
Robust UAV-based Tracking Using Hybrid Classifiers

Yong Wang

University of Ottawa

75 Laurier Ave E, Ottawa, ON K1N 6N5

ywang6@uottawa.ca

Wei Shi

INSKY Lab, Leotail Intelligent Tech

1628, Pudong District, Shanghai

weishiInsky@126.com

Shandong Wu

Department of Radiology, Biomedical Informatics, and Bioengineering, University of Pittsburgh, USA

3362 Fifth Avenue Room 130, Pittsburgh, PA, 15213, USA

wus3@upmc.edu

Abstract

Robust object tracking plays an important role for un-

manned aerial vehicles (UAVs). In this paper, we present a

robust and efficient visual object tracking algorithm with an

appearance model based on the locally adaptive regression

kernel (LARK). The proposed appearance model preserves

the geometric structure of the object. The tracking task is

formulated as two binary classifiers via two support vector

machines (SVMs) with online update. The backward track-

ing which tracks the object in reverse of time is employed

to measure the accuracy and robustness of the two track-

ers. The final positions are adaptively fused based on the

results of the forward tracking and backward tracking val-

idation. Several state-of-the-art trackers are evaluated on

the UAV123 benchmark dataset which includes challenging

situations such as illumination variation, motion blur, pose

variation and heavy occlusion.

1. Introduction

Recent years have witnessed an explosion in unmanned

aerial vehicles (UAVs). Visual object tracking on a UAV has

enabled many new applications in computer vision, such

as crowd monitoring, aerial navigation, animal monitoring,

obstacle avoidance and so on. Although many works have

been done on the aerial tracking, there are still many chal-

lenges exist due to the relatively small size of the target,

rapid platform motion and image instability. In this paper,

we only consider the scenario of a single object tracking by

a UAV.

Figure 1 illustrates the differences between UAV-based

tracking and generic tracking (i.e., not UAV-based tracking,

such as Figure 1 (c) and (d)). Depending on the camera

orientation and flight altitude, appearance model in UAV-

 

Figure 1. Differences between UAV-based tracking and generic

tracking. (a) and (b) are from UAV-based tracking sequence cap-

tured by ourselves. (c) and (d) are from generic tracking dataset

OTB100 [24].

based tracking is not as rich as generic tracking. Thus,

the UAV-based tracking is a challenging task compared to

generic tracking. The tracking methods are generally cat-

egorized into two approaches, generative tracking methods

and discriminative tracking methods. The generative meth-

ods search around an area and compare the templates ap-

pearance models with candidate models. The candidate

which achieves the smallest reconstruction error with the

templates is chosen to be the target. The discriminative ap-

proaches train a binary classifier to separate the target from

background. Since the background information is taken into

account, the discriminative methods usually achieve better

performance in challenging scenarios.

The UAV-based tracking methods rely on morphological

filtering [1–7] and feature point tracking [8–10]. The edge

43212129



of the object is important as the target is in perspective view

and small size compared in generic tracking. Furthermore,

the tracking scenarios with certain challenges are amplified,

e.g., fast moving objects, full occlusion, scale variation and

abrupt camera motion.

The locally adaptive regression kernel (LARK) descrip-

tor captures the most salient cues of the target, such as edges

and geometric structure in good detail. Interestingly, in

the case of aerial images, the most observable parts of the

object are the edges. Therefore, LARK feature is a good

choice for the UAV-based video tracking.

In the discriminative tracking, the classifier model relies

heavily on the training samples. Tracking drift may occur

when a target changes its appearance. For example, suppose

that an object is gradually changing its appearance by illu-

mination variation. Then the appearance model is also up-

dated. However, the SVM model is difficult to update very

frequently to adapt to the appearance changes. Once the

appearance model is updated with noisy and misalignment

training samples, tracking drift eventually happens. Visual

object tracking algorithms with multiple trackers which im-

prove the tracking results have been used in [21,33]. There-

fore, two SVM models are employed in our work. That is,

SVM model1 stays fixed, and SVM model2 is updated on-

line.

When a tracking system consists of two trackers, it is

important to ensemble the outputs of the individual trackers

to the final result. The results fusion strategy can improve

the tracking performance substantially especially when the

trackers have high diversity. This part is universal and ef-

fective yet it is least explored in previous works. In [32] the

forward and backward tracking is used to select the correct

motion vectors. To adaptively fuse the tracking results of

the two SVM models, the backward tracking which track-

s an object in the reverse order of time is employed in our

work.

Motivated by the work mentioned above, in this paper,

we exploit the LARK feature for the aerial visual track-

ing. And integrate the feature into a discriminative UAV

tracking system. Two SVM models are employed to han-

dle the challenging factors in the UAV-based tracking. The

backward tracking provides an adaptive scheme to fuse the

tracking results. This tracking system provides an accurate

and robust solution for aerial situations. The proposed sys-

tem is validated by extensive experiments, where targets are

tracked in various scenarios with a variety of scale and ap-

pearance changes. The contributions of this paper are three

fold.

(1) The LARK feature which encodes the geometric

structure of the targets is integrated to the discriminative

tracking framework.

(2) The forward and backward tracking scheme is em-

ployed to adaptively fuse the tracking results obtained by

two SVM models.

(3) An evaluation of state-of-the-art trackers illustrates

the advantages of our tracking algorithm.

2. Related work

There are a plethora of literatures for visual object track-

ing. For a thorough survey, the readers can refer to [24–26].

Here, we only focus on the tracking algorithms most related

to our work.

Many tracking algorithms focus on objet appearance rep-

resentations. An online adaboost feature selection is used

in [27] to adaptively model object appearance. Template is

decomposed into subspace model by Principal Componen-

t Analysis (PCA) and updated adaptively during tracking

[28]. In [29], Harr features are used to model the object

and the structure output SVM is integrated into the track by

detection framework. In [31], the authors exploit the spa-

tial information based on alignment pooling method. The

appearance representation is based on the local structure s-

parse appearance model. A tracking, learning and detection

framework is proposed in [32]. The three components co-

operate with each other to improve tracking results. Target

is modeled by CIE Lab color space which is robust to drastic

illumination variation and multiple SVM trackers tracking

scheme is proposed in [20] to address the model drift prob-

lem. The history snapshots of trackers are restored. The

best tracker in current frame is selected based on minimum

entropy criterion. The model is then updated by the correct

tracking data to prevent model drift.

Recently, correlation filter based tracking method is in-

troduced [21] and has been paid a lot attention. The ridge

regression problem and circulant matrix are employed in

[30] to be effectively kernelized. MUSTER [33] is a bi-

ology inspired tracking method which combined short term

and long term tracking. The short term tracking is correla-

tion filter based with HOG feature [15] and the long term

tracking is keypoints matching based. SAMF [37] integrate

color name [38] and HOG feature to model object appear-

ance. And scaling pool is used to handle the scaling varia-

tion problem. KCF [39] extends the work of CSK [30] and

introduce multi-channel HOG feature. Feature pyramid is

used in DSST [34] to address the scaling problem. SRDCF

[35] uses multiple features to model object appearance and

introduces a spatial regularization component to penalize

correlation filter coefficients according to the spatial loca-

tion. A larger set of negative training samples are learned

by the correlation filter.

Color histogram is utilized in aerial tracking [8–10].

These tracking methods rely on the color feature. Thus,

they are vulnerable to the scenarios that the color of the tar-

get is similar to the background (e.g. gray car and gray

lanes). The morphological filtering technology is used as a

basic feature extraction in [1–4]. In order to reduce false
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Figure 2. Our UAV-based tracking framework.

positives, the shape descriptor and SVM is combined in [5]

to obtain positive samples. Optical flow is used in [6] for

aircraft detection. In [7] local features are used to compute

the optical flow. These local features which are updated on-

line are used to make the tracking method robust to target

appearance changing. These generative methods are prone

to drift in complex scenarios as they do not make fully use

of the background information to improve tracking perfor-

mance.

Some generic tracking methods are tailored for UAV-

based tracking. Multiple instance learning is used in [11].

Multiple resolution representation strategy and multiple

classifier voting mechanism are employed to handle chal-

lenging factors, such as background clutter and illumination

changes. Feature point based detection and tracking is pro-

posed in [40, 41]. The TLD tracking is employed in [14].

The experiments show that the background is incorporates

into the positive training samples which lead to target drift.

Furthermore, the features used in TLD do not consider the

aerial tracking. Thus, tracker drifts when scale variation

happened and perspective changing. The struck method is

employed in [12,13] and achieves good short term tracking

results. However, the experiments are not diverse enough

and are specific to certain application domains. In this pa-

per, we will test our tracker on a large dataset that is used

for aerial tracking and compare with state-of-the-art track-

ing methods.

3. Tracking algorithm

The proposed UAV-based tracking algorithm is summa-

rized in Figure 2. The bounding box in the first frame is

from the ground truth in the UAV123 dataset. The red

bounding box in frame t is the estimated position. The

green bounding boxes are the sampling candidates. LARK

features are extracted and the two SVM models give the fi-

nal position via forward and backward tracking. Next the

features of training samples are extracted and fed to SVM

model2.

 

Figure 3. Euclidean distance vs. geodesic distance.

3.1. LARK feature

LARK feature has been used in salience detection [17],

object detection [16], face detection [18], action recog-

nition [19]. It can capture the underlying structure of the

surrounding data even in the presence of noise and data un-

certainty. Different from traditional methods, LARK mea-

sures the likelihood of a point to its surroundings based

on geodesic distance between points. This distance is the

shortest path along a manifold defined by the embedding

of the image data in 3D as {x1, x2, z(x1, x2)}. Figure 3

shows the differences between geodesic distance and Eu-

clidean distance in the 3-dimensional space. We consid-

er an image surface S(x1, x2) = {x1, x2, z(x1, x2)} as

shown in Figure 3. The differential arc length is given by

ds2 = dx2

1
+ dx2

2
+ dz2. The derivative of z(x1, x2) is

dz(x1, x2) =
∂z

x1

dx1 +
∂z

x2

dx2 = zx1
dx1 + zx2

dx2, (1)

where zx1
, zx2

are first derivatives along x1, x2 respectively.

Thus the arc length is

ds2 = dx2

1
+dx2

2
+(zx1

dx1+zx2
dx2)

2 = ∆xTC∆x+∆xT∆x,

(2)

where ∆x = [dx1, dx2]
T , and C =

[

z2
x1

+ 1 zx1
zx2

zx1
zx2

z2
x2

+ 1

]

. In the LARK computation proce-

dure, the pixels center around a local window. The size of

the window is small, e.g., 5*5. That means the ∆xT∆x in

the local window is trivial. Thus, ds2 ≈ ∆xTC∆x. The

LARK is defined as a self-similarity between a center pixel

and its surrounding pixels as follows:

K(Cl,∆xl) = exp(−ds2) = exp−∆xT

l
Cl∆xl, (3)

where l ∈ [1, · · · , P ], P is the total number of pixels cen-

tered around the central pixel. C is computed by the eigen-
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Figure 4. Examples of normalized LARK value.

decomposition as follows,

Cl = (s1s2 + ϵ)α(
s1 + τ

s2 + τ
uT

1
u1 +

s2 + τ

s1 + τ
uT

2
u2), (4)

where u1, u2 are eigenvectors of Cl, s1, s2 are singular val-

ues, ϵ, τ , α are set to 10−7, 1, 0.5 respectively.

LARK computes the oriented gradients which is sim-

ilar to HOG and SIFT. In HOG and SIFT, quantization

is used to oriented gradients, while in LARK, eigen-

decomposition enables accurate calculation of the oriented

gradients. Meanwhile, the geodesic distance is treated as

a similarity measure between the two pixels, which gives

a reliable distance metric and explains the promising per-

formance achieved by the previous approaches. Figure 4

demonstrates the LARK kernel. A darker blue color rep-

resents a smaller value. The key idea behind the LARK is

to robustly obtain local geometric structures by computing

the differences based on estimated gradients, which encodes

the orientation information of the target. Finally, the LARK

kernel computed in each pixel is concatenated to a feature

vector to represent the object.

3.2. SVM models

We use the standard SVM with hinge loss and l2 regular-

ization [22]. During tracking, two SVM models are used

to estimate target position by searching for the maximum

classification score around the location from the previous

frame. SVM model1 is only trained in the first frame and

does not update during tracking. Our observation is that

the bounding box given in the first frame is the target. Al-

l the other tracked positions are estimated by ourselves and

noise may be introduced. If the model update is contaminat-

ed by noise, tracking drift may occur. For example, when a

car goes through a tunnel, the appearance will be changed

by illumination variation. And the appearance will be re-

covered once the car goes out of the tunnel. In the object

tracking, there are many similar scenarios (e.g., occlusion,

pose variation) that the target will be recovered to the initial

appearance. Thus, if the SVM model updates too frequent-

ly, tracking performance will be degraded. Hence we adopt

a conservative model update strategy. Given the estimated

position in the current frame, a set of training samples are

generated which is used to update the SVM model2 online.

3.3. Forward and backward tracking

In this section, we give a detailed description of our for-

ward and backward tracking scheme. The key idea of our

fusion strategy is to find an objective criterion to measure

the accuracy of the trackers. Theoretically, a robust track-

ing model should be identical to the ground truth during

forward and backward tracking. Therefore, forward and

backward tracking is adopted in our work to measure the

robustness of the two trackers. The backward tracking is

initialized at the second frame. By comparing the backward

trajectories with the tracked position, we can approximately

estimate the accuracy of the forward trackers. Based on the

forward and backward analysis, the best forward position is

selected. The final results are more robust and accurate than

single model tracking.

Figure 5 illustrates two trackers from frame t−1 to frame

t. We track the target within the red bounding box at frame

t−1. Black and blue bounding boxes depict the two forward

tracking results at frame t. Green and yellow bounding box-

es represent corresponding two backward tracking results

at frame t − 1 by SVM model1 and SVM model2. Com-

paring the overlap between the green bounding box and red

bounding box at frame t−1, we can tell approximately how

much the SVM model1 matches the object appearance. In

the same way, comparing the overlap between the yellow

bounding box and red bounding box, we can evaluate the

SVM model2. The overlaps can be used to evaluate as a

fusion weight in the forward tracking. The overlap ratio is

computed as follows [45]:

αi =
SVMBi ∩ PB

SVMBi ∪ PB
, i = 1, 2, (5)

where SVMB1 and SVMB2 represent the SVM model1

and SVM model2 tracking bounding box in frame t respec-

tively. And PB represents the final tracking bounding box

in frame t. ∪ and ∩ represent intersection and union of the

two regions, respectively. In our tracking framework, the

final position is determined by the black and blue bounding

boxes.

Y = β1 ∗ y1 + β2 ∗ y2, (6)

where β1 and β2 are normalized overlap ratios α1 and α2

respectively, y1 and y2 are two forward tracking results. The

tracking algorithm is given in Figure 6.
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Figure 5. The forward and backward tracking.

Input: Current position at frame .  

           SVM model1 and SVM model2.      

1. Generate particles within the particle filtering framework. 

2. Compute LARK feature for each of the particles and concatenate to a feature vector. 

3. Estimate positions by SVM model1 and SVM model2 respectively. 

4. Backward tracking by SVM model1 and SVM model2 respectively. And compute the 

overlap ratios by equation (5). 

5. Compute the final position by equation (6). 

6. Generate positive samples and negative samples. And update SVM model2. 

Output: Tracked target position at frame t+1. 

              SVM model1 and updated SVM model2. 

 

Figure 6. Our tracking algorithm.

4. Experiments

4.1. Dataset

Generic tracking datasets such as OTB50 [23], OTB100

[24], TC128 [42], VOT16 [43] and ALOV300 [26] have

been widely used to compare with state-of-the-art track-

ing methods. But the tracking scenarios are different from

UAV-based tracking. The VIVID dataset [36] is dedicated

to aerial tracking, but it has only 9 sequences. In our ex-

periment, we use two dataset: UAV123 dataset [44] and

UAV123-10fps dataset.

The UAV123 dataset contains 123 video data which

is recently created for UAV-based target tracking.. The

UAV123-10fps is down sampled from the UAV123 dataset.

There are 123 videos in this dataset, 115 videos captured by

a UAV cameras and 8 sequences rendered by a UAV simu-

lator, which are all annotated with bounding boxes and 12

attributes. The longest sequence contains 3085 frames and

the total frames are more than 110k frames. Various scenes

exist in the UAV123 dataset, such as roads, buildings, field,

beaches and so on. The targets include aerial vehicles, per-

son, trucks, boats, cars and so on. The tracking scenarios

contain occlusion, background clutter, camera motion, illu-

mination variation, scale variation, viewpoint change, and

so on.

We also compare these trackers in 12 attributes. That is:

Aspect ratio change, which means the fraction of ground

truth aspect ratio in the first frame and at least one subse-

quent frame is outside the range [0.5, 2].

Background Clutter, which is the background near the

target has similar appearance as the target.

Camera Motion: abrupt motion of the camera.

Fast Motion: motion of the ground truth bounding box is

larger than 20 pixels between two consecutive frames.

Full Occlusion: the target is fully occluded.

Illumination Variation: the illumination of the target

changes significantly.

Low Resolution: at least one ground truth bounding box

has less than 400 pixels.

Out-of-View: some portion of the target leaves the view.

Partial Occlusion: the target is partially occluded.

Similar Object: there are objects of similar shape or

same type near the target.

Scale Variation: the ratio of initial and at least one sub-

sequent bounding box is outside the range [0.5, 2].

Viewpoint Change: viewpoint affects target appearance

significantly.

4.2. Compared trackers

The compared tracking methods are: DCF [39], KCF

[39], IVT [28], TLD [32], Struck [29], OAB [27], C-

SK [30], ASLA [31], MEEM [20], MUSTER [33],

DSST [34], SRDCF [35], SAMF [37] and MOSSE

[21]. The tracking results of these trackers are all from

https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx.

4.3. Quantitative evaluation

We follow the evaluation strategy in [23]. Two mea-

sures are employed to compare the trackers: precision and

success. Precision is calculated as the distance between

the centers of the ground truth bounding box and a track-

er bounding box. Success is computed by the overlap of

pixels between the ground truth bounding box and a tracker

bounding box. The precision plot represents the percentage

tracker bounding boxes within a given threshold distance in

pixels of the ground truth. To rank the trackers, we use a

threshold of 20 pixels [23]. The success plot represents the

percentage of tracker bounding boxes whose overlap score

is larger than a given threshold. The trackers are ranked

using the area under the curve (AUC) measure [23].

One-pass evaluation (OPE) shows how well the bound-

ing box of a tracker in all frames given the initial bound-

ing box. Overall performance: Figure 7 shows our track-

ing algorithm achieves 0.644 and 0.402 in precision and

success plots of OPE on UAV123 respectively. Figure 8

shows the precision plots of videos with different attributes

on UAV123. The number in the title indicates the num-

ber of sequences. Figure 9 shows the success plots of

videos with different attributes on UAV123. The number

in the title indicates the number of sequences. Figure 10

shows On UAV123-10fps, our tracker achieves 0.608 and

0.391 in precision and success plots of OPE respectively.

Attribute based performance: Among existing methods, our

method performs well with overall success in scale variation

(0.435), aspect ratio change (0.347), low resolution (0.289),

fast motion (0.28), full occlusion (0.242), partial occlusion

(0.342), out-of-view (0.352), background clutter (0.297),
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Figure 8. Attribute-based precision plots of OPE on UAV123 dataset. The trackers with best 10 AUC scores are presented in the legends.

illumination variation (0.319), viewpoint change (0.373),

camera motion (0.401) and similar object (0.405). In most

of the situations, our method yields a favorable tracking per-

formance compared to the other compared trackers.

In general, our tracker is among the top three performer-

s in terms of success and precision plot. Since the LARK

feature encode the edge feature of the object, our tracking

results perform better in low resolution. The forward and

backward tracking scheme prevents the model drift in chal-

lenge scenarios, such as occlusion and viewpoint change.

The most difficult attributes seem to be background clutter

and similar object (in Figure 8 and Figure 9). There is still
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Figure 9. Attribute-based success plots of OPE on UAV123 dataset. The trackers with best 10 AUC scores are presented in the legends.

much room for improvement especially for these attributes.

For example, the model update can be improved by integrat-

ing more adaptive updating scheme. And other classifiers,

such as structure SVM, random forest can be considered.

4.4. Qualitative evaluation

Figure 11 shows sampled results of representative se-

quences where the targets undergo challenging situation-

s (e.g., pose variation, low resolution, illumination varia-
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Figure 7. Precision and success plots of OPE on UAV123 dataset.

 

Figure 10. Precision and success plots of OPE on UAV123-10fps

dataset.

tion). In the bike1 sequence, the person undergoes rapid ap-

pearance changes due to viewpoint change and illumination

variation. Our SVM models are updated online and adap-

t to the appearance changes. The forward and backward

scheme adaptively fuses the tracking results to track the

person well. In the boat1 sequence, the target undergoes ap-

pearance change due to scale variations. Our method is able

to track the boat in the entire video. In the group1 sequence,

the person walks while the appearance changes much due to

low resolution and illumination variations. Our tracker per-

forms well as the two SVM models adapt to the appearance

changes. In wakeboard8 sequences, the target undergoes

significant appearance changes due to low resolution and

occlusion. The DSST, MUSTER, KCF and SAMF method

lock on to the background. The proposed feature captures

the edge information of the target and tracks the object well.

5. Conclusion

In this paper, we have introduced a robust UAV-based

tracking framework. The discriminative tracking algorith-

m is achieved by first employing the LARK feature to en-

code the edge information of the target. Then we use two

SVM models to estimate the target position. The forward

and backward tracking scheme which is employed to eval-

uate the tracking accuracy of the two models improve the

robustness of the tracking results in various scenarios. The

final position is determined by the two models. The positive

and negative samples are employed to train and update the

SVM model2 online to adapt to appearance changes. Ex-

 

Figure 11. Qualitative results of the 8 trackers over sequences

bike1, boat1, group1, wakeboard8, in which the targets undergo

severe appearance changes.

periments have shown that the proposed tracking method

outperforms most of the existing state-of-art trackers over a

range of scenes, lighting conditions and distances in terms

of accuracy and robustness.
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