, road condition surveying, path planning and texturing of 3D city models. While such images can be obtained by satellite or airborne vehicle, this is expensive, only possible on cloudless days and resolution and image quality are limited by the distance of the camera from the road surface. On the other hand, a road vehicle equipped with a camera oriented towards the road surface can obtain very high resolution images of the road surface quickly, at much lower cost and higher resolution whilst still working

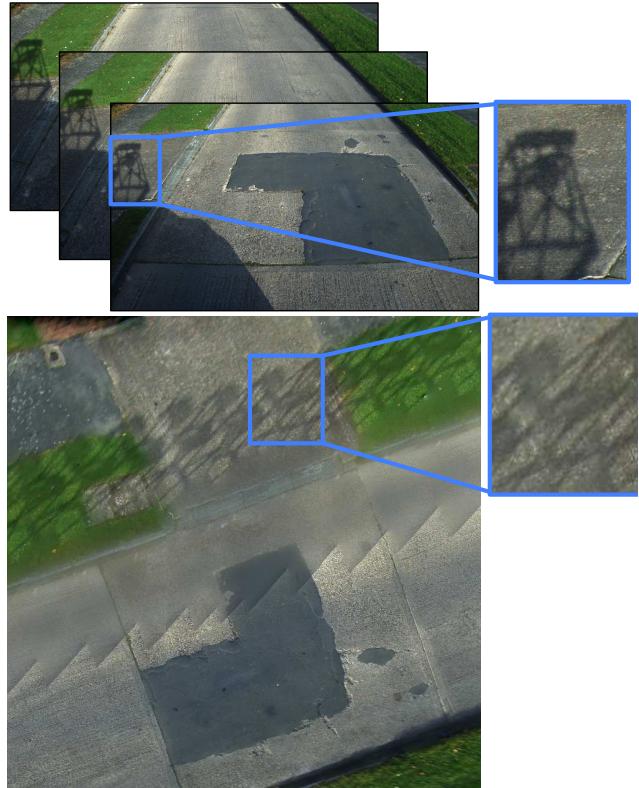


Figure 1. Motivation: when a street level image sequence (top) is stitched into an orthomosaic (bottom), shadows cast by the capture vehicle cause artefacts in the stitched result (zoom shows example of corresponding regions in input and orthomosaic).

on cloudy days. Such images contain perspective distortion and must therefore be transformed, aligned and stitched in order to produce a seamless, top down orthomosaic.

However, the drawback of street-level capture is the *observer effect* - namely that by observing the road scene, we change it. Specifically, the capture vehicle casts a shadow onto the road surface that moves as the vehicle moves. If the captured images are stitched together, the repeated shadow

pattern causes severe artefacts in the final orthomosaic. We show an example in Fig. 1. The zoomed region highlights an obvious artefacts caused by the shadow of the camera rig on the capture vehicle. The sawtooth pattern running through the middle of the image is also a shadow artefact caused by the shadow from the bonnet of the vehicle.

In this paper, we propose a model-based solution to eliminate the observer effect. Note that we do not seek to remove all shadows from an image (as is usually the case in shadow removal). Instead, we only wish to mask shadows that were created by the process of observing the scene. We construct an accurate 3D model of the capture vehicle in canonical pose and registered with the camera used to capture the road surface. From this model we can compute accurate shadow masks by ray casting and modelling sun geometry. These shadow masks are transformed to per-pixel weights used in image stitching that remove artefacts caused by shadow boundaries. We incorporate this model-based shadow removal into an orthomosaic pipeline comprising a lightweight process for estimating camera pose and a gradient domain stitching procedure. We evaluate our method on largescale, real world datasets.

2. Related work

City-scale 3D modelling [14] and building orthomosaics from street-level imagery [3] has been widely studied but, to our knowledge, the observer effect caused by cast shadows has never before been addressed.

Images of the road surface can only be captured outdoors with little or no control over illumination. Thus, shadows are inevitable in the captured images. Although shadows are useful for estimating object shapes [1, 13] and geometry of the environment and locating the sources of illumination [12], they complicate the interpretation of the scene. There are many studies that deal with detecting and removing shadows. Shadow detection approaches exploit the information extracted from the image content to separate shadow from non-shadow regions including colour and illumination [5], edges or boundary [4] and textures [9]. A recent study from Khan et al. [8] shows that learned features from convolutional neural networks can be used for generating shadow masks.

Those aforementioned techniques detect and/or remove shadows that are present in the scene regardless of their source. In this work, we wish to eliminate only shadows generated by the observer as these artefacts are not originally present in the environment. Cast shadows are created by objects occluding the path from light source to surface. This work assumes the sun to be the only source of illumination and the vehicle and attached camera frame are the only occluding object of interest.

In virtual reality and photo realistic rendering, the effects of illumination on the appearance of a scene are widely

studied. For example, Sato et al. [12] analyse an illumination distribution of a scene when an object of a defined shape casts a shadow in the scene. For outdoor scene, illumination depends on two key elements: sun and weather. While the position of the sun can be estimated given the geolocation of the observer and observing time, weather is rather difficult to predict. Thus, a number of works (e.g. [6, 7]) model illumination from these two factors discard the weather condition by assuming clear sky environment. With this assumption, shadows can be derived from the sun direction or vice versa. Abrams et al. [1] uses the sun direction to find the geometric constraints, referred to as episolar constraints, between the pixels that cast shadows onto others and the shadow pixels. By taking an advantage of multiview image collections, Hauagge et al. [6] begin by reconstructing geometry of the scene and determine illumination of images from their local visibility. The sun direction is estimated by comparing the obtained illumination with one derived from the sun-sky model. Similarly, Wehrwein et al. [15] reconstruct 3D model of the scene and analyse illumination within and across images to detect shadows and further derive the sun direction. In this work, we exploit the known relationship between the sun direction and shadows to obtain cast shadows. Given that the acquisition time and the geolocation of the observer are known, we can determine the sun direction using [11].

Although our goal is to produce shadow-free orthomosaics of the road network, we do not need to modify the image content to remove shadows. This is because, for our system, images are captured as a sequence i.e. the same part of the road surface might have a shadow cast in one image but be free of shadow in other images. Hence, we only need to locate shadow free observations of each part of the road surface in at least one image.

3. Pose estimation

The first stage of our process is to compute an accurate pose (orientation and position) for the camera in every captured image. The pose needs to be sufficiently accurate that, when images are later projected to the ground plane, overlapping images have at least pixel-accurate alignment. Otherwise, there will be misalignment artefacts in the generated orthomosaic images.

We approach the pose estimation problem as a restricted version of structure-from-motion (SFM). However, previous approaches for SFM are not applicable in this setting for two reasons. First, images in which the scene is primarily the road surface are largely planar. This is a degenerate case for estimating a fundamental matrix and subsequently reconstructing 3D scene points. Second, the number of 3D scene points matched between images and reconstructed by the SFM process is much larger than the number of pose parameters to be estimated. This means that SFM does

Figure 2. The camera-centred coordinate systems.

not scale well to very large problems. Similarly, methods based on Simultaneous Localisation and Mapping (SLAM) are not applicable. They require high frame rates in order to robustly track feature points over time. Sampling images at this frequency is simply not feasible when we wish to build orthomosaics of thousands of kilometres of road.

We propose an alternative that addresses the drawbacks of using SFM or SLAM for our problem. Our approach assumes that the scene being viewed is locally planar. This allows us to relate images that are close together in the sequence by a planar homography. We exploit the temporal constraints that arise from knowing the images come from an ordered motion sequence by only finding feature matches between pairs of images that are close together in the sequence. We only compute pairwise matches between image features and do not reconstruct the 3D world position of image features. This vastly reduces the complexity of the optimisation problem that we need to solve. The number of unknowns is simply $6N$ for an N image sequence.

3.1. Motion model

We refer to the camera mounted on the capture vehicle as the “carriageway camera”. We represent the pose of the carriageway camera in each image by a rotation matrix and translation vector. The pose associated with the i th captured image is represented by the rotation matrix $\mathbf{R}_i \in SO(3)$ and the translation vector $\mathbf{t}_i \in \mathbb{R}^3$, with $i \in [1..N]$. The position in world coordinates of a camera can be computed from its pose as $\mathbf{c}_i = -\mathbf{R}_i^T \mathbf{t}_i$.

A world point is represented by coordinates $\mathbf{w} = [u \ v \ w]^T$, where (u, v) is a 2D UTM coordinate representing position on the $w = 0$ ground plane and w is altitude above sea level. Each camera has a standard right handed coordinate system with the optical axis aligned with the w axis. A world point in the coordinate system of the i th camera is given by $\mathbf{w}_i = \mathbf{R}_i \mathbf{w} + \mathbf{t}_i$.

It is convenient to represent the rotation as a composition of four rotation matrices, one of which is fixed. The fixed one aligns the world w axis with the optical axis of the camera in canonical pose: $\mathbf{R}_{w2c} = \mathbf{R}_x(90^\circ)$. We model vehicle orientation by three angles. We choose this representation because the vehicle motion model leads to constraints that can be expressed naturally in terms of these angles. First, the bearing (yaw) of the vehicle is modelled by

rotation $\mathbf{R}_y(\alpha)$. Next, we account for the inclination of the camera towards the road surface with pitch $\mathbf{R}_x(\beta)$. Finally, we model side-to-side roll with rotation $\mathbf{R}_z(\gamma)$. The overall rotation as a function of these three angles is given by:

$$\mathbf{R}(\alpha, \beta, \gamma) = \mathbf{R}_z(\gamma) \mathbf{R}_x(\beta) \mathbf{R}_y(\alpha) \mathbf{R}_{w2c}. \quad (1)$$

Hence, the rotation of the i th camera depends upon the estimate of the three angles for that camera:

$$\mathbf{R}_i = \mathbf{R}(\alpha_i, \beta_i, \gamma_i). \quad (2)$$

We assume that each image is labelled with an approximate geotag, $(u_i^{\text{GPS}}, v_i^{\text{GPS}})$, providing an approximate position for the camera in the i th image in world coordinates. In practice, this geotag is provided by GPS augmented by wheel tick odometry. A visualisation of the camera coordinate system and rotation angles can be seen in Fig. 2 and the vehicle in canonical world coordinates in Fig. 4.

3.2. Initialisation

We rely on GPS and an initial estimate of the camera height above the road surface to initialise the location of each camera: $\mathbf{c}_i^{\text{init}} = [u_i^{\text{GPS}} \ v_i^{\text{GPS}} \ W^{\text{calib}}]^T$, where $(u_i^{\text{GPS}}, v_i^{\text{GPS}})$ is the GPS estimate of the ground plane position of the i th camera and W^{calib} is the measured height of the camera above the road surface in metres. This need only be a rough estimate as the value is subsequently refined.

To initialise rotation, we compute the yaw angle from the GPS bearing. First, we compute a bearing vector using a central difference approximation:

$$\mathbf{b}_i = 0.5 \begin{bmatrix} u_{i+1}^{\text{GPS}} - u_{i-1}^{\text{GPS}} \\ v_{i+1}^{\text{GPS}} - v_{i-1}^{\text{GPS}} \end{bmatrix}. \quad (3)$$

Second, we convert this into a yaw angle estimate:

$$\alpha_i^{\text{init}} = \text{atan2}(-\mathbf{b}_{i,1}, \mathbf{b}_{i,2}). \quad (4)$$

We initialise the pitch to a measured value for the angle between the camera optical axis and the road surface, $\beta_i^{\text{init}} = \beta^{\text{calib}}$, and the roll to zero, $\gamma_i^{\text{init}} = 0$. Again, β^{calib} , only need be roughly estimated since it is later refined. We assume that the intrinsic camera parameter matrix, \mathbf{K} , and any nonlinear distortion parameters are measured as part of a calibration process.

3.3. Feature Matching and Filtering

Our images come from a sequence. Moreover, by using GPS we can ensure that images are taken at an approximately fixed distances between consecutive images. This means that it is reasonable to choose a constant offset O , within which we expect images to overlap, i.e. we expect image i to contain feature matches with images in the range $i - O$ to $i + O$. The number of overlapping pairs is therefore $NO - O(O + 1)/2$.

We begin by extracting SIFT features [10] from all images in a sequence. The 2D location of each feature is undistorted using the distortion parameters obtained during calibration. We then compute greedy matches between features in pairs of images that are within the overlap threshold. We filter these matches for distinctiveness using Lowe's ratio test [10] with a threshold of 0.6. Even with this filter applied, the matches will still contain noise that will disrupt the alignment process. Specifically, they may include matches between features that do not lie on the road plane (such as buildings or signage) or between dynamically moving objects (such as other vehicles). If such matches were retained, they would introduce significant noise into the pose refinement process. We remove these matches by enforcing a constraint that is consistent with a planar scene (the homography model) and further restricting motion to a model with only three degrees of freedom.

Since we assume the scene is locally planar, feature matches can be described by a homography. In other words, if a feature with 2D image position $\mathbf{x} \in \mathbb{R}^2$ in image i is matched to a feature with image position $\mathbf{x}' \in \mathbb{R}^2$ in image j , then we expect there to exist a 3×3 matrix \mathbf{H} that satisfies:

$$s \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mathbf{x}' \\ 1 \end{bmatrix}, \quad (5)$$

where s is an arbitrary scale. We use this homography constraint to filter the feature matches. However, for the purposes of filtering, we assume a stricter motion model than elsewhere in the process. Specifically, we assume that the vehicle has two degrees of freedom to move in the ground plane and that its yaw angle may change arbitrarily. However, we assume that pitch and the height of the camera above the ground plane are fixed to their measured values and that roll is zero. This allows us to parameterise a homography by only three parameters and enables us to ignore matches that would otherwise be homography consistent but which would lead to incorrect motion estimates. For example, if a planar surface (such as the side of a lorry) is visible in a pair of images, then features matches between the two planes would be consistent with a homography model. However, they would not be consistent with our stricter motion model and will therefore be removed.

Under this motion model, we can construct a homography between a pair of images $\mathbf{H}(u, v, \alpha)$ based on the 2D displacement in the ground plane (u, v) and the change in the yaw angle α . This homography is constructed as follows. First, we place the first image in a canonical pose:

$$\mathbf{R}_1 = \mathbf{R}(0, \beta^{\text{calib}}, 0), \quad \mathbf{t}_1 = -\mathbf{R}_1 \begin{bmatrix} 0 \\ 0 \\ W^{\text{calib}} \end{bmatrix}.$$

The homography from the ground plane to this first image

is given by:

$$\mathbf{H}_1 = \mathbf{K} [(\mathbf{R}_1)_{:,1:2} \quad \mathbf{t}_1] \quad (6)$$

We define the pose of the second image relative to the first image as:

$$\mathbf{R}_2(\alpha) = \mathbf{R}(\alpha, \beta^{\text{calib}}, 0), \quad \mathbf{t}_2(u, v) = -\mathbf{R}_1 \begin{bmatrix} u \\ v \\ W^{\text{calib}} \end{bmatrix}$$

Therefore, the homography from the ground plane to the second image is parameterised by the ground plane displacement and change in yaw angle:

$$\mathbf{H}_2(u, v, \alpha) = \mathbf{K} [(\mathbf{R}_2(\alpha))_{:,1:2} \quad \mathbf{t}_2(u, v)] \quad (7)$$

Finally, we can define the homography from the first image to the second image as:

$$\mathbf{H}_{1 \rightarrow 2}(u, v, \alpha) = \mathbf{H}_2(u, v, \alpha) \mathbf{H}_1^{-1}. \quad (8)$$

Given a set of tentative matches between a pair of images, we now use the RANSAC algorithm to simultaneously fit our constrained homography model to the matches and remove matches that are outliers under the fitted model. Since our constrained homography depends on only three parameters, two matched points are sufficient to fit a homography. The fit is obtained by solving a nonlinear least squares optimisation problem. The RANSAC algorithm proceeds by randomly selecting a pair of matches, fitting the homography to the matches and then testing the number of inliers under the fitted homography. We define an inlier as a point whose symmetrised distance under the estimated homography is less than a threshold (we use a value of 20 pixels). This process is repeated, keeping track of the model estimate that maximised the number of inliers. Once RANSAC has completed, we have a set of filtered matches between a pair of images that are consistent with our constrained motion model. Although the model is overly strict, the use of a relaxed threshold means that matches survive even when there is motion due to roll, changes in pitch or changes in the height of the camera.

3.4. Pose optimisation

We now have initial estimates for the pose of every camera and also pairs of matched features between images that are close together in the sequence. We can now perform a largescale nonlinear refinement of the estimated pose of every camera. Key to this is the definition of an objective function comprised of a number of terms. The first term, $\varepsilon_{\text{data}}$, measures how well matched features align in the image plane. We refer to this as our data term:

$$\begin{aligned} \varepsilon_{\text{data}}(\{\mathbf{R}_i, \mathbf{t}_i\}_{i=1}^N) = \\ \sum_{i=1}^{N-1} \sum_{j=1}^{\min(O, N-i)} \sum_{k=1}^{M_{ij}} \left\| h \left(\mathbf{H}_i^{-1} \begin{bmatrix} \mathbf{x}_{ijk} \\ 1 \end{bmatrix} \right) - h \left(\mathbf{H}_{i+j}^{-1} \begin{bmatrix} \mathbf{y}_{ijk} \\ 1 \end{bmatrix} \right) \right\|^2 \end{aligned} \quad (9)$$

where M_{ij} is the number of matched features between image i and $i + j$, $\mathbf{x}_{ijk} \in \mathbb{R}^2$ is the 2D position of the k th feature in image i that has a match in image $i + j$. The 2D position of the corresponding feature in image $i + j$ is given by $\mathbf{y}_{ijk} \in \mathbb{R}^2$. \mathbf{H}_i is the homography from the ground plane to the i th image and is given by:

$$\mathbf{H}_i = \mathbf{K} \begin{bmatrix} (\mathbf{R}_i)_{:,1:2} & \mathbf{t}_i \end{bmatrix}. \quad (10)$$

The function $h : \mathbb{R}^3 \mapsto \mathbb{R}^2$ homogenises a 3D point:

$$h([x, y, z]^T) = \begin{bmatrix} x/z \\ y/z \end{bmatrix}. \quad (11)$$

There are some similarities between (9) and bundle adjustment in classical structure-from-motion. However, there are some important differences. First, rather than measuring “reprojection error” in the image plane, we measure error when image features are projected to the ground plane. Second, the objective depends only on the camera poses - we do not need to estimate any 3D world point positions. The first difference is important because it encourages exactly what we ultimately want: namely, that corresponding image positions should align in the final orthomosaic. The second difference is important because it vastly reduces the complexity of the problem and makes it viable to process very large sets of images.

To solve (9), we initialise using the process described above and then optimise using nonlinear least squares. Specifically, we use the Levenberg-Marquardt algorithm with an implementation that exploits the sparsity of the Jacobian matrix to improve efficiency. Moreover, we include some additional terms (described in the next section) to softly enforce additional prior constraints on the problem.

3.5. Priors

Since we expect the vehicle’s orientation with respect to the road surface to remain approximately constant, we can impose priors on two of the angles. First, we expect side-to-side “roll” to be small. In general, only being non-zero when the vehicle is cornering. Hence, our first prior simply penalises the variance of the roll angle estimates from zero:

$$\varepsilon_{\text{roll}}(\{\mathbf{R}_i, \mathbf{t}_i\}_{i=1}^N) = \sum_{i=1}^N \gamma_i^2. \quad (12)$$

The second angular prior penalises variance in the angle between the camera optical axis and the road plane, i.e. the pitch angle:

$$\varepsilon_{\text{pitch}}(\{\mathbf{R}_i, \mathbf{t}_i\}_{i=1}^N) = \sum_{i=1}^N \left(\beta_i - \frac{1}{N} \sum_{i=1}^N \beta_i \right)^2. \quad (13)$$

Figure 3. Left: Subset of the multiview images used to reconstruct the capture vehicle model. Right: image from the carriageway camera also used in the reconstruction.

Next, we penalise variance in the estimated height of the camera above the road surface since we expect this to remain relatively constant:

$$\varepsilon_{\text{height}}(\{\mathbf{R}_i, \mathbf{t}_i\}_{i=1}^N) = \sum_{i=1}^N \left(\mathbf{c}_{i,3} - \frac{1}{N} \sum_{i=1}^N \mathbf{c}_{i,3} \right)^2. \quad (14)$$

Finally, we encourage the estimated position of the camera in each image to remain close to that provided by the GPS estimate:

$$\varepsilon_{\text{GPS}}(\{\mathbf{R}_i, \mathbf{t}_i\}_{i=1}^N) = \sum_{i=1}^N (\mathbf{c}_i - \mathbf{c}_i^{\text{init}})^2. \quad (15)$$

The hybrid objective that we ultimately optimise is a weighted sum of the data term and all priors.

4. Model-based shadow removal

The process in the previous section provides us with accurate estimates of the camera pose in world coordinates for each image in a captured sequence. We now show how to use a 3D model of the capture vehicle in order to predict shadow masks. These are used in the subsequent section during image stitching.

4.1. Model acquisition

We begin by using an existing structure-from-motion plus multiview stereo pipeline [2] to acquire a detailed 3D model of the capture vehicle and the ground plane on which it stands. To do so, we capture 300 images of the vehicle from a range of viewpoints and, to increase the number of salient features for matching, we place markers on the ground and around the vehicle. Sample images are shown in Fig. 3, left. Crucially, the image set includes an image captured by the carriageway camera on the vehicle (Fig. 3, right). We include this image in the reconstruction and in so doing establish correspondence between the carriageway camera and the 3D model. This later enables us to predict how the shadow of the van will appear from the perspective of this camera. The output of this process is a 3D mesh

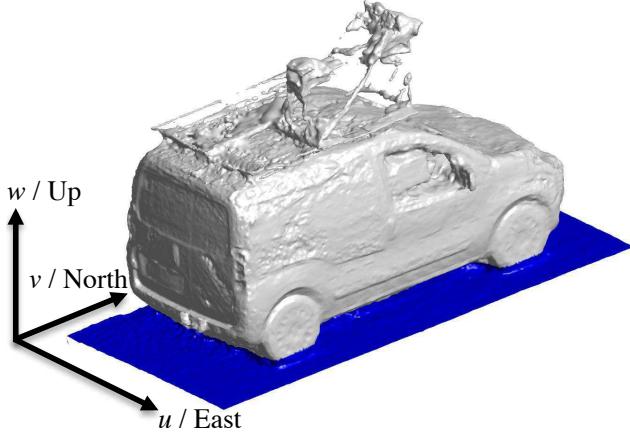


Figure 4. The captured 3D model in canonical pose relative to the world coordinate system.

model (Fig. 4) in an arbitrary coordinate system and a camera pose for the carriageway camera relative to this model.

4.2. Model normalisation

We now transform the model into a canonical pose such that the carriageway camera has centre $[0 \ 0 \ W^{\text{calib}}]^T$ and the u - v projection of its view vector is parallel to the v axis (i.e. the vehicle points North in the world coordinate system). This is done by combining three transformations. First, we find the ground plane in the model by using RANSAC to fit a plane to the mesh vertices. The fitted plane is visualised in blue in Fig. 4. We apply a rotation and translation to bring this plane into alignment with the $w = 0$ plane. Second, we apply a translation in the u - v plane to bring the camera's centre to the origin. Third, we project the camera view vector to the ground plane, compute the angle made with the v axis and apply a rotation by this angle about the w axis. This leaves the model in the desired canonical pose as shown in Fig. 4.

4.3. Shadow prediction

We compute shadow maps in the ground plane given a sun direction in the form of a unit vector $\hat{s} \in \mathbb{R}^3$, $\|\hat{s}\| = 1$ relative to the vehicle model in canonical pose (see next section for how this is computed). To do so, we first undistort the coordinates of all pixels in the carriageway camera before projecting these to the ground plane via the homography \mathbf{H}_1 given in (6). We then project the vertices of the vehicle model onto the ground plane along direction \hat{s} . To determine whether a pixel is shadowed, we simply need to check whether it lies inside any of the projected triangles from the model via a point-in-polygon test. This ray casting process gives us a binary label for each pixel in an image from the carriageway camera's perspective. We show a visualisation of this process in Fig. 5.

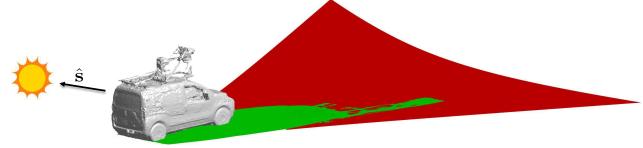


Figure 5. Shadow prediction. Ground plane projection of carriageway camera image shown in red. Ray cast shadow map of vehicle model shown in green.

4.4. Sun geometry

The final step is to compute the sun direction vector for an image and to transform it into the coordinate system of the canonical model. We assume that our images are timestamped and so we do not need to estimate the sun direction (such as in [6]), we can simply compute it. Since our camera pose estimates were initialised with GPS positions, we can assume that the estimated camera centres are in world coordinates. i.e. they can be converted into latitude/longitude values. From this, we can compute the sun direction, $\mathbf{s} \in \mathbb{R}^3$, $\|\mathbf{s}\| = 1$, using standard formulae (refer to [11]). Finally, to transform the sun direction into the coordinate system of the canonical model, we apply a rotation about the vertical axis to factor out the bearing of the vehicle: $\hat{\mathbf{s}} = \mathbf{R}_z(-\alpha)\mathbf{s}$, where α is the estimated yaw angle of the vehicle.

4.5. Shadow maps to weights

Ray casting a shadow map from a high resolution mesh model is computationally expensive. Hence, in a large-scale system we may wish to avoid performing this computation for every frame. We propose to precompute a lookup table for shadow masks. This need only be two dimensional, for the two degrees of freedom of $\hat{\mathbf{s}}$. Moreover, only directions in the half-hemisphere $\hat{s}_2 < 0 \wedge \hat{s}_3 > 0$ need be considered (for all other directions, the van casts no forward shadow in the ground plane). At stitching time, we compute a sun direction in the canonical model coordinate system, round to the nearest lookup table bin and retrieve the associated shadow map. We combine this with a per-pixel weight map in which pixels are given a higher weight that are closer to the camera. We precompute these distances for the canonical van model and combine them with the shadow mask for each image, assigning zero weight to shadowed pixels.

5. Gradient domain stitching

The final step in our pipeline is to stitch the images captured by the carriageway camera into a seamless orthomosaic. We do this in tiles both to ensure it is computationally feasible to stitch very large datasets and also so that large datasets can be viewed online by only transferring visible tiles. We perform stitching in the gradient domain to hide seams that would otherwise be visible due to the camera

exposure varying and small errors in the image alignment.

For an $M \times M$ tile in the ground plane, we solve for the vector of intensities $\mathbf{a} \in \mathbb{R}^{M^2}$ such that its gradients recreate those selected from the “best” original image at each pixel whilst also matching guide intensities to remove colour offset indeterminacy. This can be written as a linear least squares problem:

$$\mathbf{a}^* = \arg \min_{\mathbf{a}} \left\| \begin{bmatrix} \mathbf{D}_x \\ \mathbf{D}_y \\ \lambda \mathbf{S} \end{bmatrix} \mathbf{a} - \begin{bmatrix} \mathbf{g}_x \\ \mathbf{g}_y \\ \lambda \mathbf{i}_{\text{guide}} \end{bmatrix} \right\|^2. \quad (16)$$

Here $\mathbf{D}_x, \mathbf{D}_y \in \mathbb{R}^{M^2 \times M^2}$ compute finite difference approximations to the gradient in the horizontal and vertical directions respectively (they are sparse having only two non-zero entries per row if forward/backward differences are used). $\mathbf{S} \in \{0, 1\}^{K \times M^2}$ is a selection matrix that selects K intensities for which guide values are provided. $\mathbf{g}_x, \mathbf{g}_y \in \mathbb{R}^{M^2}$ are per-pixel gradients selected from the image whose corresponding pixel had the highest weight. In practice they are obtained by computing gradients for each input image and interpolating into these at the position given by projecting a tile pixel into the image. $\mathbf{i}_{\text{guide}} \in \mathbb{R}^K$ contains guide intensity values for K pixels. In practice, for guide intensities we use the average of all intensities that were observed for a given tile pixel and choose the K pixels as a sparse regular grid over the image (specifying guide values for all pixels causes the stitched image to be oversmooth and contains seams, equivalent to simply averaging the aligned images). λ controls the influence of the gradient versus the guide intensity objectives and is set to a small value. We solve an equation of the form of (16) for each colour channel for each tile.

The role of the weights is to try to select a gradient for each pixel that comes from the image most likely to contain detail. Hence, we use a weight mask that assigns to each pixel the distance to the ground plane. Pixels with higher weight are closer and hence imaged at a higher resolution. These fixed weights are combined with a per-image shadow mask such that shadowed regions are never selected.

6. Experiments

We acquire a sample dataset by driving a camera-equipped vehicle along a section of road. The carriageway camera is pre-calibrated. The initial estimates for the camera height and pitch angle can be taken from the multiview reconstruction of the vehicle described in Section 4.1. We use a 50 image sequence and show sample input images in Fig. 6 (left). The corresponding shadow maps from ray casting are shown in the middle and the weight maps used for stitching on the right. The orthomosaic produced by gradient domain stitching is shown in Fig. 7. Note that these images are in fact made up of multiple tiles though the seams



Figure 6. Orthomosaic inputs. Left: images captured by our camera equipped vehicle in which the shadow of the camera rig is visible in the bottom right of the image. Middle: their corresponding shadow masks determined based on the the sun direction and the bearing direction of the vehicle. Right: stitching weights (darker equals lower weight, black equals zero weight).

are not visible. The green background indicates regions that were not observed in any image. The image on the left of Fig. 7 is the result of stitching without using shadow masks in which an artefact of a repeated pattern of the shadow is visible which was not originally present in the real environment. Using the shadow masks, the orthomosaic on the right shows that shadows are completely removed while still maintaining all the details of the captured images. Fig. 8 shows a zoomed segment of the two results.

7. Conclusions

In this paper we have presented a model-based method for predicting the location of shadows in images of the road network and a pipeline to stitch shadow free, seamless orthomosaics from street level images. The approach successfully removes the observer effect and leads to high quality virtual top view images. There are many in ways in which this work could be extended in future. First, in the current implementation we set the stitching weight to zero in the entire shadow region. In fact, gradient domain stitching is only disrupted by the large gradients introduced at shadow boundaries. So, the interior of the shadow could be given positive weight, increasing the image data available. Second, the motion and road geometry model make a planarity assumption that is clearly violated in the real world. There may be an alternative lying between SFM (which computes an unrestricted 3D point cloud model) and a planarity assumption. For example, we could assume that the road surface can be locally approximated by a parametric patch and solve for the local parameters during pose estimation.

Acknowledgements

This work was supported by Innovate UK grant KTP009627.

Figure 7. Stitching results on a 50 image sequence. Left: results without shadow modelling (note repeated shadow pattern). Right: result with shadow-aware weights (shadow pattern is completely eliminated yet stitched result remains seamless).

References

- [1] A. Abrams, K. Miskell, and R. Pless. The episolar constraint: Monocular shape from shadow correspondence. In *Proc. CVPR*, 2013. 2
- [2] AgiSoft. PhotoScan standard (version 1.1.6). <http://www.agisoft.com>, 2015. 5
- [3] S. Baker, A. Datta, and T. Kanade. Parameterizing homographies. Technical Report CMU-RI-TR-06-11, Robotics Institute, Pittsburgh, PA, March 2006. 2
- [4] G. D. Finlayson, S. D. Hordley, C. Lu, and M. S. Drew. On the removal of shadows from images. *IEEE Trans. Pattern Anal. Mach. Intell.*, 28(1):59–68, Jan. 2006. 2
- [5] R. Guo, Q. Dai, and D. Hoiem. Single-image shadow detection and removal using paired regions. In *Proc. CVPR*, 2011. 2
- [6] D. Hauagge, S. Wehrwein, N. Snavely, and K. Bala. Reasoning about photo collections using outdoor illumination models. In *Proc. BMVC*, 2014. 2, 6
- [7] Y. Hold-Geoffroy, K. Sunkavalli, S. Hadap, E. Gambarotto, and J.-F. Lalonde. Deep outdoor illumination estimation. In *Proc. CVPR*, 2017. 2
- [8] S. H. Khan, M. Bennamoun, F. Sohel, and R. Togneri. Automatic shadow detection and removal from a single image. *IEEE Trans. Pattern Anal. Mach. Intell.*, 38(3):431–446, Mar. 2016. 2
- [9] A. Leone and C. Distante. Shadow detection for moving objects based on texture analysis. *Pattern Recogn.*, 40(4):1222–1233, Apr. 2007. 2
- [10] D. G. Lowe. Distinctive image features from scale-invariant keypoints. *Int. J. Comp. Vis.*, 60(2):91–110, 2004. 4
- [11] I. Reda and A. Andreas. Solar position algorithm for solar radiation applications. *Solar Energy*, 76(5):577–589, 2004. 2, 6
- [12] I. Sato, Y. Sato, and K. Ikeuchi. Illumination from shadows. *IEEE Trans. Pattern Anal. Mach. Intell.*, 25(3):290–300, Mar. 2003. 2
- [13] S. Savarese, M. Andreetto, H. Rushmeier, F. Bernardini, and P. Perona. 3D reconstruction by shadow carving: Theory and practical evaluation. *Int. J. Comput. Vis.*, 71(3):305–336, 2007. 2
- [14] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo collections. *Int. J. Comput. Vision*, 80(2):189–210, 2008. 2
- [15] S. Wehrwein, K. Bala, and N. Snavely. Shadow detection and sun direction in photo collections. In *Proceedings of 3DV*, 2015. 2

Figure 8. Zoomed detail from Fig. 7.

269