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Abstract

While 3D object detection and pose estimation has been

studied for a long time, its evaluation is not yet comple-

tely satisfactory. Indeed, existing datasets typically con-

sist in numerous acquisitions of only a few scenes because

of the tediousness of pose annotation, and existing evalu-

ation protocols cannot handle properly objects with sym-

metries. This work aims at addressing those two points.

We first present automatic techniques to produce fully an-

notated RGBD data of many object instances in arbitrary

poses, with which we produce a dataset of thousands of in-

dependent scenes of bulk parts composed of both real and

synthetic images. We then propose a consistent evaluation

methodology suitable for any rigid object, regardless of its

symmetries. We illustrate it with two reference object de-

tection and pose estimation methods on different objects,

and show that incorporating symmetry considerations into

pose estimation methods themselves can lead to significant

performance gains. The proposed dataset is available at

http://rbregier.github.io/dataset2017.

1. Introduction

Detecting instances of 3D rigid objects and estimating

their poses given visual data is of major interest for ap-

plications such as augmented reality, scene understanding

and robotics, and has been an open field of research since

the early days of computer vision. Nonetheless and despite

important progresses in this field, existing 3D pose estima-

tion methods still fundamentally cannot deal with any kind

of rigid object, since they rely on the assumption that the

pose of a rigid object corresponds to a single 6-degrees-of-

freedom rigid transformation [1, 2, 3, 4, 5, 6]. This hypothe-

sis leads to ambiguities when dealing with objects showing

some proper symmetries – i.e. invariances under some rigid

transformations – notably for evaluation purposes, as the

pose of such an object can be represented by multiple rigid

transformations. Symmetries are actually common among

manufactured objects, and while ad hoc solutions to this is-

sue have been proposed for performance evaluation [4, 6],

they consist in relaxing the pose estimation validation cri-

teria and are therefore not suited for applications requiring

precise positioning.

On an other level, a scenario of particular practical inte-

rest for object detection and pose estimation consists in the

so-called bin-picking problem, where instances of a rigid

object have to be detected and localized within a bin con-

taining many instances in bulk. Despite the active research

on 3D pose estimation, the current state of the art for bin-

picking is relatively unknown. Secrecy is indeed the norm

regarding the performances of industrial solutions, and avai-

lable object recognition datasets are not representative of

this scenario, as they typically consider only a limited num-

ber of object instances lying on a flat surface on a given

face, because of the cost of pose annotation.

This article tries to address those issues. In section 3, we

propose automatic techniques for generating fully annota-

ted real range image and synthetic RGBD datasets of many

instances of objects in arbitrary poses, with no redundancy

between the acquisitions, contrary to existing approaches.

We suggest in section 4 to take the object symmetries into

account for both evaluating accuracy and improving perfor-

mances of existing pose estimation methods. Section 5 is

focused on the evaluation problem, for which we forma-

lize performance metrics in order to better deal with sce-

nes containing many object instances. These developments

are supported by experiments on two well-established ob-

ject detection and pose estimation methods, in section 6.

2. Related work on 3D object pose estimation

evaluation

Several approaches have been proposed to evaluate 3D

object detection and pose estimation for manipulation tasks

based on robotic experiments [7, 8, 9, 10], but pose accu-

racy is difficult to evaluate in such scenario due to the lack
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Figure 1: Samples exhibiting the strong correlation of data

within existing datasets. From left to right: datasets of Te-

jani et al. [5], Hinterstoisser et al. [4, 13], T-LESS [16] and

Desk3D [14].

of ground truth, and its online nature makes reproducibility

difficult. The use of datasets annotated with ground truth

poses of every visible object instance instead enables a more

quantitative and reproducible offline evaluation. Over the

years, several publicly available datasets emerged and we

summarize the characteristics of major ones in table 1. Ot-

her 3D object recognition datasets of interest obviously ex-

ist (see notably Firman [11]) but we focus here on the case

of rigid objects without intra-class variability. Those data-

sets (except for T-LESS [16]) consist in views of scenes of a

few objects lying on a given face on a table, acquired from

pan-tilt viewpoints with only limited roll along the sensor

axis. As such, they provide useful material for working on

tasks such as indoor scene understanding, but their limited

variability of poses relative to the camera is not representa-

tive of the problem of localizing objects in arbitrary poses.

Moreover, and because manually annotating objects po-

ses in each image is a tedious process, datasets of more than

a few tens of images [4, 5, 14, 16, 15] rely on automatic an-

notation techniques. Objects instances are typically placed

at given poses relatively to some fiducial markers, whose

automatic detection in the scene enable to compute the po-

ses of instances relatively to the camera. This approach

enables to easily generate large annotated datasets, however

consisting in numerous acquisitions of a few scenes from

different viewpoints (see figure 1). This strong correlation

between data samples makes those datasets less represen-

tative of the data distribution in a genuine application, and

training or performance evaluation on such datasets is the-

refore likely to suffer from some overfitting effects.

Pose accuracy An essential part of the evaluation metho-

dology consists in selecting a criterion to decide whether or

not a pose hypothesis matches a ground truth pose. Such

matching criterion is typically defined based on a measure

of similarity between the pose hypothesis and the ground

truth. Several similarity measures have been considered for

this task, such as the Intersection over Union ratio of 2D sil-

houettes, the translational and rotational errors [3], and the

average displacement of vertices of a 3D model of the ob-

ject [4]. The first criterion, while widely used for 2D object

localization, is however not suited for 3D pose estimation,

as multiple poses may have similar projected silhouette on

the image plane. The latter two are not well defined for ob-

jects with symmetry properties, since there is no unique dis-

placement between two poses of a symmetric object. The

most widespread workaround to this issue consists in the

use of an ad hoc dissimilarity measure [4], based on the

distance between vertices of a 3D model M of the object at

those given poses

avg
x1∈M

min
x2∈M

‖T1(x1)− T2(x2)‖, (1)

where T1,T2 ∈ SE(3) are active rigid transforms repre-

senting the poses. However, such criterion remains proble-

matic, as it cannot distinguish between poses of similar 3D

shapes, such as the flipped poses of coffee cups depicted fi-

gure 3a. Hodan et al. [6] recently suggested the use of an

ambiguity-invariant pose error function, considering a pose

hypothesis as valid if and only if it is plausible given the

available data. While not denying the interest of dealing

with ambiguities, especially in the context of active vision,

we consider this approach problematic for evaluation, since

numerous applications rely on a precise pose estimation and

cannot be satisfied by plausible hypotheses. This is all the

more true when dealing with highly occluded objects, for

which the number of plausible hypotheses can be infinitely

large.

Precision and recall Once able to classify pose results,

one can define metrics to quantify the performances of a gi-

ven algorithm. In the case of pose estimation of a single

object instance per scene, performances are typically des-

cribed by the recognition rate [1, 3, 4], that is the fraction

of scenes for which the pose returned is the correct one on

the whole dataset. This metric is however insufficient for

scenes containing an unknown number of instances, as it

provides no information on the false positive results produ-

ced. In such case, the performance is typically described in

terms of precision and recall [5], averaged over all the data

samples. Such approach however focuses on the exhaustive

retrieval of every instance in each scene, which might not

be the actual objective of use cases dealing with scenes of

many instances.

In this article, we propose a methodology to generate

both real and synthetic data of many object instances in ar-

bitrary poses, with no dependency between data samples,

in order to overcome the limitations of existing datasets,

and metrics adapted for performance evaluation in scenes

of many object instances, with potential symmetries.
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Table 1: Characteristics of typical rigid object detection and pose estimation datasets.

We distinguish between localization and detection [6], depending on whether the number of instances to retrieve is constant or not. A dataset is considered

redundant if it contains numerous acquisitions of the same scene.

Dataset Modality
Problem

class

Multiple

instances

Multiple

objects

Absence of data

redundancy

Pose

variability
Clutter

Mian et al. [2] Point cloud Localization no yes yes limited no

Aldoma et al. [12] Colored point cloud Detection no yes partial limited no

Hinterstoisser et al. [4, 13] RGBD Localization no yes no limited yes

Desk3D [14] Point cloud Detection no yes no limited yes

Tejani et al. [5] RGBD Localization yes no no limited yes

Doumanoglou et al. [15] RGBD Detection yes yes no high limited

T-LESS [16] RGBD Detection yes yes no high limited

3. Generating annotated datasets of many in-

stances

We propose in this section two methods to generate da-

tasets of independent scenes of many object instances in

arbitrary poses, automatically annotated with the poses of

those objects. The first method is based on the annotation

of real range data thanks to the use of tagged object instan-

ces. The second one relies on computer simulations. We

consider in our experiments multiple instances of a single

object because it is representative of the bin-picking pro-

blem, however multiple objects could be considered in a

similar fashion.

3.1. Real data

We cover the surface of each instance of object with a set

of unique fiducial markers [17], densely enough such that at

least one marker is always visible from any point of view.

The pose of a marker relative to its corresponding object

instance is assumed to be known, and in our experiments,

we ensured the precise positioning of markers by carving

their locations on the 3D model of the object, and by produ-

cing its instances by 3D printing. This shape modification is

not required but is merely performed here for convenience,

and precise positioning of markers could be achieved e.g.

through the use of a specific assembly jig. Using a binocu-

lar stereoscopic system, we produce a range image for each

scene through the use of a pseudo-random pattern projec-

tor and an off-the-shelf stereo matching algorithm. We also

acquire intensity images from both camera with a diffuse

lighting, depicted in figure 2. This second modality is ex-

ploited in order to automatically recover the ground truth

poses.

Visible markers can indeed be quite reliably detected,

identified and localized within the intensity images. Be-

cause each marker is uniquely assigned to a given instance

of object, object detection is straightforward: a given in-

stance is considered present in the scene if and only if at

least one of its marker is detected. The potential occlusion

of every marker of an instance is not a major issue for this

approach, as it only occurs when the instance is nearly en-

Uniform lighting Annotated poses

3D model with

markers sites

Textured lighting Depth map

Figure 2: Automatic production of annotated range images

of many object instances in bulk. Range images are pro-

duced by active stereo matching (left), while ground truth

poses are annotated by detecting, in intensity images, mar-

kers placed on object instances (right).

tirely occluded – provided that the object is densely enough

covered by small enough markers – and pose annotation is

of limited interest such case.

For each detected instance, marker detection in intensity

image j ∈ {1, 2} provides us with the 2D corners coordi-

nates pi,j ∈ R
2, i ∈ Mj of the detected markers associated

with the instance. Because the pose of those markers rela-

tive to the object instance is known, each pi,j can be put in

relation with its corresponding 3D point Xi,j ∈ R
3 within

the object frame. The pose [R̂, t̂] of the considered instance

– described by a 3 × 3 rotation matrix R̂ and a 3D trans-

lation vector t̂ – can therefore be estimated by solving the

multiview perspective-n-point problem

[R̂, t̂] = argmin
R,t

∑

j∈{1,2}

∑

i∈Mj

‖πj(RXi,j + t)− pi,j‖
2,

(2)

where πj represents the projection from a 3D point in the re-

ference coordinate system onto the image plane of camera

j. The annotation procedure is therefore automatic, but we

proceed in our experiments to a visual validation stage to
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ensure the quality of the ground truth. Validation of about

700 scenes required less than 40min for a single person, and

6% of images were discarded due to failures of the mar-

ker detector used, consisting either in false positives, false

negatives, mislabeled markers or imprecision in the locali-

zation of markers’ corners. This failure rate could proba-

bly be diminished significantly through more robust mar-

kers detection, but we considered it acceptable given that

scene acquisition and validation of automatic annotations

are quite fast to perform. Additional annotations such as

the occlusion rate of each instance are produced by compa-

rison with CGI-renderings of the instances at the annotated

poses.

3.2. Synthetic data

While effective, this marker-based approach is intrusive,

in that markers remain visible in intensity images, which

limit the suitability of this approach for object recognition

techniques based on such modality. Those issues can be

avoided through the use of synthetic data, for which ideal

ground truth can be produced. It is indeed possible to ge-

nerate synthetic datasets reasonably representative of con-

trolled environments such as an industrial setup for bin-

picking, and for our experiments we produce synthetic sce-

nes of bulk objects through the physical simulation of drop

of instances into a bin, from which we synthesize top-view

RGBD images (see examples figure 4).

Sensor simulation Producing plausible synthetic RGB

images is relatively simple thanks to existing ray-tracing

renderers, but while range data simulators [18] or depth

noise models (e.g. [19]) have been proposed, they remain

quite sensor-dependent and their tuning is not trivial. To

overcome those issues, we render stereo image pairs of the

synthetic scene lit by a virtual pseudo-random pattern pro-

jector using the Blender Cycles renderer [20], and perform

on those images the same 3D stereo reconstruction as in

our real experiments. This approach produces range ima-

ges with a 3D reconstruction noise visually similar to the

one observed in our real data, without the need for an expli-

cit noise model, and despite a coarse modeling of the scene

(we discuss this question further in section 6.2). The recon-

struction technology we simulate here is similar to the one

used in industrial cameras such as the Ensenso N10, and

other triangulation-based sensors such as LASER scanners

or Kinect v1 could be simulated in a similar fashion, given

access to the processing algorithms used by these devices to

transform raw input data into depth images.

Based on those approaches, we generated both real and

synthetic datasets, considering objects with various symme-

try properties, in scenes of various number of instances pi-

led up in bulk (see fig. 4 and supplementary material). The

clutter dataset is an exception depicting very cluttered sce-

nes, to illustrate the suitability of our annotation procedure

in such scenario.

4. Dealing with symmetric objects

Being able to quantify the accuracy of a pose estimate is

a prerequisite for evaluation, but usual measures are not fit

to deal with symmetric objects. In this section, we suggest

the use of a distance suited to any bounded rigid object, and

discuss how it can be used within 3D object detection and

pose estimation techniques themselves, in order to increase

performances.

4.1. Pose distance

Brégier et al. [21] recently proposed a pose definition va-

lid for any rigid object – including those with symmetries –

as a distinguishable static state of the object. Within their

framework, a pose can be identified to an equivalency class

{T ◦G|G ∈ G} of SE(3), defined by an active rigid trans-

formation T and up to any rigid transformation the object

is invariant to (the proper symmetry group G ⊂ SE(3)).
Given a bounded rigid object, they propose a distance

between two poses consisting in the length of the smallest

displacement from one pose to an other, the length of a dis-

placement being defined as the RMS displacement of sur-

face points of the object

d(P1,P2) ,

min
G1,G2∈G

√

1

S

∫

S

‖T2 ◦G2(x)− T1 ◦G1(x)‖2ds,
(3)

where S is the surface area of the object. This distance is

physically meaningful, and accounts properly for object’s

symmetries contrary to the widespread measure (1) as illus-

trated figure 3. Moreover, it can be estimated efficiently in

closed form, whereas the measure (1) requires to perform

systematically a computation on every vertex of the model.

To this aim, the authors propose a representation of a pose P
as a finite set of points R(P) of at most 12 dimensions, de-

pending on the proper symmetry class of the object. Those

representations are listed in table 2 and in particular,

• A pose of an object without proper symmetries (such

as the bunny covered with markers used in our expe-

riments) is represented by a 12D point, consisting in

the concatenation of the 3D position of its centroid t

and of its rotation matrix R, anisotropically scaled by

a matrix Λ to account for the object’s geometry.

• A pose of an object with a finite non-trivial proper

symmetry group is represented by several of those 12D

points, two in the case of the brick object figure 4

which is invariant under the group of proper symme-

tries G = {I,Rπ
z } consisting in the identity transfor-

mation and a rotation of 1/2 turn around a given axis.
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1.2%

1.4%
4.1%

1.5%

4.1%

4.5%

(a) Hinterstoisser et al. [4].

3.2%

4.3%
70%

3.3%

70%

70%

(b) Proposed distance.

Figure 3: Dissimilarity (in % of the object’s diameter D)

between pose hypotheses (overlaid contours) and the corre-

sponding ground truth poses. In this example from Dou-

manoglou’s dataset [15], each pose hypothesis would be

considered as valid according to the widespread criterion

of Hinterstoisser et al. [4] for symmetric objects (dissimi-

larity below 10% ·D). The proposed distance on the other

hand properly accounts for the object’s symmetries, which

enables to discriminate well true positives (green) and false

positives (upside down hypotheses, in red).

• Poses of revolution objects (such as pepper and gear

figure 4) are represented by 6D vectors consisting in

the concatenation of the 3D position of their centroids

and the direction of their revolution axis, scaled to ac-

count for the object’s geometry.

Using this representation, they show that the distance

between two poses P1,P2 can be evaluated as the Eucli-

dean distance between any given point p1 ∈ R(P1) and the

pointset R(P2):

∀p1 ∈ R(P1), d(P1,P2) = min
p2∈R(P2)

‖p2 − p1‖. (4)

This “nearly Euclidean” structure enables to perform neig-

hborhood queries such as nearest-neighbor or radius sear-

ches in an exact or approximate fashion using existing algo-

rithms developed for Euclidean spaces (regular grids, kD-

trees, etc.). It also enables to average poses of an object with

potential symmetries efficiently. Thanks to those possibili-

ties, high-level techniques can be developed in the space of

poses, such as the Mean Shift algorithm, which finds local

maxima of density distributions.

Given its advantages, we suggest to use this distance for

quantifying the accuracy of a pose estimation. It expresses

the RMS error in positioning of surface points of the object,

and we define a criterion m(p, t) , (d(p, t) < δ) to de-

cide whether or not a pose hypothesis p matches a ground

truth pose t based on a hard threshold δ, in length unit. The

choice of such threshold is very application-dependent, but

without further information we chose arbitrarily a value of

10% of the diameter of the smallest sphere enclosing the

object and centered on the centroid of object’s surface.

4.2. Considering symmetries for 3D pose estimation

Finding modes An important class of 3D detection and

pose estimation methods are based on the aggregation of

multiple votes for poses [3, 22, 10, 5, 23, 24] in order to

generate pose hypotheses. They typically rely on density

estimation, modes finding techniques such as Mean Shift,

or clustering operations. Those operations depend on the

choice of metric over the pose space, and can actually be

performed efficiently considering the distance (3) (see [21]

for details). Contrary to a metric suited for SE(3), the sug-

gested one enables to take object symmetries into account

directly in the 3D pose estimation method, and to better

exploit the aggregate of votes. We test this hypothesis in

our experiments by adapting to this approach the method

of Drost et al. [3], to which we will refer as PPF.

Filtering duplicates More generally, considering sym-

metries can improve the performance of any 3D pose es-

timation method thanks to early duplicate removal, as one

can ignore pose hypotheses too similar to an already retai-

ned one, according to the distance (3). Removing duplicates

is a simple way to increase the precision in object detection

and pose estimation, and performing it at an early stage be-

nefits to computation time, by limiting the number of pose

hypotheses to refine and validate. Equivalently given a con-

stant number of pose hypotheses retained, duplicates remo-

val enables to consider a larger number of truly different

pose hypotheses, which should benefit to the recall. We ex-

periment this approach on two methods: PPF evoked previ-

ously; and the sliding window technique of Hinterstoisser

et al. [4] (referred to as LINEMOD+).

5. Performance metrics

In scenes containing many parts, retrieving the pose of

every single object instance is not always required. The

pose of very occluded objects is indeed often ambiguous,

and the retrieval of a limited number of instances is suffi-

cient for many applications – e.g. in robotic manipulation.

We propose here some adaptations of the usual performance

metrics – precision and recall – to take those aspects into

account. We discuss the case of a scene containing poten-

tially multiple instances of a rigid object, but multiple sce-

nes should obviously be considered for statistical robustness

through the use of aggregated metrics, such as the mean pre-

cision and recall. The multi-object case can be handled si-

milarly, as long as no specific relations between the objects

are implied (e.g. no object categories). Let T be the set of

ground truth poses of object instances within the scene, and

P the set of result poses retrieved via an object detection

and pose estimation method.
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Table 2: Classification of every potential group of proper symmetry for a 3D bounded physical object, and expression of

pose representatives enabling fast distance computations.

Proper symmetry class
Revolution without

rotoreflection invariance

Revolution with

rotoreflection invariance
Spherical Finite

Proper symmetry group G {Rα
z |α ∈ R}

{
Rδ

xR
α
z

∣
∣δ ∈ {0, π} , α ∈ R

}
SO(3) G ⊂ SO(3)

Pose representatives R(P) (λ(Rez)⊤, t⊤)⊤ ∈ R
6

{
(±λ(Rez)⊤, t⊤)⊤

}
⊂ R

6 t ∈ R
3

{
(vec(RGΛ)⊤, t⊤)⊤|G ∈ G

}
⊂ R

12

Assumptions: Object frame (O, ex, ey , ez) chosen such as O to be the center of mass of the object and the ez axis to be aligned with the symmetry axis

for revolution objects.

Notations: I is the identity rotation. Rα
x ,R

α
y ,R

α
z represent rotations of angle α ∈ R around respectively ex, ey , ez axes.

Λ , (
1

S

∫

S
xx⊤ds)1/2, and λ ,

√
λ2
r + λ2

z for revolution objects where Λ = diag(λr, λr, λz).

Instances of interest Only a subset To ⊂ T of object in-

stances present in the scene might be of interest to retrieve.

In our experiments, we choose To , {t ∈ T |o(t) < δo} as

the subset of instances t with an occlusion rate o(t) smaller

than δo = 50%. Given To, we define the notions of true

positives (TP ), false positives (FP ), and false negatives

(FN )

TP ={(p, t) ∈ P×To|m(p, t) ∧ p = nP (t) ∧ t = nT (p)}

FP ={p ∈ P |¬m(p, nT (p)) ∨ nP (nT (p)) 6= p}

FN={t ∈ To|¬m(t, nP (t)) ∨ nT (nP (t)) 6= t} ,
(5)

where nS(q) , argminr∈S d(q, r) is the nearest pose

within a set S from a pose q. Duplicates are considered as

false positives with this definition, and a result correspon-

ding to an instance whose retrieval is of no interest (within

T \ To) is neither considered as a true nor a false positive.

The complementary notions of precision and recall can then

be derived as

precision = |TP |/(|TP |+ |FP |),

recall = |TP |/(|FN |+ |TP |).
(6)

Limited number of retrievals To properly handle the

case where the number of results |P | is restricted to n ∈ N
∗,

we propose to alter the definition of recall as follows

recall≤n results = |TP |/min(n, |FN |+ |TP |). (7)

6. Experiments

This section presents experiments performed on object

detection and pose estimation using the PPF and LINE-

MOD+ methods, adapted to deal with symmetric objects

(see section 4.2). Through these, we aim to illustrate our

different evaluation proposals suited for scenes depicting

multiple instances of any rigid object; and also to bring out

the benefits of considering symmetries for object detection

and pose estimation.

6.1. Protocol

Our experiments are based on the LINEMOD implemen-

tation of Stefan Holtzer available in PCL [25], and on our

own implementation of PPF. Prior to evaluation, we refine

pose hypotheses thanks to a projective ICP algorithm – an

additional step often performed to improve pose estimation

accuracy [4, 24, 26]. The evaluation therefore focuses on

the ability to generate pose hypotheses within the conver-

gence basin of poses of actual instances. We perform ex-

periments on both our real and synthetic datasets (some of

those generated using object models from T-LESS [16]),

as well as the two bin-picking datasets from Doumanog-

lou et al. [15]. Computation time is not evaluated here, as

we used unoptimized code unrepresentative of the original

methods.

Post-processing step The addition of a post-processing

step (PP) for objects pose hypotheses has been shown to

substantially improve performances [4, 27]. We evaluate

this effect by considering variants of PPF and LINEMOD+

consisting in keeping the 20 best hypotheses returned by the

method, scoring them according to their consistency with

the input data and filtering duplicates.

Considering symmetries As discussed in section 4.2, we

also evaluate the impact of considering the proper symme-

tries of the object if any (suffixed by sym in table 3). We use

the same set of templates for LINEMOD+ in both cases, so

as not to bias the comparison.

6.2. Suitability of synthetic data for evaluation

The use of synthetic data raises the question of its suit-

ability for evaluation purposes. To assess the usefulness

of our depth sensor simulation procedure for this task, we

generate a synthetic dataset of 308 images depicting vir-

tual copies of real scenes of object instances lying on a flat
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markers bump markers clutter coffee cup [15] tless 20 brick∗ gear
︸ ︷︷ ︸ ︸ ︷︷ ︸

Real data Synthetic data

Figure 4: Examples of results from our experiments in object detection and pose estimation. Top: considered objects. Middle:

RGB images, with silhouettes contours of the first 5 results returned by the PPF sym method with post-processing, classified

as true positives (green) or false positives (red). Bottom: corresponding range data. ∗: the false positive brick highlighted in

red is flipped upside down compared to the corresponding ground truth.

(a) Real data

(b) Synthetic data

Figure 5: Synthetic dataset depicting virtual copies of real

scenes for comparison purposes (depth and intensity).

background (markers flat), and we perform evaluations on

both datasets. These virtual scenes are synthesized automa-

tically based on the pose annotations of real data produced

using markers, and a plane detection algorithm for the back-

ground. Parameters of the virtual cameras used for range

data generation match those of real cameras, and figure 5

depicts an example of synthesized data.

Because we used simple and ideal material and lighting

in our CGI renderings, the synthetic data produced is diffe-

rent from the real one, and of slightly better quality (96.6%

of the pixels with depth information, against 96.2% for the

real data). This quantitatively affects performances and

every pose estimation method we tested showed slightly

better performances on the synthetic dataset than on the

real one (see markers flat results in table 3). Nonetheless,

synthetic data remains plausible thanks to our depth sensor

simulation procedure, and the performances of the evalua-

ted methods compare to one another very similarly on both

datasets, as illustrated figure 6. We therefore consider the

synthetic data produced to be realistic enough for compara-

tive evaluation purposes.

6.3. Effect of accounting for object symmetries

While precision-recall curves such as the ones figure 6

provide a finer-grained understanding of performances, we

synthesize our results for the sake of readability in table 3

through different metrics. We consider the Average Preci-

sion (AP) [28], a usual metric consisting in the area under

the precision-recall curve, given the goal of retrieval of in-

stances less than 50% occluded. One might only be inte-

rested in the retrieval of a few object instances – e.g. for ro-

botics manipulation – therefore we also present the Average

Precision given at most n ∈ {1, 3} results returned (APn).

The formalism enabling to compute those metrics is defined

in section 5.
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Table 3: Performances of two object detection and pose estimation methods, and their variants exploiting object symmetries

(sym) if any, and post-processing of the best 20 pose hypotheses. Accounting for symmetries improves performances of both

methods.
Raw method With post-processing of the best 20 pose hypotheses (PP)

PPF PPF sym LINEMOD+ LINEMOD+ sym PPF PPF sym LINEMOD+ LINEMOD+ sym

Dataset AP AP1 AP3 AP AP1 AP3 AP AP1 AP3 AP AP1 AP3 AP AP1 AP3 AP AP1 AP3 AP AP1 AP3 AP AP1 AP3

R
ea

l
d

at
a

markers bump .35 .66 .43 – – – .85 1.00 .96 – – – .56 .97 .84 – – – .91 1.00 .99 – – –

markers clutter .34 .36 .31 – – – .57 .67 .53 – – – .52 .70 .52 – – – .68 .83 .69 – – –

markers flat .26 .54 .31 – – – .83 .99 .97 – – – .46 .94 .76 – – – .90 1.00 .99 – – –

juice [15] .04 .15 .07 – – – .01 .01 .01 – – – .07 .29 .11 – – – .06 .24 .10 – – –

coffee cup [15] .16 .76 .53 .28 .96 .85 .03 .37 .10 .08 .37 .17 .23 .98 .90 .30 1.00 .92 .10 .95 .61 .20 1.00 .93

S
y

n
th

et
ic

d
at

a

markers flat .29 .55 .36 – – – .87 .99 .97 – – – .50 .94 .79 – – – .91 .99 .99 – – –

tless 22 .08 .52 .34 – – – .19 .63 .54 – – – .12 .89 .76 – – – .21 .81 .81 – – –

bunny .29 .83 .66 – – – .39 .97 .94 – – – .37 .99 .97 – – – .45 .99 .98 – – –

tless 20 .10 .49 .35 .20 .82 .64 .17 .81 .44 .25 .81 .75 .14 .92 .84 .23 .98 .94 .24 1.00 .97 .31 1.00 .99

tless 29 .15 .69 .40 .19 .76 .56 .14 .71 .34 .20 .71 .50 .21 .90 .76 .23 .91 .79 .20 .88 .84 .26 .92 .86

brick .05 .24 .13 .08 .35 .22 .20 .97 .47 .31 .97 .76 .10 .68 .47 .13 .77 .59 .32 .98 .95 .39 .99 .96

gear .24 .42 .30 .62 .94 .89 .15 .93 .31 .44 .95 .84 .30 .81 .76 .63 .99 .97 .25 .99 .92 .50 .99 .98

candlestick .09 .32 .22 .16 .60 .47 .17 .86 .29 .38 .92 .78 .15 .85 .75 .22 .85 .78 .26 1.00 .96 .49 1.00 1.00

pepper .04 .08 .06 .06 .25 .13 .03 .11 .05 .04 .11 .08 .08 .68 .38 .12 .85 .57 .03 .13 .07 .03 .14 .08

AP: Average Precision for the retrieval of instances less than 50% occluded.

APn (n ∈ N
∗): Average Precision given at most n results returned for the retrieval of instances less than 50% occluded.
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Figure 6: Comparison of performances obtained with real

and synthetic data. Precision-recall curves for the retrieval

of less than 50% occluded instances.

Results discussion As expected, adding a basic post-

processing step (PP) to both PPF and LINEMOD+ signi-

ficantly improves performances on every dataset (with an

average AP improvement of respectively +59% and +60%).

Taking object symmetries into consideration also leads to

great improvements for the PPF method, with or without

postprocessing and regardless of the considered metrics

(e.g. respectively +18% and +99% increases of AP3). The

PPF method indeed relies on the aggregation of multiple

weak pose hypotheses in order to generate stronger ones,

and considering symmetries significantly helps in this ag-

gregation, as discussed in section 4.2.

LINEMOD+ also benefits from considering symmetries

(+54% and +93% increases of AP respectively with and

without post-processing). Since symmetry considerations

are only used to filter out duplicates prior to pose refine-

ment, we should not observe performance improvements

when retrieving at most one pose hypothesis without post-

processing for this method. The small difference observed

here (+1% increase of AP1) is merely an artifact of our im-

plementation, which includes a basic filtering step of pose

hypotheses outside the frustum of the camera after pose refi-

nement. Accounting for symmetries however benefits in the

other cases to both precision, by removing duplicates, and

recall, as it allows to consider more truly different poses for

a given number of pose hypotheses, a point we observe in

the global performance improvements of LINEMOD+ PP

(+54% AP and +11% AP3) which already includes a dupli-

cates filtering step, even without symmetry considerations.

7. Conclusion

We focused in this article on the evaluation of 3D rigid

object detection and pose estimation techniques, in scenes

containing an arbitrary number of instances, in arbitrary po-

ses. We proposed two methods to generate automatically

annotated datasets of such scenes, and metrics suited for

the performance evaluation of this generic scenario, even

in the case of symmetric objects. We showed how those

symmetry considerations could be adapted within existing

pose estimation methods themselves, and our experimental

results suggest that it leads to significant performance im-

provements.
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