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Abstract

Recovering object pose in a crowd is a challenging task

due to severe occlusions and clutters. In active scenario,

whenever an observer fails to recover the poses of objects

from the current view point, the observer is able to deter-

mine the next view position and captures a new scene from

another view point to improve the knowledge of the envi-

ronment, which may reduce the 6D pose estimation uncer-

tainty. We propose a complete active multi-view framework

to recognize 6DOF pose of multiple object instances in a

crowded scene. We include several components in active

vision setting to increase the accuracy: Hypothesis accu-

mulation and verification combines single-shot based hy-

potheses estimated from previous views and extract the most

likely set of hypotheses; an entropy-based Next-Best-View

prediction generates next camera position to capture new

data to increase the performance; camera motion planning

plans the trajectory of the camera based on the view en-

tropy and the cost of movement. Different approaches for

each component are implemented and evaluated to show the

increase in performance.

1. Introduction

Highly accurate pose estimation of a known object is

crucial for robotics applications and attracted interests in

the research community recently. Many researchers partici-

pated in the public challenges such as Amazon picking chal-

lenge to solve multiple objects detection and pose estima-

tion in a realistic scenario. This reflects that the object pose

∗The second author was funded by FCT scholarship

SFRH/94183/2013.

estimation is moving towards more realistic robotics envi-

ronment where the platform has control over its perception,

in other words, active vision.

It is a challenging task to robustly detect and estimate

poses of multiple objects stacked in a pile or in a box, which

are often found in a warehouse environment. The environ-

ment can be highly crowded and cluttered, deceiving the

detector. Occlusion and self-occlusion can lead to only a

part of an object to be visible in certain views and some

captured data can be inaccurate or missing due to sensor

noise.

Several strategies have been used to overcome the issues.

Multi-view object detection and recognition[5][7][18][20]

attempts to recognise and detect objects in a scene using

multiple views. In particular, [7] and [5] are able to select

views which would increase the classification performance

for recognising a single object. Multi-view object pose

estimation[6][9][10][23][25] aims to detect and estimate ac-

curate pose of multiple objects simultaneously. However,

view selection for object pose estimation is not common

in this framework. Doumanoglou et al.[9] proposed an ap-

proach to predict the next view based on the class entropy,

which is useful when there are different classes with highly

similar appearances.

Our goal is to build a complete system for multi-view

active vision pose estimation scenario to correctly estimate

multiple object poses in a challenging environment. The

overall system architecture is depicted in Fig. 1(a). In

our setup, two state-of-the-art single object pose estimators,

namely LCHF[21] and Sparse auto-encoder[9] are used to

generate multiple hypotheses. Then, the point cloud infor-

mation and the object pose estimation results from every

view are collected and refined in multi-view hypothesis ac-
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Figure 1. Overview of the vision algorithm: (a) the system iteratively accumulates more information as it captures more data from different

views : (b) the system aims to detect and estimate accurate pose of multiple objects using multiple view of the scene.

cumulation module. In this stage, object hypotheses are first

transformed to a world reference coordinate using camera

pose and then clustered. The number of cluster and center

of clusters are determined using subtractive clustering[4].

A representative hypothesis is then selected for each clus-

ter using averaging[23] or by choosing hypothesis with the

highest confidence. Next, the clustered hypotheses are veri-

fied with the registered point cloud to remove false hypoth-

esis. The last part of the system is to predict the next best

view that would increase the object detection and the recog-

nition performance. Towards this goal, point cloud from

different viewpoint together with hypotheses will be used to

render unseen views for calculating view entropy. To show

the proposed viewpoint entropy can be useful to determin-

ing the NBV, we built a synthetic dataset with densely sam-

pled view points. We show that this view entropy is useful

in determining the next best view in certain scenarios.

We demonstrate our system on a challenging bin-picking

scenario from [9] where some objects are visible from

only selective views. We show that the proposed system

improves the object detection and pose estimation perfor-

mance. The system is also able to select the next view based

on accumulated information and generate camera trajectory

taking into account the cost of movement.

Our contributions are:

1. Integration of different components to build a complete

active system which detects and pose estimates multi-

ple objects.

2. Unsupervised Next-Best-View(NBV) prediction algo-

rithm to predict the next best camera pose for object

detection and pose estimation by rendering the scene

based on current object hypotheses.

3. Generating a synthetic dataset with realistic multi ob-

jects configuration using a physics engine.

2. Related Work

In this section, we will first review the existing multi-

view object recognition literature followed by the relevant

literature for individual components in Fig. 1(a).

Multi-view object recognition Multi-view object

recognition system aims to increase the recognition perfor-

mance by combining information captured from different

views. Multiple views of the scene can be used to overcome

some critical issues listed in section 1, if view information

is used appropriately.

Multi-view approach has shown to significantly increase

object detection and recognition performance. Coates and

Ng[5] executed single shot-based detector on 2D image for

each view and determined the correspondences to com-

bine the posterior probability detection. Jayaraman and

Grauman[7] presented an end-to-end object recognition

framework which actively selects the best view for the clas-

sification purpose. However, the objective is limited to rec-

ognizing a single object. Mustafa et al.[18] used multiple

fixed Kinect and stereo camera to recognize a single object

reliably using texlet. Suanto et al.[20] detected multiple ob-

jects from each view using Deformable Part Model(DPM)

and used Viewpoint Feature Histogram(VFH) to eliminate

false hypotheses. In general, multi-view object recognition

system[7][18][15] do not need verification component in

Fig. 1(a), since a single object of a predefined category

is assumed to be present in the scene. Multi-view object

detection system in [20][18] merge information from fixed

multiple sensors. Therefore, view selection is not part of the

system.

More closely related to our work is multi-view object

pose estimation systems. Collet and Siddhartha[6] used

multiple cameras to detect and estimate the pose of mul-

tiple objects. Hypotheses from different views are com-

bined, and the hypothesis that has the lowest reprojection

error is selected. Doumanoglou et al.[9] did not explicitly

use multi-view information to increase the object pose es-

timation performance, but used class entropy from random

forest to predict the NBV for classification. Erkent et al[10]

used a probabilistic approach to integrate hypotheses gen-

erated from different views. Hypotheses were given proba-

bilistic values by replacing each of them with Gaussian dis-
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(a) (b)

Figure 2. (a) Accumulated hypotheses from 4 different frames. blue coloured hypotheses are overlaid on top of the ground truth : (left)

hypotheses collected from different views are displayed. Note there may be multiple hypotheses for each ground truth object; (right) a set

of hypotheses after clustering. Clustering correctly reduces multiple hypotheses to its corresponding ground truth object. (b) Discovering

hypotheses: red pixels are the projection of hypotheses; (left, middle) a set of hypotheses from different view projected onto a reference

image; (right) clustering result. Note that the algorithm successfully merge results from different scene, thus increasing the recall.

tribution with mean equals to the corresponding hypothesis.

Viksten et al.[23] used a strategy to transform every hypoth-

esis obtained from different views to reference frame and

used mean-shift clustering to find the hypothesis for each

cluster. Zeng et al.[25] presented a pick-and-place vision

system which integrates multi-view information to increase

the pose estimation accuracy. However, the scenes were not

actively selected based on the collected information. Unlike

our implementation, most of the multi-view object pose es-

timation in literature do not actively select the views.

Single shot based 6D object pose estimation There ex-

ist many different approaches to detect and estimate object

pose from a single image, but the effective approach dif-

fers depending on the scenario. Holistic template based

approach[13][14] is effective when there is less occlu-

sion. Pixel-wise pose estimation approach in Brachmann

et al.[3] assumed single object in the scene. The part-

based model[21][8] handles occlusion by subdividing the

images into patches and recognize each patch separately.

Doumanoglou et al.[9] used sparse autoencoder to repre-

sent each patch and classified using random forest. Tejani

et al.[21] used LINEMOD[13] to represent each patch and

also used random forest and hough voting to generate hy-

potheses. [9] and [21] show strong robustness against oc-

clusion and clutter. Therefore, they are suitable to be used

in our experiment scenario.

Next-Best-View prediction Mauro et al. [17] proposed

a unified framework for content-aware next best view selec-

tion based on several quality features such as density, uncer-

tainty, 2D and 3D saliency. Using these features, they com-

puted a view importance factor for a given scene. Unlike

to this approach, we first segment a given scene into object

hypotheses. Then, the next best view is predicted based on

the property of those object hypotheses. In another work,

Bo Li et al. [2] approached the problem of defining the

representative views for a single 3D object based on visual

complexity. They suggested a new method for measuring

the viewpoint complexity based on entropy. Their approach

revealed that it is possible to retrieve and to cluster similar

viewpoints. [9] uses class entropy of samples stored in the

leaf nodes of hough forest to estimate the Next-Best-View

which could reduce the uncertainty of the class of detected

objects.

Unlike the above approaches, some researchers have re-

cently adopted deep learning algorithms for next best view

prediction in active object detection scenario [24, 15]. For

instance, Wu et al. [24] proposed a deep network namely

3D ShapeNets to represent a geometric shape as a proba-

bilistic distribution of binary variables on a 3D voxel grid.

As they pointed out, training a deep network for next best

view prediction requires a large collection of 3D objects to

provide accurate representations and typically involves long

training times. Moreover, unlike our approach, these kinds

of approaches are mainly suitable for isolated objects or sin-

gle object scenarios and become brittle and unreliable in

crowded scenarios.

3. Multi-View Object Pose Estimation Frame-

work

This section presents the hypothesis accumulation and

refinement and unsupervised next-best-view prediction

modules in details.

3.1. Hypothesis accumulation and refinement

Hypothesis accumulation and refinement combine

single-shot based hypotheses estimated from different

views and extract the most likely set of hypotheses. Any

single shot-based pose estimation algorithm that outputs ob-

ject pose hypothesis together with a confidence value can be

used in this framework.

Firstly, we accumulate hypotheses collected from dif-

ferent Hypotheses estimated from different views. All hy-

potheses from different views are transformed to the global

coordinate frame using the camera pose information. Then

we cluster the hypotheses with only the 3D positions of hy-

potheses as usually hypotheses in full 6 dimension are too

sparse to be clustered successfully. However, simple eu-

clidean clustering is not robust when the objects are tightly

packed as any outlier between clusters may connect differ-
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ent objects. We used subtractive clustering[4] to determine

the number and the centers of clusters and clustered objects

within a certain radius. Hypotheses assigned to each cluster

are either averaged in quaternion space[23] or the hypoth-

esis with the highest confidence value is chosen to repre-

sent the cluster. Fig. 2(a) and Fig. 2(b) show the effects

of clustering. Fig. 2(a) shows that multiple hypotheses in

each cluster merge to produce a single hypothesis. This has

the effect of removing less accurate hypotheses. Fig. 2(b)

shows more objects are detected, resulting in increased re-

call.

Unlike [13][3], which assume single object in the scene,

we need verification to identify and eliminate false hypothe-

ses to increase True Positives(TPs) and reduce False Posi-

tives(FPs). Because methods shown in [1][9] are not di-

rectly applicable in multi-view setting, we adopted the cues

from the paper and applied the method on accumulated

pointcloud rather than the single RGBD image.

3.2. Unsupervised NextBestView Prediction

In the previous step, the observer captures an accumu-

lated point cloud of the scene and computes a list of 6D ob-

jects hypothesis. The inputs to the Next-Best-View (NBV)

prediction module are: the full 3D models of the objects; the

point cloud of the scene; a set of verified 6D object hypothe-

ses; P = {h1, . . . , hn}; and the possible viewing pose, V

where V = {v1, . . . , vm} is a finite list of possible viewing

pose representing the camera rotation and translation in 3D

space.

The 6D object pose estimation is challenging for a pile

of overlapping objects and it may not detect all objects from

the scene. Therefore, the system should hypothesise each

segment of the scene as objects. To this end, a hierarchical

clustering procedure is presented to segment unstructured

and highly cluttered scenes using geometric, surface normal

data and color. Our segmentation pipeline is composed of

two processes. The first process computes the regions of in-

terest from the scene. It starts with extracting points which

lie directly above a horizontal support plane. This is done

by first finding the dominant plane in the point cloud using

the RANSAC algorithm [12]. The scene is then segmented

into individual clusters using a Euclidean Cluster Extrac-

tion algorithm1[16, 19]. Finally the extracted point cloud is

dispatched to the second process for further segmentation

analyses.

The second process of the segmentation pipeline extracts

a set of object hypotheses from the given point cloud. A

region of the given point cloud is considered as an object

hypothesis whenever points inside the region are continu-

ous in both the orientation of surface normals and the depth

values. The depth continuity between every point and its

1http://www.pointclouds.org/documentation/tutorials/cluster extraction.php

immediate 8 neighbors is computed. If the distance be-

tween points is lower than a threshold, then the two points

belong to the same region. A color-based region growing

segmentation is also applied on large hypotheses. Fig. 3

illustrates the results of the second segmentation process in

three different scenes. Each object hypothesis (i.e., a cluster

of points) will be treated as an object candidate namely ci,
where i ∈ {1, . . . ,K}. It should be noted that the number

of clusters, K, is not pre-defined and it varies for different

viewpoints. Next, the obtained clusters are used to compute

viewpoint entropy for the given scene. There are various

methods for computing the viewpoint entropy. In general,

the number of visible voxel or points is used as an indicator

of the area for entropy computation. This measure is not

good enough for 6D object pose estimation purposes since

it only considers the coverage objective. Therefore, we pro-

pose a new formulation for viewpoint entropy calculation

that takes into account both the coverage (i.e. the number of

visible points) and saliency (i.e. observing a large portion of

an object which can potentially reduce the pose estimation

uncertainty) objectives. The viewpoint entropy of a given

scene is computed as follows:

H = −
K∑

i=1

Ai

S
log

Ai

S
, (1)

where, K is the number of clusters, Ai is the area of the ith

cluster and S is the total area of the given scene. Before ac-

tually moving the camera, we aim to predict the NBV from

the camera pose list, V . For this purpose, first, we have to

predict what can be observed from each pose in V by tak-

ing a ’virtual point cloud’. Toward this goal, based on the

given set of 6D objects hypothesis, the full model of objects

are first added to the current scene (see Fig.4 (a) and (b)).

Afterwards, for each possible camera poses, a virtual point

cloud is rendered based on depth buffering and orthogonal

projection methods (see Fig.4 (c) and (d)). Then, the view-

point entropy is calculated for each rendered view as before.

This procedure is illustrated in Fig.4.

In general, choosing the view with the minimum view-

entropy as the next camera position has two problems.

Firstly, in real system, it costs system to move the cam-

era too far at a time. Secondly, view entropy estimation

becomes less reliable if the rendering view is far from the

current position, since the view entropy calculation is based

on the rendered virtual point cloud. To alleviate this issue,

we apply weights to the view entropy value calculated for

each view candidate by Gaussian distribution.

HWeighted
V i = WVi

(Vi)HVi
,

where WVi
(Vi) =

1

σ
√
2π

e−(VC−Vi)
2/2σ2 (2)

where σ is a smoothness parameter which restrict the move-

ment of the camera, WV i is the weight applied to view
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Figure 3. Two complex scenes and their corresponding segmentation results.

(a) (b) (c) (d)

Figure 4. Rendering virtual point cloud for unsupervised next best view prediction: (a) original point cloud; (b) the full model of detected

objects are added to the scene (i.e. corresponding points are highlighted by green color); (c) the visible points from the virtual camera pose

are highlighted by red color; (d) the rendered virtual point cloud. The reference frame represents the camera pose of the acquired view.

entropy for Vi, VC is the current camera pose, HVi
is the

view entropy of the view Vi and HWeighted
V i is the weighted

view entropy of the view Vi. Although simple V Next =
argmin

Vi

(WVi
(Vi)HVi

) can be use to determine the next

camera view position, there is a risk of the camera moving

only locally. The following equation introduces perturba-

tion in the movement to encourage the camera to move to

new views.

p(V Next = Vi) = HWeighted
Vi

/
m∑

n=1

HWeighted
Vn

(3)

Algorithm 1 Entropy-based NBV algorithm

Input: The full 3D models of the objects.

Output: The output estimated pose P:

1: Initialization Ph = {∅}, V Next = v1
2: while i ≤ k do

3: Set Vc = V Next and obtain RGBD sensor data ZVc

4: Obtain a list of hypotheses HVc using [21] or [9]

5: add the hypotheses to the hypotheses pool, Ph =
(Ph ∪ PVc)

6: Use clustering[4] to obtain reduced set P from Ph

7: Use P and ZVc to render virtual scenes and calculate

viewpoint entropy(Equation 1) for V

8: Estimate the V Next using Equation 3

9: i = i+ 1
10: end while

LCHF[21] sparse auto-encoder[9]

Coffee cup Average[23] high confidence Average[23] high confidence

single view 0.3365 0.3365 0.2648 0.2648

2 views 0.3710 0.4001 0.2718 0.3076

3 views 0.4332 0.4549 0.3066 0.3288

4 views 0.4601 0.5057 0.3179 0.3692

5 views 0.4819 0.5288 0.3233 0.3857

6 views 0.4826 0.5494 0.3399 0.3861

Juice box

single view 0.3122 0.3122 0.3489 0.3489

2 views 0.1836 0.3182 0.2959 0.3385

3 views 0.1956 0.4110 0.3215 0.4306

4 views 0.1873 0.4377 0.3283 0.4757

5 views 0.1609 0.4072 0.3219 0.5386

6 views 0.1343 0.4424 0.2695 0.5363

Table 1. Detection and pose estimation performance with vary-

ing number of view accumulation. Two different pose estima-

tor baseline([21] and [9]), and two different hypothesis selection

methods(averaging[23] and high confidence) are compared. Per-

formance is measured in AUC.

LCHF[21] sparse auto-encoder[9]

Juice box Random Furthest ours Random Furthest ours

single view 0.3122 0.3122 0.3122 0.3489 0.3489 0.3489

2 views 0.3182 0.3685 0.3570 0.3740 0.3385 0.3623

3 views 0.4110 0.4452 0.4185 0.4135 0.4306 0.3874

4 views 0.4377 0.4650 0.4364 0.4610 0.4757 0.4918

5 views 0.4072 0.4543 0.4528 0.4942 0.5386 0.5220

6 views 0.4424 0.4569 0.4416 0.4819 0.5363 0.4944

Table 2. Performance evaluation for different strategies used to

generate the next view on juice box scenario.
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(a) (b) (c)

Figure 5. Accumulated view and camera pose of different view of bin-picking dataset[9]: (a) coffee cup scenario contains 15 coffee cups

and 59 views; (b) Juice box scenario contains 5 juice boxes and 59 views. (c) Synthetic dataset contains 20 coffee cups and 100 views.
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Figure 6. (a) Number of view accumulation against AUC graph for

[21] using different NBV strategies. (b) Number of view accumu-

lation against AUC graph for [9] using different NBV strategies.

4. Experiments

In this section, the system is evaluated on two different

crowded environments with different objects, namely cof-

fee cup and juice box scenario. Coffee cup scenario has

more objects and more occlusions whereas juice box sce-

nario has less objects. For all experiments, ground truth

camera positions provided by the dataset are used to trans-

form point cloud and hypotheses from different views to

the world coordinate. Section 4.1 contains detailed expla-

nation on the evaluation criteria for multi-view object pose

estimation system. The section 4.2 shows that performance
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Figure 7. Graph showing the correlation between visibility, view-

point entropy and detection performance. The graph is obtained

using synthetic image. View indices are sorted in visibility de-

scending order. The graph clearly shows the performance of detec-

tor deteriorate as less objects are visible along with the viewpoint

entropy.

improves when more number of views are combined and

compare two different method for choosing a hypothesis for

each cluster. Section 4.4 mainly compares different camera

motion planning strategies and their performance.

4.1. Evaluation criteria

F1 score is a preferred method to evaluate object pose es-

timation result for single view methods[9][21]. However F1

score is a harmonic mean of precision and recall, values of

which varies with different rank threshold(hypothesis con-

fidence). Evaluation of the multi-view system performance

is more complicated. There are two issues with the cur-

rent evaluation metric: firstly, in a highly crowded scenario

as shown in Fig.3, it is not reasonable to count invisible or

barely visible object to calculate recall; secondly, precision,

recall or F1 score change when different rank threshold

value is used[11]. Therefore we evaluate our system perfor-

mance using Receiver Operating Characteristic(ROC) curve

and its Area Under the Curve(AUC) with visibility informa-

tion of each ground truth in each view.

Doumanoglou et al.[9] calculated recall as the propor-

tion of number of correctly estimated hypotheses to the to-

tal number of objects to be estimated, regardless of visibil-

ity in the view. We evaluated our result in a similar way
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but we have taken into account the visibility criteria. If an

object is not visible above a threshold, in our case 30%, the

object is not included in the ground truth. Visibility score

is defined as the proportion of non-occluded pixel point to

all pixel point belonging to the model in the view. In multi-

view scenario, if an object is visible in any of the views with

score above the visibility threshold, it is added to the list of

objects to be found. In this way we can fairly compare the

performance of single shot-based estimator and multi-view

system because this method penalises multi-view approach

by having to correctly estimate more object than single shot-

based.

4.2. Hypothesis accumulation and refinement

We test the system using LCHF[9] and sparse auto-

encoder[21] as baselines on the bin-picking dataset[9],

which is one of few datasets that contains multiple objects

in a highly crowded scene. The dataset is visualize in Fig. 5.

The coffee cup scenario contains 59 different views of the

scene with 15 cups in a pile. Juice box scenario contains 5

juice boxes and also has 59 views.

A set of hypotheses are accumulated from different

views and representative hypotheses for each clusters are

obtained as described in section 4.2. From each cluster we

extract one hypothesis by either averaging the hypothesis as

shown in [23] or by choosing the hypothesis with the high-

est confidence. For every experiments in this section, each

view was selected as starting camera pose and randomly se-

lected the next views. The experiments were run 3 times

and the results shown in Table 1 are the averaged values.

The metric used is the Area Under the Curve(AUC).

Note that AUC score is generally low in these scenes be-

cause the estimator has to both correctly detect and esti-

mate pose to be counted as true positive. Both LCHF[21]

and sparse auto-encoder[9] are the current state-of-the-art

single shot-based object pose estimators which were tested

against this scenario.

Table 1 shows that the performance of pose estimator

steady increases as more views are combined, regardless of

choice of the baselines or scenario. Compared to the sin-

gle view, the performance increases by 40% on average.

The result is not obvious, as our evaluation method disad-

vantages multi-view result by having to correctly estimate

more object than the single view as described in section 4.1.

It is also notable that averaging hypotheses fails for juice

box scenario. It can be reasoned that many false positive

hypotheses with high confidence causes pose estimation to

fail.

4.3. Correlation between visibility and viewpoint
entropy

Experiments are designed to verify the correlation be-

tween the detection performance of single-shot based de-

tector and the viewpoint entropy shown in section 3.2. Syn-

thetic dataset is built for this experiment for the following

reasons: More dense and even sampling of camera view-

point can be obtained; perfect knowledge on calibration pa-

rameters, object ground truth, and camera pose are known.

To obtain more realistic feasible multiple object pose con-

figuration, 20 object models are randomly thrown into a vir-

tual box using MuJoCo physics engine[22]. RGBD are ren-

dered at 100 evenly sampled viewpoints around upper hemi-

sphere(shown in Fig. 5(c)). For each object, ratio of visible

pixel to the total number of pixel if the object were not oc-

cluded is calculated and these values of every objects in a

scene are averaged to quantify the average visibility score

for each viewpoint. Detector[9] is used to obtain the F1

score for each viewpoint and the method described in 3.2 is

used to calculate viewpoint entropy. The results are shown

in Fig. 7 where every 10th images are sampled. The view

indices are ordered in descending average visibility score

and the graph shows the F1 score and viewpoint entropy de-

creases along with the visibility of the viewpoint. The view-

point entropy and F1 score are positively correlated with the

correlation coefficient of 0.6644 for the dataset.

4.4. NextBestView Prediction

This section focuses on the effect of different next view

strategy with varying number of views and camera moving

distance. There are 2 strategies for the next view selection;

Furthest view and view entropy based NBV. Furthest view

strategy, as the name implies, selects the furthest possible

view from the current camera position. It is a popular choice

in the literature for comparison[9][15]. Random selection is

used to provide the performance comparison when there is

no next view selection strategy. The results are shown in

Fig.6 and Table2. Entropy based NBV work well in coffee

cup scenario regardless of the baselines used. However it

is notable that Juice box scenario has no meaningful differ-

ence in performance between different strategies. It can be

reasoned that coffee cup scenario is much more complex as

it has more objects and many of them are occluded in dif-

ferent views. In contrast, objects in juice box scenario are

visible in most of the views. To support this claim, the stan-

dard deviation of the view entropy of the views in juice box

scenario is 0.0899, which is comparably less than coffee cup

scenario which is 0.1386.

5. Conclusion

This paper presents a complete active system from hy-

potheses accumulation to Next-Best-View prediction and

demonstrated the performance in a crowded scenario. We

have shown that combining multiple views increases the de-

tection and pose estimation performance regardless of base-

line and the scenarios. We also introduce view entropy,

which can be used to predict the NBV in an environment
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where robot movement is costly and the scene is complex.

References

[1] A. Aldoma, F. Tombari, L. D. Stefano, and M. Vincze.

A Global Hypotheses Verification Method for 3D Object

Recognition. In ECCV 2012, pages 511–524, 2012. 4

[2] S. Biasotti, I. Pratikakis, U. Castellani, T. Schreck, A. Godil,

and R. Veltkamp. Sketch-based 3d model retrieval by view-

point entropy-based adaptive view clustering. 2013. 3

[3] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton,

and C. Rother. Learning 6D object pose estimation using 3D

object coordinates. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), volume 8690 LNCS,

pages 536–551, 2014. 3, 4

[4] S. L. Chiu. Fuzzy model identification based on cluster esti-

mation. Journal of Intelligent and Fuzzy Systems, 2(3):267–

278, 1994. 2, 4, 5

[5] A. Coates and A. Y. Ng. Multi-camera object detection for

robotics. In Proceedings - IEEE International Conference on

Robotics and Automation, pages 412–419, 2010. 1, 2

[6] A. Collet and S. S. Srinivasa. Efficient multi-view object

recognition and full pose estimation. In 2010 IEEE Interna-

tional Conference on Robotics and Automation, pages 2050–

2055. IEEE, 5 2010. 1, 2

[7] D. Jayaraman and K. Grauman. Look-Ahead Before You

Leap: End-to-End Active Recognition by Forecasting the Ef-

fect of Motion. In ECCV 2016, volume 9905, pages 35–35,

2016. 1, 2

[8] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-

K. Kim. 6D Object Detection and Next-Best-View Predic-

tion in the Crowd. In ArXiv, pages 3583–3592. IEEE, 6 2015.

3

[9] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-

K. Kim. Recovering 6D Object Pose and Predicting Next-

Best-View in the Crowd. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 3583–

3592. IEEE, 6 2016. 1, 2, 3, 4, 5, 6, 7

[10] . Erkent, D. Shukla, and J. Piater. Integration of Probabilistic

Pose Estimates from Multiple Views. In B. Leibe, J. Matas,

N. Sebe, and M. Welling, editors, Computer Vision – ECCV

2016: 14th European Conference, Amsterdam, The Nether-

lands, October 11–14, 2016, Proceedings, Part VII, pages

154–170. Springer International Publishing, Cham, 2016. 1,

2

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (VOC) chal-

lenge. International Journal of Computer Vision, 88(2):303–

338, 2010. 6

[12] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: a paradigm for model fitting with applications to image

analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981. 4

[13] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Kono-

lige, N. Navab, and V. Lepetit. Multimodal templates for

real-time detection of texture-less objects in heavily cluttered

scenes. In Proceedings of the IEEE International Conference

on Computer Vision, pages 858–865, 2011. 3, 4

[14] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab.

Dominant orientation templates for real-time detection of

texture-less objects. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition, pages 2257–2264, 2010. 3

[15] E. Johns, S. Leutenegger, and A. J. Davison. Pairwise

Decomposition of Image Sequences for Active Multi-view

Recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3813–3822. IEEE, 6

2016. 2, 3, 7

[16] S. H. Kasaei, M. Oliveira, G. H. Lim, L. S. Lopes, and A. M.
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