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Abstract

This paper presents a novel approach for egocentric im-

age retrieval and object detection. This approach uses fully

convolutional networks (FCN) to obtain region proposals

without the need for an additional component in the network

and training. It is particularly suited for small datasets

with low object variability. The proposed network can be

trained end-to-end and produces an effective global de-

scriptor as an image representation. Additionally, it can

be built upon any type of CNN pre-trained for classifica-

tion. Through multiple experiments on two egocentric im-

age datasets taken from museum visits, we show that the de-

scriptor obtained using our proposed network outperforms

those from previous state-of-the-art approaches. It is also

just as memory-efficient, making it adapted to mobile de-

vices such as an augmented museum audio-guide.

1. Introduction

We propose to enhance a museum audio-tour guide with

a camera, in order to help user orientation, enable automatic

guidance and facilitate museum artifact explanations: when

the visitor is close enough to an object, an explanation is

automatically launched. The embarked camera is not used

for augmented reality but only for the system to localize the

user without the need of any extra hardware to be installed

in the museum (a very strict constraint in some museums).

Hence, only egocentric image analysis and object instance

recognition is possible to localize the user on the museum

map. The camera is installed on a small device held in the

user’s chest. Thus, this system needs to recognize object in-

stances (not classes), such as paintings, sculptures, or any

exhibited historical heritages. Obviously, the entire mu-

seum must be photographed (or video recorded), and each

object image then has to be manually localized in the digital

museum map.

Instance search is a visual task that aims, given an im-

age, to identify the particular objects shown. It is different

from Image Classification, where we focus on identifying

object category, with robustness to intra-class variability. It

is also different because of the nature of the data. An in-

stance represents a given object, generally described only

by a few shots. The instance search task is similar to Im-

age Retrieval, where the aim is to retrieve all images that

contain the same object instance form a query image. In-

stance search uses the result of the image retrieval system

to identify object instances.

We propose a system that learns image representations

and allows Instance Identification through image retrieval.

We use Deep Learning Neural Networks in order to learn

this representation. The Neural Network model proposed

is learned with a siamese network with three streams and

a triplet loss [29]. The aim is to train the weights inside

the network to produce an image representation that allows

image comparison based on their contents. Because of the

number of images available in Instance Search dataset, we

need an external source of data to train a convolutional net-

work, such as ImageNet [27].

The network we use is a Fully Convolutional Network

(FCN) [17] that allows any input size, to avoid image de-

formation or scaling. Additionally, the FCN can be used

to produce region proposals without any additional com-

ponent, in the network or in the dataset. For the training

phase, we use the triplet loss between the three streams of

the siamese architecture, and a cross entropy loss for clas-

12383



sification of the region with the highest activation. The aim

is to create a representation of the image that captures the

position of the object and the difference between images,

whether similar or not.

At test time, the trained FCN is passed over the whole

image, but only the location with the top k maximal activa-

tions will form the image description. This representation

is compared with the reference images in the dataset using

a dot product, to obtain the closest reference image repre-

senting the instance.

In order to evaluate our approach, we use two egocentric

datasets from museum visits [25]. These datasets represent

instances with only a few examples and with very little vari-

ability. We show that our approach achieves better results

than the previous state of the art by Gordo et al. [12].

We first present in section 2 the related work on instance

identification. Then, in section 3 we describe why the use

of pre-trained CNNs and fine-tuning is important for our

problem. The section 4 presents the region of interest de-

tection and object localization. The section 5 describes the

proposed network and how it was trained on the datasets

we used. Finally, experimental results and evaluation are

shown in section 6.

2. Related Work

Before the ground-breaking results of deep learning

methods for object detection and image retrieval, shallow

patch descriptors have been used in several domains. The

SIFT [18] descriptor was the most used one, among the

large variety of traditional patch descriptors. It has been

successfully employed for tasks like image search with con-

tent based retrieval [14] or classification [21]. For image re-

trieval, methods inspired by text retrieval methods, such as

bag of words [6], used bag-of-features (BoF) image repre-

sentation [32]. Aggregated descriptors like VLAD [15] or

Fisher Vectors [21] are an evolution of BoF, with smaller

vocabulary, more adapted to large datasets. The advantages

of traditional patch descriptor approaches is the possibility

of spatial verification and geometry verification to improve

object retrieval [20, 22], and the possible combination with

methods like query expansion [7, 2].

Starting with the results of AlexNet for image classifica-

tion in the 2012 ImageNet challenge [16, 27], image clas-

sification tasks have been dominated by CNNs. A CNN

trained on a large enough labeled dataset like ImageNet

can be used as a feature extractor with its intermediate

layers, to construct an image representation for image re-

trieval [4, 30]. To overcome the lack of geometry invariance

of this approach [10], cross-matching [30], sum-polling [3]

or fine-tuning [4] with an external dataset can be used.

In order to compare images for image retrieval, image

patch comparisons have shown better results than SIFT [9,

31, 36]. Image patches can be constructed with deep patch

descriptors [9] as patch label, each patch is a label, by learn-

ing patch differences with a siamese network [31, 36], or

with a Convolutional Kernel Network [19].

Another important aspect of image retrieval is to learn

to rank [11, 1]. While Arandjelovic et al. [1] have shown

the importance of learning to rank, Gordo et al. [11] used a

siamese network along with a triplet loss, previously used

for face recognition [29], to construct an effective image

representation by learning with a similarity metric. The

work presented in this paper follows this idea.

3. CNN Fine-tuning

The main difference between image classification and

image retrieval, is the amount of data and their variability.

In classification, we rely on a large amount of data, with

high variability of examples for each category. We can then

train a Deep Convolutional Network with millions of pa-

rameters. In image retrieval or identification, as we want

to identify a particular instance, the variability of examples

is less important, and not sufficient to train a network like

ResNet. In order to use a CNN, we only fine-tune a CNN

pre-trained on a bigger collection for image classification.

Fine-tuning focuses on the higher layers of a CNN and can

increase generalization even in the fine-tuned model[35].

We focus our work on two different well studied models

of CNN, AlexNet [16] and ResNet [13].

3.1. Transfer learning

The modularity of a CNN means that we can easily trans-

fer the weights from a pre-trained model, and only re-train

the highest abstraction layers. Specifically, we re-train all

linear layers in the model, representing the highest-level

layers.

We also re-train the highest level convolutional layers,

since our datasets contain many visually different images

as compared to the ImageNet dataset used for pre-training

the models. For the AlexNet architecture, we choose to re-

train all layers above and including the last convolutional

layer. For a ResNet architecture, we re-train all layers above

and including the third to last block of convolutional layers.

This contains the nine highest convolutional layers in total.

3.2. Data Augmentation

Image retrieval methods focus on problems with few ex-

amples and little variability in instance images. This leads

to too few data to train a typical CNN model designed

for classification, even with fine-tuning. One way to over-

come this is to augment the data, by randomly applying

affine transformations, color perturbations and other ran-

dom transformations.

The lack of geometry invariance and scaling invariance

of the model can be reduced by randomly rotating and flip-
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ping the images and using different scaling, thus we per-

form this type of data augmentation throughout our experi-

ments.

For data augmentation in order to fine-tune a CNN, we

use the following values in our experiments:

1. Rotation: any angle is chosen with the same probabil-

ity.

2. Scaling: the scaling factor is chosen independently for

each dimension in the range [0.75, 1.25].

3. Flipping: with probability 0.5, images are horizontally

flipped.

4. Region of Interest and object Localization

Previous approaches in image retrieval [12, 28, 33] usu-

ally deal with regions of interest in one way or another. The

idea is that in most cases, only certain parts of each image

can be useful for comparison with other images. In addi-

tion to this, cropping images at their regions of interest can

help with differences in scale of the images to compare: if a

painting is visible only in a small part of an image, cropping

the image at that part and then re-scaling the part should set

the painting at a normalized scale.

However, in instance search with museum datasets, it is

not obvious where the regions of interest should be: most

images represent an entire painting or parts of it and only

some may contain the painting as part of the image with a

wall in the background. This means for most images, the

ground-truth region of interest is simply the entire image,

and some may have a ground-truth region of interest which

is almost the entire image, excluding only a small part of

the background.

On the other hand, a network fine-tuned on classification

on such a dataset should be able to easily identify the re-

gion containing the painting, since the background wall is

contained in almost all classes, which means it is a particu-

larly bad indicator of the class. Thus, if the network is ap-

plied in a strided manner across an image, it should produce

low maximal activations in parts containing big sections of

background wall.

Figure 1 shows images, along with the heat map repre-

senting the maximal activation of a fine-tuned ResNet-152

at each coordinate, when the network is applied in a strided

manner across the input image. From this image, we can

see that the highest maximal activations of the network usu-

ally occur at the location of the object. This is true even if

the object is not correctly classified by some of the highest

activations as can be seen in the second image.

In the third image, it seems like many high maximal acti-

vations occur specifically in the background area. However,

the corresponding label-map shows that these areas corre-

spond to the labels 38E and 43D. Both of these labels are

Figure 1: Sample images (scaled to a smaller side of 448

pixels) along with the heat-map of maximal activation val-

ues at each location when a fine-tuned ResNet-152 is ap-

plied to the image in a strided manner, as well as the labels

of all maximal activations that are greater than the mean

maximal activation

pieces of art which consist mostly of the background wall.

In this sense, it is not entirely wrong to consider ’wall-only’

patches of the image as instances of these pieces of art. This

simply means that the image consists of two separate re-

gions of interest: one region with the painting (label 30P)

and one region with the wall (labels 38E/43D).

From these observations, we can confirm the assumption

that the maximal activations of a fine-tuned network are a

good indicator of the location of an object, or a combination

of different objects. Using this assumption, there is no need

for a procedure to annotate regions of interest, as employed

by most state-of-the-art image retrieval approaches [11, 33,

26].

On the other hand, using datasets developed for image

retrieval, such as Paris6k or Oxford5k [24, 23], this assump-

tion cannot be applied, since the dataset is not clean enough

for a network fine-tuned on classification to be a good indi-

cator of location of the query objects.

5. Fine-tuning on classification using FCN

As shown before, a fine-tuned CNN is already a good

indicator of the location of an object in our datasets. Addi-

tionally, it seems like scale is a particularly important factor.

2385



5.1. Fully Convolutional Network

Thus, the idea is to start by fine-tuning a network with

images at different scales. This can be achieved by using a

fully convolutional network (FCN) [17].

In an FCN, the final fully connected layers of a network

are replaced by convolutional layers having a kernel which

fits the entire domain of the output of the previous layer.

This type of convolution is equivalent to a fully connected

layer, but allows inputs (and outputs) of any size. The effect

is that the network can be applied in one pass to an arbitrar-

ily sized image. The output then represents the activations

of the network as if it was applied in a strided manner across

the image. The stride of a full network depends on the ar-

chitecture and is 32 pixels for the architectures used here:

AlexNet and ResNet.

Once an FCN is applied to the image, the loss is calcu-

lated by averaging the cross-entropy (CE) loss (eq. 1).

L =
1

N

N
∑

i=1

CE i (1)

The final loss is then obtained by passing images at

different scales through the FCN and averaging across all

cross-entropy losses of all outputs and scales (eq. 2).

L =
1

S

S
∑

s=1

1

Hs ∗Ws

Hs
∑

h=1

Ws
∑

w=1

CE
h,w (2)

In equation 2, S represents the number of scales at which

the image is passed through the network. Hs and Ws rep-

resent the height and width of the feature map respectively,

given the scale s of the input image. CEh,w represents the

cross-entropy of the network at spatial location (h,w) in the

full feature map.

We choose to give each scale of the image the same

weight in the loss. This is because the images are passed

to the network at their true aspect ratio, which means the

loss for different images may have different values for the

heights and widths of the feature maps Hs and Ws.

In order to normalize the sizes of the features present in

the images, all images are scaled to have the same number

of pixels in the smaller side. Note that for large aspect ratios

and large scales of the smaller side, the memory consump-

tion of training can be high for single images having a very

large aspect ratio. To limit this spike in memory consump-

tion, the aspect ratios are limited by introducing uniform

random noise on the smaller side of images with high as-

pect ratios.

In our experiments, we use a maximal aspect ratio of

2.0 and images at two scales of 448 and 224 pixels for the

smaller side. We found that the AlexNet architecture did

not have good convergence behavior, thus we used scales of

384 and 224 instead.

5.2. Triplet Selection

The network is trained with image triplets, with a

siamese configuration. The loss used for this training is the

triplet loss [29]. Equation 3 shows the triplet loss for N

images with a being the anchor image (query), n the nega-

tive example and p the positive one. The typical triplet loss

is defined using squared distances. For normalized vectors,

we can express it using the dot product. This leads to sim-

pler gradient computation. In equation 3, xa
i x

n
i corresponds

to the similarity between the anchor and the negative exam-

ple and xa
i x

p
i to the similarity between the anchor and the

positive example. The scalar m represents the margin be-

tween a positive and a negative pair of images.

L =

N
∑

i=1

max(0, xa
i x

n
i − xa

i x
p
i +m) =

N
∑

i=1

T Li (3)

As noted by previous authors, when using the triplet loss,

it is crucial to choose the best triplets during training in or-

der to obtain convergence. In particular, many triplets are

irrelevant and do not produce any loss since they are too

easy for the network.

Hence, the first idea is to choose the hardest triplets, as

proposed by Schroff et al [29]. However, as they show in

their paper, this can lead to a collapsing model early on

in training. Thus, they choose semi-hard triplets instead.

Semi-hard triplets are obtained as follows: use all possi-

ble positive couples of images (couples of images from the

same instance). For each positive couple, choose the hard-

est negative that is easier than the positive couple. Hard and

easy are defined by the dot product between the descriptors

of the images: a high value of the dot product for images of

the same instance represents an easy positive couple, a high

value of the dot product for images of different instances

represents a hard negative couple. The value of all dot prod-

ucts are determined before each pass over the whole training

data during training, for all couples of images.

A different triplet selection mechanism was proposed by

Gordo et al. [12]. First, calculate the values of dot products

for all couples of images before each pass over the training

data. Second, for each image, choose the n easiest positive

images and the m hardest negatives. Then, calculate the

loss for all possible combinations and use the o triplets with

the highest loss. This method probably eliminates some

noise when choosing the easiest positive couples, for im-

ages that are labeled as being the same instance but are not

visually similar. However, in experiments, we found that

this method does not perform well for datasets with few im-

ages per instance, since we either have to choose n as very

low or we end up choosing all positive couples after all for

most instances, just like in the semi-hard selection.

Hence, in our experiments, we choose the semi-hard
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triplet selection for the first two passes over the dataset, after

which we only choose the hardest negatives for all positive

couples.

5.3. Descriptor Extraction Network

Figure 2 illustrates the proposed architecture. To obtain

a descriptor, we first apply the convolutional layers of a pre-

vious architecture, such as AlexNet or ResNet. We then ob-

tain all classification outputs at all locations using the FCN.

We only consider the maximal activation at all locations.

The locations with the top k maximal activations will form

the descriptor.

For each of these locations, the convolutional features

are reduced by a ‖ · ‖2-normalization, then a shifting and

fully connected layer. Finally, all descriptors from the k

locations are sum-aggregated and ‖ · ‖2-normalized again.

When training, the network is applied to a triplet of im-

ages. These triplets are chosen as described in Section 5.2.

Additionally, we regularize the triplet loss by a cross-

entropy loss to make sure that the k locations with highest

maximal activations are correctly classified. This loss is av-

eraged over the k locations.

Equation 4 shows the full loss as used in our experiments

to train the proposed model, for N images. In this equation,

(hl, wl) represent the spatial coordinates of the l-th region

of highest maximal activation in the feature map produced

by the FCN.

L =

N
∑

i=1

(

T Li + α
1

N

1

k

k
∑

l=1

CE
hl,wl

i

)

(4)

In our experiments, we choose the number of regions

with highest maximal activation to be k = 6 and the reg-

ularization hyper-parameter α = 1.0. The margin of the

triplet loss is m = 0.1.

This approach allows the network to decide which region

of interest is best suited for classification and ultimately

which regions are best suited for comparison with other im-

ages. Another advantage is that this approach does not re-

quire any annotation of the images with regions of interest,

which can be a long, manual or automatic process, as evi-

dent from the cleaning process used by Gordo et al [12].

Finally, an important property of the descriptor is that it

heavily relies on the classification capabilities of the net-

work. This means the descriptor is mostly meaningless for

a different dataset and needs to be learned for each dataset.

This can be an advantage, since the descriptor can be better

suited to a particular dataset and the learning process does

not take long. On the other hand, it means that the descrip-

tor cannot be applied in a typical image retrieval task.

5.4. Instance Feature Augmentation

Query Expansion [8] in Image Retrieval, using deep

learning, like shown by Gordo et al [12], is possible and

relies on a combination of the image descriptor and the de-

scriptors of the top k retrieve results. This new descriptor is

used to perform a second query, which gives the final result.

Furthermore, we do not expect query expansion to pro-

vide any major improvements in our research problem,

since we expect to have very few images returned. This

means the only plausible value of k would be k = 1. How-

ever, if the best matching descriptor of the first query al-

ready matched, the second query cannot improve the result

and if it does not match, it is unlikely that the second query

would match.

An approach called Database-side feature augmenta-

tion [34, 2], proposes to combine descriptors of the refer-

ence images in order to form better database-side descrip-

tors. Every reference descriptor is simply replaced by a

combination of itself and the k nearest neighbors. This

combination is computed as a weighted sum, weighted by

the rank of the neighbors with respect to k (the closest

neighbor has the highest weight and the k-th neighbor the

lowest).

In our work, we use a technique called Instance Feature

Augmentation. We use the fact that we know the corre-

sponding label for each image in our dataset. For each la-

bel, we compute the representation of an instance by averag-

ing the features of every images corresponding to this label.

This representation is added to the dataset as a new instance.

We show that this approach does not improve mean preci-

sion@1, but gives a better Mean Average Precision. This

suggests that the internal representation of the instance is

improved.

6. Evaluation

6.1. Datasets

The proposed approaches as well as several base-lines

are evaluated on two datasets: the CLICIDE and GaRoFou

datasets. These datasets are described in detail by Portaz et

al. [25], and they represent artwork photos, taken by classi-

cal or head-mounted cameras. Both datasets are typical of

instance search datasets in museums or touristic sites with

egocentric view: the objects represented by their images are

paintings for one and glass cabinets containing sculptures

and artifacts for the other dataset. Both datasets contain a

small number of images per instance and a small number of

images in total.

6.2. Results

Table 1 gives an overview of the results obtained. First,

the baselines established by SIFT descriptor, CNN network

features extraction are shown. Additionally, we show the

relevant results obtained by fine-tuning a classification net-

work, abbreviated by FT in the table. We then show the

results obtained by a simplified Siamese architecture, ab-
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(a) Proposed architecture for instance search, at deploy time

(b) Proposed architecture for instance search, at training time

Figure 2: Proposed architecture for instance search, based on an FCN [17] for region proposals.

Mean Precision@1 Mean Average Precision

CLICIDE GaRoFou CLICIDE GaRoFou

SIFT 70.08 78.82 N/A N/A

Gordo et al. [11] (ResNet-50) 90.30 95.65 65.49 88.43

Gordo et al. [11] (ResNet-50, multi-res) 92.73 95.65 N/A 89.32

AlexNet IN 72.73 85.87 32.71 66.11

AlexNet FT 78.18 90.76 38.51 72.92

AlexNet SS 75.76 90.20 36.20 77.73

Proposed AlexNet 81.21 83.15 45.53 71.71

Proposed AlexNet (IFA) 80.61 82.61 71.02 81.66

ResNet-152 IN 72.12 85.33 40.99 70.15

ResNet-152 FT 79.39 94.57 75.11 93.44

ResNet-152 SS 85.45 95.11 83.00 91.90

Proposed ResNet-152 94.55 96.20 82.94 91.83

Proposed ResNet-152 (IFA) 93.94 95.11 94.23 93.86

Table 1: Evaluation results for the CLICIDE and GaRoFou datasets. The results are expressed in percentage points of mean

precision@1 and mean average precision (only indicative)

breviated SS. Finally, we show the results obtained by the

proposed network. In addition to the mean precision@1, we

show the mean average precision obtained by the different

approaches.

From the baselines presented, we can make two observa-

tions. First, even a simple global descriptor obtained from

the convolutional features of a CNN pre-trained on Ima-

geNet performs better than matching local SIFT descriptors

on our datasets. Second, the ResNet-50 proposed by Gordo

et al. [11] out-performs the descriptors from pre-trained net-

works by far, even though it has never seen the images from

our datasets during training, either.
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Table 1 confirms these observations when taking into

account the mean average precision of the ResNet-50 and

the convolutional features of networks pre-trained on Im-

ageNet. The difference is more than 10 points gained in

mean average precision even when comparing against the

ResNet architecture. This means that a ResNet fully opti-

mized for image matching captures the visual information

much better than just the convolutional features of a pre-

trained network. This is expected, since that was one of the

goals of the approach proposed by Gordo et al. [11].

Another observation we can make from Table 1 is that

fine-tuning a network on the reference dataset consistently

out-performs a pre-trained network. This shows that trans-

fer learning is very powerful for small datasets with many

classes. Indeed, networks with many parameters such as

AlexNet and ResNet could not have been trained on such

small datasets with uninitialized weights.

However, when comparing the classification fine-tuning

method with the simplified Siamese architecture (fine-

tuning with a triplet loss), it is not as clear which one per-

forms better. From the results, we can see that the classi-

fication fine-tuning has a better performance for AlexNet

while the triplet loss fine-tuning has a better performance

for ResNet-152. This is most likely due to two factors:

the hyper-parameters when training the Siamese AlexNet

were not perfectly suited, hence the convergence behavior

is not as good as with the Siamese ResNet. Furthermore,

the AlexNet fine-tuned for classification has a much larger

descriptor of dimension 9216 versus the descriptor of di-

mension 2048 of the simplified Siamese architecture. This

may explain that the simplified Siamese architecture per-

forms worse in this case.

Finally, when comparing the proposed architecture with

the previous ones, it is clear that the proposed architecture

out-performs all of them. It achieves higher precision@1

as well as higher mean average precision, especially when

combined with the instance feature augmentation. The

comparison with the ResNet-50 from Gordo et al [11] is dif-

ficult though. This is because on the one hand, our proposed

network is trained on the reference dataset used when com-

paring images, giving it an unfair advantage. On the other

hand, the ResNet-50 is trained on the much larger Land-

marks dataset [5], giving it the advantage of data volume.

The training methodology developed by Gordo et al. is not

applicable to a small, clean dataset, such as the ones used in

our evaluation.

6.3. Limitations and Future work

We tested our approach on museum datasets, only on

still images, with and without egocentric point-of-view. For

these approaches to work on videos, we need to adapt them.

Early tests suggest that a different training is mandatory, to

take into account the specificity of video (motion blur, ob-

struction, . . . ).

The GaRoFou dataset is made to test the system with

cluttered scenes, as several objects can be seen at the same

time. However, we could not test the system’s robustness

to crowded scenes, or to obstruction. Finally, more real-

istic and more challenging corpora are required for further

training as well as testing.

7. Conclusion

This paper presents a novel approach for instance and

image retrieval with low variability and small datasets. The

proposed approach consists of two key steps. First, we

leverage the concept of fully convolutional networks in or-

der to perform classification training at different scales,

without a heavy computational overhead. Second, we show

that the fully convolutional network can be used to obtain

region proposals without the need for an additional compo-

nent in the network and training. This is particularly impor-

tant, since region proposals are costly to define manually

in our research problem. The region proposals used by the

state of the art do not seem applicable to that kind of prob-

lem of instance search.

Finally, the proposed network keeps all the benefits of

state-of-the-art approaches: it can be trained end-to-end

and it produces an effective global descriptor, which can be

compared using the dot product. Additionally, it is modular

in the sense that it can be built upon any type of CNN, pre-

trained for classification. Furthermore, the training time for

each dataset is reasonable and the proposed network is fast

to evaluate, making it particularly useful for an embedded

device such as an augmented museum audio-guide.

Through multiple experiments on two datasets, we show

that the descriptor obtained using our proposed network

outperforms previous state-of-the-art approaches on the in-

stance search task, while being just as memory-efficient and

fast for encoding images. The experiments were conducted

on two egocentric image datasets taken from museum visits.
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Développement Régional (FEDER) of région Auvergne
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