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Abstract

In this paper, we present a method to learn a visual rep-

resentation adapted for e-commerce products. Based on

weakly supervised learning, our model learns from noisy

datasets crawled on e-commerce website catalogs and does

not require any manual labeling. We show that our rep-

resentation can be used for downward classification tasks

over clothing categories with different levels of granular-

ity. We also demonstrate that the learnt representation is

suitable for image retrieval. We achieve nearly state-of-art

results on the DeepFashion In-Shop Clothes Retrieval and

Categories Attributes Prediction [12] tasks, without using

the provided training set.

1. Introduction

While online shopping has been an exponentially grow-

ing market for the last two decades, finding exactly what

you want from online shops is still not a solved problem.

Traditional fashion search engines allow consumers to look

for products based on well chosen keywords. Such en-

gines match those textual queries with meta-data of prod-

ucts, such as a title, a description or a set of tags. In online

luxury fashion for instance, they still play an important role

to address this customer pain point: 46% of customers use

a search engine to find a specific product; 31% use it to find

the brand they’re looking for 1. However, those meta-data

informations may be incomplete, or use a biased vocabu-

lary. For instance, a description may denote as ”marinière”

a long sleeves shirt with blue/white stripes. It then appears

crucial for online retailers to have a rich labeled catalog to

ensure good search. Moreover, these search engines don’t

incorporate the visual information of the image associated

to the product.

1http://www.mckinsey.com/business-functions/marketing-and-

sales/our-insights/the-opportunity-in-online-luxury-fashion

Figure 1. Our dataset is composed of images and a few associated

text descriptors such as their title and their description

Computer vision for fashion e-commerce images has

drawn an increasing interest in the last decade. It has been

used for similarity search [20, 11, 21, 18], automatic image

tagging [10, 2], fine-grained classification [5, 12] or N-shot

learning [1]. In all of these tasks, a model’s performance

is highly dependent on a visual feature extractor. Using a

Convolutional Neural Network (CNN) trained on ImageNet

[4] provides a good baseline. However, there are two main

problems with this representation. First, it has been trained

on an image distribution that is very far from e-commerce,

as it has never (or rarely) seen such pictures. Second, the

set of classes it has been trained on is different from a set

of classes that could be meaningful in e-commerce. A use-

ful representation should separate different types of cloth-

ing (e.g. a skirt and a dress), but it should also discriminate

between different lengths of sleeves for shirts, trouser cuts,

types of handbags, textures, colors, shapes,...

Our goal is to learn a visual feature extractor designed

for e-commerce images. This representation should:

• encode multiple levels of visual semantics: from low

level signals (color, shapes, textures, fabric,...) to high
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Figure 2. Training of our model: predict one label, picked from the bag-of-words description, from an image. Both image and words are

embedded before being coupled in a dot product. We output a probability for each word in the vocabulary.

level information (style, brand),
• be separable over visual concepts, so we can train

very simple classifiers over clothing types, colors, at-

tributes, textures, etc.,
• provide a meaningful similarity between images, so we

can use it in the context of image retrieval.

To these ends, we train a visual feature extractor on a

large set of weakly annotated images crawled from the In-

ternet. These annotations correspond to the textual descrip-

tion associated to the image. The model is learned on a

dataset at zero labeling cost, and is exclusively constituted

of data points extracted from e-commerce websites. Our

main contribution is an in-depth analysis of the model pre-

sented in [9], through applications to fashion image recogni-

tion tasks such as image retrieval and attribute tagging. We

also improved the method by upgrading the CNN architec-

ture and dealt with multiple languages, mainly English and

French. In Section 2, we explain the model, how we handle

noise in the dataset, as well as some implementation details.

In Section 3, we provide results given by our representation

on image retrieval and classification, over multiple datasets.

Finally in Section 4, we conclude and go over some possible

improvement tracks.

2. Learning Image and Text Embeddings with

Weak Supervision

One major issue in applied machine learning for fash-

ion is the lack of large clothing e-commerce datasets with a

rich, unique and clean labeling. Some very interesting work

has been done on collecting datasets for fashion [11, 12].

However, we believe it is very hard to be exhaustive in de-

scribing every visual attribute (pieces of clothing, texture,

color, shape, etc.) in an image. Moreover, even if this la-

beling work could be perfectly carried, it would come at

very high cost, and should be manually done each time we

wanted to add a new attribute. A possible source of anno-

tated data is the e-commerce website catalogs. They pro-

vide a great amount of product images associated with de-

scriptions, such as the one in Figure 1. While this descrip-

tion contains information about the visual concepts in the

image, it also comes with a lot of noise that could harm the

learning.

We explain now the approach we used to train a visual

feature extractor on noisy weakly annotated data.

2.1. Weakly Supervised Approach

Learning with noisy labeled training data is not new

to the machine learning and computer vision community

[6, 17, 19]. Label noise in image classification [22] usu-

ally refers to errors in labeling, or to cases where the image

does not belong to any of the classes, but mistakenly has

one of the corresponding labels. In our setting, in addition

to these types of noise, there are some labels in the classes

vocabulary that are not relevant to any input. Text descrip-

tions are noisy as they contain common words (e.g. ’we’,

’present’), subjective words (e.g. ’wonderful’) or non vi-

sual words (e.g. ’xl’, ’cm’), which are not related to the

input image. As we don’t have any prior information on

which labels are relevant and which are not, we keep the

preprocessing of textual data as light as possible.

2.2. Model

Our work builds upon the one presented in [9], which

we explain in this section. The model’s training scheme is

exposed in Figure 2
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Figure 3. Most frequent labels in training dataset.

Let x ∈ I be an image, and y ∈ {0, 1}K the associated

multi-label vector, such that ∀k ∈ [1,K], yk = 1 if the k-th

label of the vocabulary is true for the image x. We use a

CNN to compute a visual feature z = f(x, θ) ∈ R
I , where

θ are the weights of our convolutional neural network. This

image embedding is given to a classification layer:

ŷ = softmax
(

WT z
)

(1)

where W ∈ R
I×K . Note that for all k ∈ [1,K], the column

vector in wk = W [:, k] corresponds to the embedding of the

k-th word in the vocabulary.

2.3. Label imbalance management

As seen on Figure 3, the distribution of words in our

dataset is highly unbalanced. Due to our minimal prepro-

cessing, we observe a high frequency for some non-visual

words such as ”xl”, ”cm” or ”size” as they appear very

frequently in descriptions. Many examples contain those

non-visual words that our model would be asked to predict,

which is likely to harm the training.

To overcome this issue, and as it was done in [9], we

perform uniform sampling. Specifically, during training, we

sample uniformly a word w from the vocabulary. We then

randomly choose an image x whose bag-of-words contains

w and we try to predict w given x.

2.4. Loss

As we want to predict one label among a vocabulary K
for each image, we use the cross-entropy loss. It minimizes

the negative sum of the log-probabilities over all positive

labels

L(θ,W,D) = −
1

N

N
∑

n=1

K
∑

k=1

ykn log
exp (wT

k f(xn, θ))
∑K

i=1
exp (wT

i f(xn, θ))
(2)

2.5. Implementation details

Negative sampling

We operate in a context where the vocabulary can be of arbi-

trary size. Computing probabilities for all those classes for

each sample can be very slow. Negative sampling [16] is

one way of addressing this problem. After selecting a pos-

itive label for an image sample, we randomly draw Nneg

negative words within the vocabulary. We compute the

scores and the softmax only over those chosen words.

Learning

We trained our model with stochastic gradient descent

(SGD) on batch of size 20. We consider that an epoch is

achieved when the model saw a number of images equiv-

alent to 1/10 of the dataset size, which is approximately

1.3M images in total. After each epoch, we compute a val-

idation error based on a held-out validation set. The ini-

tial rate was set to 0.1 and divided by 10 after 10 epochs

without improvement. We stop the training after 20 epochs

without improvements on our validation dataset. We use

the ResNet50 architecture [7] for the visual feature extractor

f(x, θ), with pre-trained weights on ImageNet. Because the

last layer has been initialized randomly, we start by learning

only the last layer W for 20 epochs, and then we fine-tune

the parameters θ in the CNN.

2.6. Training dataset

We built a dataset of about 1,3M images and their as-

sociated labels from multiple e-commerce website sources,

mostly French, English and Italian. We crawled most of the

time one image per product, except when multiple images

where available. In that case, we consider them as four dif-

ferent samples with same associated bag of labels.

For each source, we select the relevant fields to keep (ti-

tle, category name, description,...) and concatenate them.

After lower-casing and removing punctuation, we use the

RegexpTokenizer provided by NLTK [13] to get a list of

words. We remove stopwords, frequent non-relevant words
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Figure 4. Comparison between visual similar images from DeepFashion In-Shop dataset according to our weakly learned visual features

and ImageNet based visual features. Our representation seems more robust to human pose (on the left) and successfully captured fine-

grained concepts such as stripes (on the right).

(name of the website, ’collection’, ’buy’,...) and non alpha-

betic words. Our final dataset is a list of product images,

associated to their respective bag-of-words obtained by the

previous preprocessing.

We have deliberately kept preprocessing as minimal as

possible, so it is easy to scale to many sources. Thus, we

need our model to adapt to this noise in the data. After

preprocessing and aggregating the multiple sources, our

final vocabulary is composed of 218,536 words. We chose

to restrain the vocabulary to the 30,000 most frequent

words. The average number of labels per sample is 26,88.

We split our dataset into a training and a validation dataset.

The validation set is made of the same labels as the training

dataset and represent 0.5% of the total size.

3. Experiments and evaluation

After learning the representation on our large weakly an-

notated dataset, we want to evaluate this representation. To

what extent is this representation useful for tasks such as

garment classification, attribute tagging or image retrieval ?

3.1. Evaluation datasets

We evaluate our representation on 5 datasets: two pub-

lic datasets (DeepFashion) used for tagging and image re-

trieval; three in-house datasets used respectively for cate-

gory classification, fine-grained classification and image re-

trieval.

DeepFashion Categories and Attributes Prediction

evaluates the performance on clothing category classifica-

tion, and on attribute prediction (multi-labelling). It con-

tains 289,222 images for 50 clothing categories and 1,000

clothing attributes. While an image can only be affected to

one class, it can be associated to multiple labels. The aver-

age number of labels for an image is 3.38. For each image in

train and test sets, we select a crop available from a ground

truth bounding box.

DeepFashion In-Shop Retrieval contains 7,982 clothing

items with 52,712 images. 3,997 classes are for training

(25,882 images) and 3,985 items are for testing (28,760 im-

ages). The test set is composed of a query set and a gallery

set, where query set contains 14,218 images of 3,985 items

and database set contains 12,612 images of 3,985 items. As

in the Categories and Attributes Prediction benchmark, we

cropped each image using a ground truth bounding box.

ClothingType We have labeled a dataset with 18 classes,

each one corresponding to a garment type (e.g. bag, dress,

pants, shoes, ...). This in-house dataset contains approxi-

mately 736,000 images.

HandBag In addition to the previous dataset, this in-

house dataset focuses on bags for fine-grained recogni-

tion. Here, the differences between classes are more sub-

tle: bucket bag, doctor bag, duffel bag, etc... It contains

3,060 samples within 13 classes, each one corresponding to

a specific type of handbag.

Dress Retrieval This in-house similarity dataset was

gathered by crawling an e-commerce website. We collected

a list of sets of images, each corresponding to the same item.

We used an image classifier to filter out all non-dress items.

The final dataset contains 9,009 items for training (20,200

images) and 1,001 items for testing. On this dataset, we

keep only images where clothing are worn on humans.

3.2. Image retrieval

In this task, given a query image containing an item, we

aim at retrieving images that contain the same item. To do

so, we compute the score between two images using the

cosine similarity between their representation. For a given

query image, we sort all gallery images in decreasing order

of similarity, and evaluate our retrieval performance using

top-k retrieval accuracy, as in [12, 23]. For a given test

query image, we give the model a score of 1 if an image

of the same item is within the k highest scoring gallery im-

ages, 0 else. We adopt this metric for both our image re-

trieval datasets (DeepFashion In-Shop Retrieval and Dress

Retrieval).
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Category Texture Fabric Shape Part Style All

top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

WTBI [3] 43.73 66.26 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68 27.46 35.37

DARN [8] 59.48 79.58 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.14 66.11 71.36 42.35 51.95

FashionNet [12] 82.58 90.17 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16 45.52 54.61

Lu et al.* [14] 86.72 92.51 - - - - - - - - - - - -

Weakly 86.30 92.80 53.60 63.20 39.10 48.80 50.10 59.50 38.80 48.90 30.50 38.30 23.10 30.40

*Attribute scores not tested.

Table 1. Performance of category classification and attribute prediction on DeepFashion dataset

In Figure 5, we show the results on top-k retrieval accu-

racy on DeepFashion In-shop Retrieval dataset, for multiple

values of k. FashionNet corresponds to the model presented

in [12], and HDC+Contrastive is the model in [23]. We

denote by [F] (resp. [C]) models that use the full image

(resp. an image cropped on the product) to compute re-

trieval scores. We provide the ImageNet baseline both [F]

and [C] models, where we use as feature extractor the penul-

timate layer of a CNN trained on ImageNet. We would like

to emphasize on the fact that our Weakly model, as well

as the ImageNet baseline, do not use the training set of

DeepFashion In-shop Retrieval, unlike HDC+Contrastive

and FashionNet.

Figure 5. Retrieval accuracy for top-k (k=1,5,10,20,30,40,50). We

give the top-20 retrieval accuracy between brackets for each model

in the caption.

First, we note that not using bounding boxes for our Im-

ageNet baseline or our Weakly model considerably increase

accuracy. Our intuition is that human models in the Deep-

Fashion In-shop dataset often wear the same ensemble of

items together, meaning for one shirt item considered for in-

stance, the human model would be wearing the same pants

and shoes on all item’s image. As a consequence of this

bias, it seems easier to evaluate similarity on a ensemble of

clothings than on a single clothing on this dataset.

Our Weakly model without crop performs as well as

FashionNet, and even outperforms it when k ≥ 20: consid-

ering top-20 retrieval accuracy, it predicts the correct item

78,1% of the time, against 76,4% for FashionNet. Besides,

in both the [F] and [C] setups, our Weakly model improves

over the ImageNet baseline (from 48% to 78.1% for [F], and

from 43.7% to 64.0% for [C]). This validates our hypothesis

that our model has learned a specific e-commerce represen-

tation. In Figure 4, we show an example of a query image,

its top-5 similar images according to our weakly learned

visual features, and its top-5 similar images according to

ImageNet based visual features. As we can see, the simi-

larity encoded by network trained on ImageNet brings to-

gether products that are on a same coarse semantic concept,

while our representation encodes a more precise and rich

closeness, which is based not only the image type, but also

on their shape, texture, and fabric. Plus, our representation

seems less dependent to human model’s pose.

On our in-house dress retrieval dataset, we also observed

that the Weakly model improved over ImageNet Model on

retrieval accuracy. The Weakly model obtained a top-20

retrieval accuracy of 83,71%, against 65,65% for the Im-

ageNet model. Once again, we point out that we do not

perform any training on the retrieval task of this dataset.

3.3. Tagging

We conducted multi-class classification and multi-

labelling experiments to assess the quality of our visual rep-

resentation on transfer learning. On the public DeepFashion

Categories dataset, we pre-computed images representation

using our Weakly image feature extractor on image crops.

Then, we train a simple classifier using a fully-connected

layer followed by a softmax activation function. The results

are shown on the Table 3.1, at the column Category. With

this simple classifier, our results are on par with the state-

of-art model by Lu et al. [14].

On DeepFashion Attributes, we train a fully-connected

layer with a sigmoid output and a binary cross-entropy loss.

As we can see in Table 3.1, our model significantly im-

proves over previous state-of-the-art on textures and shape

labels top-k recall. However, part and style attributes seem

more difficult to separate for our Weakly representation.

This might be due to the fact that texture-like and shape-

like labels are more represented than part and style words

in the large weak dataset. This would require further inves-

tigation.

We carried out experiments on our in-house Clothing-
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Figure 6. t-SNE map of 1,000 image samples from DeepFashion Categories dataset based on our Weakly image features extractor. We can

identify some local subcategories, such as colorful dresses (a), black pants (b), stripes (c), checked (d) or printed shirt (e).

bag belt body bra coat combi dress eyewear gloves hat neckwear pants shoes shorts skirt socks top underpants

ImageNet 99.63 98.02 98.20 99.27 99.00 96.01 98.68 99.93 99.99 99.45 99.18 99.46 99.87 99.23 98.67 99.35 98.67 99.5

Weakly 99.86 99.46 99.08 99.67 99.31 98.11 99.13 99.99 99.97 99.73 99.33 99.56 99.93 99.32 99.21 99.83 99.26 99.67

Table 2. AUC classification score for clothing categories

backpack baguette bowling bag bucket bag doctor bag duffel bag hobo bag luggage clutch saddle bag satchel tote trapeze

ImageNet 95.15 87.63 90.42 94.35 90.99 87.97 92.73 87.65 96.52 91.77 88.58 96.77 92.11

Weakly 95.94 91.85 92.13 94.87 91.59 90.12 95.19 86.96 97.24 93.12 91.45 97.64 93.61

Table 3. AUC classification score for fine-grained type of bags

Type dataset where images are annotated according to their

clothing category (such as bags, shirt, dress, shoes, etc.).

Table 3.3 shows the improvement on AUC scores over the

ImageNet model for each of the clothing categories using

our new representation. This indicates that our training

scheme was able to learn discriminative features for gar-

ment classification.

Finally, we now focus on a fine-grained recognition task.

The HandBag dataset contains images annotated with their

specific type of bag. In this dataset, the differences between

classes are more subtle than in the ClothingType dataset.

The training and evaluation are the same as for the previous

experiment. As in the previous experiment, we improved

AUC scores for nearly each type of bags (see Table 3.3).

3.4. Exploratory visualization using t­SNE

To obtain some insight about our Weakly representa-

tion, we applied t-SNE [15] on features extracted using our

Weakly feature extractor. We did this for 1,000 images from

DeepFashion Categories test set. Figure 6 shows full map

and some interesting close-ups. On top left (a), we can see

a cluster of dresses sub-divised into multiple sub-clusters

corresponding to different colors. The cluster (b) shows a

focus on black pants. In the zone (c), we can easily see that

the model gathered images containing stripes, and it seems

like it has separated tops from dresses inside this cluster

(with large striped sweaters on top). Checked clothings are

grouped in cluster (d), while printed t-shirts are represented

in cluster (e). This plot shows that our representation is able

to group together concepts that are close in terms of cloth-

ing type, texture, color and style.

4. Discussion and Future Work

We presented in the future a method to learn a visual rep-

resentation adapted to fashion. This method has the major

advantage to overcome the issue of finding a large and clean

e-commerce dataset. The results shows clear improvements

compared to a visual representation trained on ImageNet,

improving performance on multiple tasks such as image re-

trieval, classification and fine-grained recognition.

In the future, we would like to investigate on the pos-

sibility to better train our visual feature extractor using an

external knowledge base of textual concepts.
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